92,657 research outputs found

    Process Planning Optimization In Reconfigurable Manufacturing Systems

    Get PDF
    Trends and perspectives in dynamic environments point towards a need for optimal operating levels in reconfigurable manufacturing activities. Central to the goal of meeting this need is the issue of appropriate techniques for manufacturing process planning optimization in reconfigurable manufacturing, i.e. (i) what decision making models and (ii) what computational techniques, provide an optimal manufacturing process planning solution in a multidimensional decision variables space? Conventional optimization techniques are not robust, hence; they are not suitable for handling multidimensional search spaces. On the other hand, process planning optimization for reconfigurable manufacturing is not amenable to classical modeling approaches due to the presence of complex system dynamics. Therefore, this study explores how to model reconfigurable manufacturing activities in an optimization perspective and how to develop and select appropriate non-conventional optimization techniques for reconfigurable process planning.In this study, a new approach to modeling Manufacturing Process Planning Optimization (MPPO) was developed by extending the concept of manufacturing optimization through a decoupled optimization method. The uniqueness of this approach lies in embedding an integrated scheduling function into a partially integrated process planning function in order to exploit the strategic potentials of flexibility and reconfigurability in manufacturing systems. Alternative MPPO models were constructed and variances associated with their utilization analyzed. Five (5) Alternative Algorithm Design Techniques (AADTs) were developed and investigated for suitability in providing process planning solutions suitable for reconfigurable manufacturing. The five (5) AADTs include; a variant of the simulated annealing algorithm that implements heuristic knowledge at critical decision points, two (2) cooperative search schemes based on a “loose hybridization” of the Boltzmann Machine algorithm with (i) simulated annealing, and (ii) genetic algorithm search techniques, and two (2) modified genetic algorithms. The comparative performances of the developed AADTs when tasked to solve an instance of a MPPO problem were analyzed and evaluated. In particular, the relative performances of the novel variant of simulated annealing in comparison to: (a) (i) a simulated annealing search, and (ii) a genetic search in the Boltzmann Machine Architecture, and (b) (i) a modified genetic algorithm and (ii) a genetic algorithm with a customized threshold operator that implements an innovative extension of the diversity control mechanism to gene and genome levels; were pursued in this thesis.Results show that all five (5) AADTs are capable of stable and asymptotic convergence to near optimal solutions in real time. Analysis indicates that the performances of the implemented variant of simulated annealing are comparable to those of other optimization techniques developed in this thesis. However, a computational study shows that; in comparison to the simulated annealing technique, significant improvements in optimization control performance and quality of computed solutions can be realized through implementing intelligent techniques. As evidenced by the relative performances of the implemented cooperative schemes, a genetic search is better than a simulated annealing search in the Boltzmann Machine Architecture. In addition, little performance gain can be realized through parallelism in the Boltzmann Machine Architecture. On the other hand, the superior performance of the genetic algorithm that implements an extended diversity control mechanism demonstrates that more competent genetic algorithms can be designed through customized operators. Therefore, this study has revealed that extending manufacturing optimization concepts through a decoupled optimization method is an effective modeling approach that is capable of handling complex decision scenarios in reconfigurable manufacturing activities. The approach provides a powerful decision framework for process planning optimization activities of a multidimensional nature. Such an approach can be implemented more efficiently through intelligent techniques. Hence; intelligent techniques can be utilized in manufacturing process planning optimization strategies that aim to improve operating levels in reconfigurable manufacturing with the resultant benefits of improved performance levels

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Scheduling of non-repetitive lean manufacturing systems under uncertainty using intelligent agent simulation

    Get PDF
    World-class manufacturing paradigms emerge from specific types of manufacturing systems with which they remain associated until they are obsolete. Since its introduction the lean paradigm is almost exclusively implemented in repetitive manufacturing systems employing flow-shop layout configurations. Due to its inherent complexity and combinatorial nature, scheduling is one application domain whereby the implementation of manufacturing philosophies and best practices is particularly challenging. The study of the limited reported attempts to extend leanness into the scheduling of non-repetitive manufacturing systems with functional shop-floor configurations confirms that these works have adopted a similar approach which aims to transform the system mainly through reconfiguration in order to increase the degree of manufacturing repetitiveness and thus facilitate the adoption of leanness. This research proposes the use of leading edge intelligent agent simulation to extend the lean principles and techniques to the scheduling of non-repetitive production environments with functional layouts and no prior reconfiguration of any form. The simulated system is a dynamic job-shop with stochastic order arrivals and processing times operating under a variety of dispatching rules. The modelled job-shop is subject to uncertainty expressed in the form of high priority orders unexpectedly arriving at the system, order cancellations and machine breakdowns. The effect of the various forms of the stochastic disruptions considered in this study on system performance prior and post the introduction of leanness is analysed in terms of a number of time, due date and work-in-progress related performance metrics
    corecore