

UNIVERSITI PUTRA MALAYSIA

PROCESS PLANNING OPTIMIZATION IN RECONFIGURABLE MANUFACTURING SYSTEMS

FARAYI MUSHARAVATI

FS 2008 43

PROCESS PLANNING OPTIMIZATION IN RECONFIGURABLE MANUFACTURING SYSTEMS

By

FARAYI MUSHARAVATI

Thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2008

DEDICATION

То

All My Friends

There is a time for all things: a time for shouting, a time for gentle speaking, a time for silence, a time for washing pots and a time for writing journal papers and books. It is hard to make a **BEGINNING**, and will become harder, but **IT MUST BE DONE**. So be vigilant and vigorous for that will cover a "*multitude of sins*". And do not frown. And remember: "work banishes those three great evils: *boredom, vice* and *poverty*"

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

PROCESS PLANNING OPTIMIZATION IN RECONFIGURABLE MANUFACTURING SYSTEMS

By

FARAYI MUSHARAVATI

May 2008

Chairman: Associate Professor Napsiah Ismail, PhD

Faculty: Engineering

Trends and perspectives in dynamic environments point towards a need for optimal operating levels in reconfigurable manufacturing activities. Central to the goal of meeting this need is the issue of appropriate techniques for manufacturing process planning optimization in reconfigurable manufacturing, i.e. (i) what decision making models and (ii) what computational techniques, provide an optimal manufacturing process planning solution in a multidimensional decision variables space? Conventional optimization techniques are not robust, hence; they are not suitable for handling multidimensional search spaces. On the other hand, process planning optimization for reconfigurable manufacturing is not amenable to classical modeling approaches due to the presence of complex system dynamics. Therefore, this study explores how to model reconfigurable manufacturing activities in an optimization techniques for reconfigurable manufacturing activities in an optimization techniques for reconfigurable process planning.

In this study, a new approach to modeling Manufacturing Process Planning Optimization (MPPO) was developed by extending the concept of manufacturing optimization through a decoupled optimization method. The uniqueness of this approach lies in embedding an integrated scheduling function into a partially integrated process planning function in order to exploit the strategic potentials of flexibility and reconfigurability in manufacturing systems. Alternative MPPO models were constructed and variances associated with their utilization analyzed. Five (5) Alternative Algorithm Design Techniques (AADTs) were developed and investigated for suitability in providing process planning solutions suitable for reconfigurable manufacturing. The five (5) AADTs include; a variant of the simulated annealing algorithm that implements heuristic knowledge at critical decision points, two (2) cooperative search schemes based on a "loose hybridization" of the Boltzmann Machine algorithm with (i) simulated annealing, and (ii) genetic algorithm search techniques, and two (2) modified genetic algorithms.

The comparative performances of the developed AADTs when tasked to solve an instance of a MPPO problem were analyzed and evaluated. In particular, the relative performances of the novel variant of simulated annealing in comparison to: (a) (i) a simulated annealing search, and (ii) a genetic search in the Boltzmann Machine Architecture, and (b) (i) a modified genetic algorithm and (ii) a genetic algorithm with a customized threshold operator that implements an innovative extension of the diversity control mechanism to gene and genome levels; were pursued in this thesis.

Results show that all five (5) AADTs are capable of stable and asymptotic convergence to near optimal solutions in real time. Analysis indicates that the performances of the implemented variant of simulated annealing are comparable to those of other optimization techniques developed in this thesis. However, a computational study shows that; in comparison to the simulated annealing technique, significant improvements in optimization control performance and quality of computed solutions can be realized through implementing intelligent techniques. As evidenced by the relative performances of the implemented cooperative schemes, a genetic search is better than a simulated annealing search in the Boltzmann Machine Architecture. In addition, little performance gain can be realized through parallelism in the Boltzmann Machine Architecture. On the other hand, the superior performance of the genetic algorithm that implements an extended diversity control mechanism demonstrates that more competent genetic algorithms can be designed through customized operators.

Therefore, this study has revealed that extending manufacturing optimization concepts through a decoupled optimization method is an effective modeling approach that is capable of handling complex decision scenarios in reconfigurable manufacturing activities. The approach provides a powerful decision framework for process planning optimization activities of a multidimensional nature. Such an approach can be implemented more efficiently through intelligent techniques. Hence; intelligent techniques can be utilized in manufacturing process planning optimization strategies that aim to improve operating levels in reconfigurable manufacturing with the resultant benefits of improved performance levels.

Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGOPTIMUMAN PERANCANGAN PROSES DALAM SISTEM PEMBUATAN YANG DAPAT DIBENTUK KEMBALI

Oleh

FARAYI MUSHARAVATI

May 2008

Pengerusi: Associate Professor Napsiah Ismail, PhD

Fakulti: Kejuruteraan

Cenderung dan perspektif dalam persekitaran dinamik pada masa kini menghala kepada keperluan untuk mengoptimuman tahap proses aktiviti pembuatan yang dapat dibentuk kembali. Tujuan utama untuk memenuhi keperluan ini adalah merupakan teknik yang sesuai untuk pengoptimuman perancangan proses pembuatan, contohnya; (i) apa model pembuatan keputusan yang mana dan (ii) apa computational teknik, memberikan perencanaan proses pembuatan yang optimal pemecahan di tempat variabel keputusan multidimensi? Sambil pengalaman didapati teknik pengoptimuman lazim adalah tidak tepat dan, oleh karena itu, tidak cocok untuk penanganan tepat pencarian multidimensi, perencanaan proses optimization tidak setuju sampai pendekatan memperagakan yang klasik karena tenaga gerak sistem kompleks di pembuatan yang dapat dibentuk kembali. Oleh karena itu, kajian ini meneroka bagaimana untuk memodel semula aktiviti pembuatan yang dapat dibentuk kembali dalam perspektif pengoptimuman dan bagaimana untuk membina dan memilih teknik teknik cerdik untuk proses perencanaan yang dapat dibentuk kembali.

Didalam tesis ini, satu pendekatan baru untuk modeling pengoptimuman perancanagan proses pembuatan (MPPO) telah direka dengan menambaikan konsep pengoptimuman pembuatan lewat memisahkan optimization metode. Keunikan pendekatan ini terdapat pada mematri fungsi menjadwalkan yang diintegrasikan ke dalam perencanaan proses yang diintegrasikan sebahagian fungsi untuk mengeksploitasi potensi strategis fleksibel dan reconfigurability dalam memproduksi sistem. Pelbagai model MPPO telah dibina dan variasi berkaiatan dengan penggunaan dianalisa. Lima (5) pilihan algoritma teknik rekabentuk (AADTs) mengandungi; algoritma Simulated Annealing yang berbeza itu melaksanakan pengetahuan heuristik di ujung keputusan kritis, dua (2) rancangan siasat pencarian koperatif berdasarkan kepada longgar hybridization yang Boltzmann Machine algoritma dengan teknik pencarian algoritma simulated annealing dan genetik dan dua (2) algoritma genetik yang diubahsuai, telah dibangunkan dan diselidik untuk kesesuaian didalam memberikan perencanaan proses pemecahan.

Pertunjukan perbandingan untuk AADTs telah berkembang bila menugaskan untuk memecahkan kejadian masalah MPPO ialah menganalisa dan menilai. Di khusus, pertunjukan relatif variasi baru membuat Simulated Annealing menguatkan, di perbandingan ke: (a) (i) pencarian genetik dan (ii) pencarian simulated annealing, di Boltzmann Machine arsitektur, dan (b) (i) algoritma genetik yang terubah dan (ii) algoritma genetik yang terubah dengan operator yang dibuat menurut pesanan itu melaksanakan perpanjangan inovatif mekanisme kontrol keanekaragaman sampai tingkat gen dan genom; dikejar di tesis ini.

Hasil menunjukkan kelima itu (5) AADTs cakap cakap stabil dan asymptotic persamaan untuk mendekati pemecahan optimal di waktu nyata. Hasil percobaan menunjukkan bahwa pertunjukan variasi yang dilaksanakan membuat Simulated Annealing hampir sama kepada yang dipunyai lain optimization teknik berkembang di tesis ini. Tetapi, computational kajian pameran bahwa; di perbandingan sampai teknik simulated annealing, perbaikan berarti di optimization perbuatan kontrol dan kualitas pemecahan yang diperhitungkan bisa disadari lewat melaksanakan teknik cerdik. Sebagai evidenced oleh pertunjukan relatif rancangan siasat koperatif, pencarian genetik diteukan untuk menjadi lebih baik daripada pencarian simulated annealing di Boltzmann Machine arsitektur. Lagi, dilihat bahwa sedikit perbuatan memperoleh tentang teknik simulated annealing bisa disadari lewat parallelism di Boltzmann Machine arsitektur. Di tangan yang lain, pertunjukan superior algoritme genetik yang melaksanakan mekanisme kontrol keanekaragaman diperpanjang mempertunjukkan bahwa algoritme genetik yang lebih cakap bisa didesain lewat operator yang dibuat menurut pesanan.

Kajian ini sudah mengungkapkan pembuatan memperpanjang itu optimization konsep lewat memisahkan optimization metode adalah pendekatan memperagakan yang efektif yang cakap mengurus aktivitas pembuatan yang dapat dibentuk kembali yang kompleks. Pendekatan seperti itu menyediakan kerangka keputusan sangat kuat untuk pebuatan perencanaan proses aktiviti sifat multidimensi. Oleh karena itu, teknik cerdas bisa digunakan dalam memproduksi perencanaan proses optimization strategi tujuan itu untuk memperbaiki menjalankan tingkat di pembuatan dapat dibentuk kembali dengan keuntungan diakibatkan tingkat pertunjukan yang diperbaiki.

ACKNOWLEDGEMENTS

The research that is presented in this thesis has benefited greatly from numerous discussions with my supervisory committee. I would like to thank Dr. Napsiah, Professor Hamouda and Dr. Rahman for offering their much appreciated comments and insights.

I also would like to thank FESTO Malaysia for allowing me to use their modular production system as the experimental manufacturing system testbed for both analysis and experimental investigations. Their generous support is greatly appreciated.

Last but not least, I would like to thank my beloved friends: Cher, Chiong and Aloysius for their support. Without you friends, I would not have made it this far.

I certify that an Examination Committee met on the 23 May 2008 to conduct the final examination of Farayi Musharavati on his Doctor of Philosophy thesis entitled "Process Planning Optimization in Reconfigurable Manufacturing Systems" in accordance with the Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Examination Committee were as follows:

Megat Mohamad Hamdan Megat Ahmad, Ph.D.

Associate Professor Faculty of Engineering University Putra Malaysia (Chairman)

Yusof Ismail, Ir. Md, Ph.D.

Associate Professor Faculty of Engineering University Putra Malaysia (Examiner)

Tang Sai Hong, Ph.D.

Associate Professor Faculty of Engineering University Putra Malaysia (Examiner)

Waguih ElMaraghy, Ph.D.

Professor Faculty of Engineering University of Windsor, Canada (External examiner)

HASANAH MOHD GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 22 July 2008

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Napsiah BT Ismail, PhD

Associate Professor Faculty of Engineering University Putra Malaysia (Chairman)

Abdel Magid Salem Hamouda, PhD

Professor Faculty of Engineering Qatar University, Doha Qatar (Member)

Abdul Rahman B Ramli, PhD

Associate Professor Faculty of Engineering University Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 August 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been dully acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Farayi Musharavati

Date: 10 June 2008

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvii
LIST OF FIGURES	xix
LIST OF APPENDICES	xxi
LIST OF ABBREVIATIONS	xxii

CHAPTER

1	INT	RODUCTION	1
	1.1	Background	1
		1.1.1 Operating Levels in Dynamic Environments	3
		1.1.2 Need for an Optimization Perspective	4
	1.2	Manufacturing Optimization	6
	1.3	Manufacturing Process Planning Activities in RMSs	10
	1.4	Research Problem	17
	1.5	Aims and Objectives	24
	1.6	Scope of Study	26
	1.6	Road Map	28

2 LITERATURE REVIEW

LIT	ERATURE REVIEW	30
2.1	Background Theory	30
2.2	Challenges for Reconfigurable Manufacturing	38
2.3	Manufacturing Process Planning	40
	2.3.1 Manufacturing Process Planning Tasks	43
	2.3.2 Manufacturing Process Planning and related Issues	
	in RMSs	46
	2.3.3 Approaches to Manufacturing Process Planning Issues	50
	2.3.4 Algorithms for Integrated Process Planning and	
	Production Scheduling	57
2.4	Manufacturing Optimization	61
2.5	Algorithm Design Techniques and Concepts	63
2.6	Simulated Annealing Based Techniques	65
2.7	Genetic Algorithm Based Techniques	68
2.8	Neural Network Based Techniques	72
2.9	Summary of Literature Review	76

3 HEURISTIC ALGORITHM DESIGN TECHNIQUES FOR MANUFACTURING PROCESS PLANNING OPTIMIZATION 86

3.1	Introduction	87
3.2	Manufacturing Optimization Theory	89
	3.2.1 Basic Optimization Concepts	89
	3.2.2 Operational Strategy in Reconfigurable Manufacturing	91
	3.2.3 Manufacturing Optimization Modeling Issues	93
	3.2.4 Decoupled Manufacturing Optimization Methodology	94
	3.2.5 Developing a Manufacturing Optimization System	97
3.3	Optimization Solution Techniques for Manufacturing	
	Applications	100
	3.3.1 Simulated Annealing Optimization Techniques	102
	3.3.2 Genetic Algorithm Optimization Techniques	111
	3.3.3 Boltzmann Machine Optimization Techniques	121
3.4	Adjustment of Free Algorithm Parameters	124
	3.4.1 Experiments with Simulated Annealing Parameters	124
	3.4.2 Experiments with Genetic Algorithm Parameters	127
	3.4.3 Results of Experiments with Simulated Annealing	128
	3.4.4 Results of Experiments with Genetic Algorithms	133
3.5	Conclusion	139

4 MODELING MANUFACTURING PROCESS PLANNING IN AN OPTIMIZATION PERSPECTIVE

4.1 Introduction 143 4.2 Background 145 4.2.1 Product Analysis 149 4.2.2 Processing Configuration Analysis 150 4.2.3 Operating Scenario Analysis 154 4.3 Modeling Assumptions and Conditions 155 4.4 Manufacturing Process Planning Optimization Model 156 4.4.1 Model Inputs 156 4.4.1 Representing Product Information 157 4.4.2 Representing Manufacturing System Information 158 4.4.4 Model Outputs 158 4.5 Formulating the Objective Function 159 4.5.1 Combined Objective Function 162 4.5.2 Total Processing Costs Function 163 4.5.3 Throughput Function 166 4.6 Verification of Model Functions 167 4.6.1 Total Processing Costs 168 4.6.2 Line Throughput 169 4.7 **Optimization Model Overview** 170

142

4.8	Metho	ods and Planned Experiments	172
	4.8.1	Variance Analysis	172
	4.8.2	Suitability of Different Evaluation Criteria	173
4.9	Resul	ts and Discussions	173
	4.9.1	Results and Discussion of Group 1 Optimization Model	
		Experiments	175
	4.9.2	Results and Discussion of Group 2 Optimization Model	
		Experiments	176
	4.9.3	Results and Discussion of Group 3 Optimization Model	
		Experiments	177
	4.9.4	Results and Discussion of Group 4 Optimization Model	
		Experiments	178
	4.9.5	Results and Discussion of Suitability Tests on	
		Alternative Criteria	179
4.10	Concl	usion	185

5 INVESTIGATING THE SUITABILITY OF INTELLIGENT TECHNIQUES IN RMSs 189

Introduction	190
Methods and Planned Experiments	195
5.2.1 Uniformity of Implementation	198
5.2.2 Test Data	198
5.2.3 Optimization Control Characteristics	202
5.2.4 Measurement of Algorithm Performance	203
Experiments with Alternative Algorithms	204
5.3.1 Control Group Time Series Experiments	204
5.3.2 Metrics for Evaluation	206
Applications of the Simulated Annealing Algorithm	207
Applications of Genetic Algorithms	211
5.5.1 Genetic Algorithm Parameters	212
5.5.2 Search Results	213
Applications of the Boltzmann Machine Schemes	217
5.6.1 Algorithm Parameters	218
5.6.2 Search results	218
Performance Comparison and Analysis of AADTs	222
Qualitative Comparison and Analysis of AADTs	225
5.8.1 Algorithm Designs	225
5.8.2 Algorithm Parameters	226
5.8.3 Computational Capabilities	226
5.8.4 Intelligent Capabilities	228
Conclusion	231
	Methods and Planned Experiments 5.2.1 Uniformity of Implementation 5.2.2 Test Data 5.2.3 Optimization Control Characteristics 5.2.4 Measurement of Algorithm Performance Experiments with Alternative Algorithms 5.3.1 Control Group Time Series Experiments 5.3.2 Metrics for Evaluation Applications of the Simulated Annealing Algorithm Applications of Genetic Algorithms 5.5.1 Genetic Algorithm Parameters 5.5.2 Search Results Applications of the Boltzmann Machine Schemes 5.6.1 Algorithm Parameters 5.6.2 Search results Performance Comparison and Analysis of AADTs Qualitative Comparison and Analysis of AADTs 5.8.1 Algorithm Designs 5.8.2 Algorithm Parameters 5.8.3 Computational Capabilities 5.8.4 Intelligent Capabilities

REC	ONFIGURABLE MANUFACTURING SYSTSEMS	230
6.1	Introduction	23'
	6.1.1 Changing Production Objectives	242
	6.1.2 Multicriteria Performance Analysis	24
6.2	RMS Performance Measures	24
6.3	Methods and Planned Experiments	24
	6.3.1 Cumulative Measure of Performance	25
	6.3.2 Simulation Experiments	25
	6.3.3 Multicriteria Analysis	25
6.4	Results of Multicriteria Performance Analysis	25
	6.4.1 Alternative Solution Profiles obtained from SA	25
	6.4.2 Alternative Solution Profiles obtained from GATO	25
	6.4.3 Alternative Solution Profiles obtained from GAWTO	25
	6.4.4 Alternative Solution Profiles obtained from BMGAS	25
	6.4.5 Alternative Solution Profiles obtained from BMSAS	25
	6.4.6 Performance of the Best Configuration Profiles	25
6.5	Adaptability Performance Analysis	26
	6.5.1 Simulated Annealing Technique	26
	6.5.2 Genetic Algorithm Techniques	26
	6.5.3 Boltzmann Machine Schemes	26
6.6	Effects of Intelligent Based Solution Profiles on Performance	26
6.7	Overall Manufacturing System Performance Analysis	26
6.8	Conclusion	26

ASSESSING THE EFFECTS OF OPTIMAL SOLUTION

7 CONCLUSIONS

7.1	Summary	274
7.2	Major Findings	279
	7.2.1 MPP Optimization Model	280
	7.2.2 Improvements in Optimization Control Performance	282
	7.2.3 Improvements in Operating Levels	286
7.3	Conclusions Drawn from Findings	290
7.4	Research Contributions and Implications	295
7.5	Research Limitations	304
7.6	Recommendations	305
7.7	Further Work	306

REFERENCES	309
APPENDICES	323
BIODATA OF STUDENT	346
LIST OF PUBLICATIONS	347

LIST OF TABLES

Table		Page
2.1	Summary of three types of manufacturing systems	34
3.1	Mapping permutation states for part i through a partitioned double integer string representation	115
3.2	Design of experiments models for investigating parameters for the simulated annealing algorithm	125
3.3	simulated annealing algorithm under different stopping criteria	129
3.4	Computational results of the genetic algorithm runs for different population sizes	134
3.5	Computational results of the genetic algorithm runs for different mutation rates	136
3.6	Computational results of the genetic algorithm runs for different Crossover rates at mutation rates of 0.6 and 0.7	137
3.7	Computational results of the genetic algorithm runs for different diversity rates and different control parameters	138
4.1	Computational results for eight (8) alternative models in group 1 based on genetic algorithm runs	176
4.2	Computational results for eight alternative models in group 2 based on genetic algorithm runs	176
4.3	Computational results for eight alternative models in group 3 based on genetic algorithm runs	178
4.4	Computational results for eight alternative models in group 4 based on genetic algorithm runs	178
4.5	Summary of cost function values obtained from different algorithms runs based on eight different evaluation criteria	183
4.6	Relative performance comparison of alternative optimization evaluation criteria	185
5.1	Optimal manufacturing process plan profiles obtained from simulated annealing algorithm	210
5.2	Comparison of the results of fifty (50) runs of the two genetic algorithms	214
5.3	Optimal manufacturing process plan profiles obtained from	211

	genetic algorithm without a threshold operator (GAWTO)	216
5.4	Optimal manufacturing process plan profiles obtained from genetic algorithm with a threshold operator (GATO)	216
5.5	Comparison of the results of fifty (50) runs of the Boltzmann Machine Schemes	219
5.6	Two sample student t-test for BMSAS times vs. BMGAS times	220
5.7	Optimal manufacturing process plan profiles obtained from Boltzmann machine scheme that implements a simulated annealing search technique (BMSAS)	221
5.8	Optimal manufacturing process plan profiles obtained from Boltzmann machine scheme that implements a genetic search technique (BMGAS)	222
5.9	Comparison of alternative algorithm design techniques for solving the manufacturing process planning optimization mode	223
5.10	Effectiveness of intelligent based optimization techniques in solving the manufacturing process planning optimization model	225
5.11	Summary of results obtained by running alternative algorithms	234
6.1	Overall manufacturing performance indices for five (5) configurations recommended by the simulated annealing	254
6.2	Overall manufacturing performance indices for five (5) configurations recommended by the GATO technique	255
6.3	Overall manufacturing performance indices for five (5) configurations recommended by the GAWTO technique	256
6.4	Overall manufacturing performance indices for five (5) configurations recommended by the BMGAS scheme	257
6.5	Overall manufacturing performance indices for five (5) configurations recommended by the BMSAS technique	257
6.6	Performance comparison of the best configurations from each of the alternative algorithm design techniques	258
6.7	Relative margins of adaptability of recommended optimal profiles based on average tardiness evaluations	267
6.8	Manufacturing system performance measures for alternative part load scheduling profiles	269

7.1	Mean optimum solutions computed by alternative algorithm Design techniques	284
7.2	Mean computation times required for alternative algorithm Design techniques to find optimal solutions	285
7.3	Relative effectiveness indices for intelligent techniques implemented in this work	285
7.4	Average performance indices for alternative manufacturing configurations	287
7.5	Average flow times and work in process for profiles recommended by alternative algorithms design techniques	289

LIST OF FIGURES

Figure		Page
3.1	Decoupled manufacturing optimization methodology for complex manufacturing activities	96
3.2	Control theoretic framework for generating manufacturing process planning solutions	99
3.3	General approach in the development of alternative heuristic algorithm design techniques	101
3.4	Chromosome representation of manufacturing process plans	114
3.5	Simulation performance curves for simulated annealing algorithm based on four (4) different stopping criteria	128
3.6	Interaction between T_F and T_0 and their effects on the mean optimality gap	131
3.7	Main effects of temperature difference on response variables	131
3.8	Interaction between the number of rejected changes and the number of iterations and their effects on response variables	132
4.1	Reconfigurable multiple parts flow line model	145
5.1	The concept of replanning in generating manufacturing process plans	145 193
5.2	Schematic representation of a semi-automated manufacturing system for the case study	199
5.3	Flow chart for the implemented simulated annealing algorithm	207
5.4	Screen shot showing parameters used in running the simulated annealing algorithm	208
5.5	Simulation mean performance curve for a variant of the simulated annealing algorithm	209
5.6	Screen shot showing the parameters used in running the genetic algorithms	212
5.7	Simulation mean performance curves for the modified genetic algorithms	213
5.8	Cooperative search schemes based on Boltzmann Machine algorithm	218

5.9	Simulation mean performance curves for the Boltzmann machine schemes	218
6.1	Concept of cumulative performance measures	250
6.2	Average tardiness values for adaptability analysis of the solution profiles obtained from the simulated annealing technique	262
6.3	Average tardiness values for adaptability analysis of the solution profiles obtained from the genetic algorithm with a threshold operator (GATO)	264
6.4	Average tardiness values for adaptability analysis of the solution profiles obtained from the genetic algorithm without a threshold operator (GAWTO)	264
6.5	Average tardiness values for adaptability analysis of the solution profiles obtained from the Boltzmann scheme that implements a simulated annealing search technique (BMSAS)	265
6.6	Average tardiness values for adaptability analysis of the solution profiles obtained from the Boltzmann scheme that implements a genetic algorithm search technique (BMGAS)	266

LIST OF APPENDICES

Appendix		Page
А	The Context of Manufacturing Process Planning	323
B1	Heuristic I for generating a valid Manufacturing Process Plan	324
B2	Heuristic II for generating a Precursor	325
B3	Heuristic III for generating an Ancestor	326
B4	Heuristic IV for changing manufacturing plan	327
B5	Pseudo code for the basic simulated annealing algorithm	328
B6 B7	Pseudo code for the implemented variant of the simulated annealing algorithm Pseudo code for the simple genetic algorithm	329 330
B8	Pseudo code for the implemented modified genetic algorithm	331
B9	Pseudo code for SA search in the Boltzmann Machine	332
B10	Pseudo code for the GA search in the Boltzmann Machine	333
C1 C2	Method for generating production scenarios from customer orders Method for generating operating scenarios from manufacturing Requirements	334 335
D1	Encoding of multiple process planning based on the GA concept of multiple parameter encoding	336
D2	An example notepad output file generated by one of the algorithms implemented in this work	337
D3	Manufacturing process planning solution profiles showing the relationship between PSTs and the corresponding PMs	339
E1	Integrated measure of performance Model	340
E2	Implementation of the analytical hierarchical process approach	341
F1	Arena Simulation Model for the Test Case Manufacturing System	342
F2	ARENA simulation model (in SIMAN) for the test case manufacturing systems	343

LIST OF ABBREVIATIONS

AADT	Alternative Algorithm Design Technique
AADTs	Alternative Algorithm Design Techniques
AHP	Analytical Hierarchical Process
BM	Boltzmann Machine
BMGAS	Boltzmann Machine with Simulated Annealing Search
BMSAS	Boltzmann Machine with Genetic Algorithm Search
CCSs	Configurable Control Systems
CLPP	Closed Loop Process Planning
CV	Coefficient of Variation
DML	Dedicated Manufacturing Line
DMLs	Dedicated Manufacturing Lines
DPP	Distributed Process Planning
FMS	Flexible Manufacturing System
FMSs	Flexible Manufacturing Systems
GA	Genetic Algorithm
GAs	Genetic Algorithms
GATO	Genetic Algorithm with a Threshold Operator
GAWTO	Genetic Algorithm Without a Threshold Operator
GT	Group Technology
HC	Handling Costs
HCI	Handling Costs Index
IAHP	Interval Analytical Hierarchical Process
MAE	Modular Actuator Element
MAEs	Modular Actuator Elements
MCDA	Multi-Criteria Decision Analysis
MGA	Modified Genetic Algorithm
МО	Manufacturing Optimization
MPP	Manufacturing Process Planning
MPPO	Manufacturing Process Planning Optimization
MPPs	Manufacturing Process plans
MRP	Materials Requirements Planning
MTJs	Modular Tooling and Jigs
NLMPP	Non-Linear Manufacturing Process Planning
NLMPPs	Non-Linear Manufacturing Process Plans
NP, np	Number of Parts
NPF, npf	Number of Part Families
OMPI	Overall Manufacturing Performance Index
OMPIs	Overall Manufacturing Performance Indices
OPS	Operating Scenario
OPSs	Operating Scenarios

OPT	Optimized Production Technology
PA	Part Array
PCA	Production Cost Array
PCC	Process Change Costs
PCCI	Process Change Costs Index
PDS	Production Scenario
PDSs	Production Scenarios
PM	Process Module
PMC	Process Module Change
PMCI	Process Module Change Index
PMP	Processing Machine Primitive
PMPs	Processing Machine Primitives
PMRVs	Processing Module Required Vectors
PMSC	Process Module Similarity Coefficient
PMs	Processing Modules
PS	Processing Stage
PSC	Part Similarity Coefficient
PST	Processing Types
PVA	Production Volume Array
QAP	Quadratic Assignment Problem
RCC	Reconfiguration Change Costs
RCCI	Reconfiguration Change Costs Index
RMS	Reconfigurable Manufacturing System
RMSs	Reconfigurable Manufacturing Systems
RPP	Reconfigurable Process Planning
RPPs	Reconfigurable Process Plans
SA	Simulated Annealing
SCC	Set-up Change Costs
SCCI	Set-up Change Cost Index
SGA	Simple Genetic Algorithm
SM	Synchronous Manufacturing
TAD	Tool Approach Distance
ТС	Tool Costs
TCC	Tool Change Costs
TCCI	Tool Change Cost Index
TCI	Tool Cost Index
TSP	Traveling Salesman problem
VCMS	Virtual Cellular Manufacturing Systems
VISM	Visual Interactive Simulation Modeling
WS	Work Station
XS	Change in Production Scenario
XSs	Change in Production Scenarios

