1,120 research outputs found

    VISOR: virtual machine images management service for cloud infarestructures

    Get PDF
    Cloud Computing is a relatively novel paradigm that aims to fulfill the computing as utility dream. It has appeared to bring the possibility of providing computing resources (such as servers, storage and networks) as a service and on demand, making them accessible through common Internet protocols. Through cloud offers, users only need to pay for the amount of resources they need and for the time they use them. Virtualization is the clouds key technology, acting upon virtual machine images to deliver fully functional virtual machine instances. Therefore, virtual machine images play an important role in Cloud Computing and their efficient management becomes a key concern that should be carefully addressed. To tackle this requirement, most cloud offers provide their own image repository, where images are stored and retrieved from, in order to instantiate new virtual machines. However, the rise of Cloud Computing has brought new problems in managing large collections of images. Existing image repositories are not able to efficiently manage, store and catalogue virtual machine images from other clouds through the same centralized service repository. This becomes especially important when considering the management of multiple heterogeneous cloud offers. In fact, despite the hype around Cloud Computing, there are still existing barriers to its widespread adoption. Among them, clouds interoperability is one of the most notable issues. Interoperability limitations arise from the fact that current cloud offers provide proprietary interfaces, and their services are tied to their own requirements. Therefore, when dealing with multiple heterogeneous clouds, users face hard to manage integration and compatibility issues. The management and delivery of virtual machine images across different clouds is an example of such interoperability constraints. This dissertation presents VISOR, a cloud agnostic virtual machine images management service and repository. Our work towards VISOR aims to provide a service not designed to fit in a specific cloud offer but rather to overreach sharing and interoperability limitations among different clouds. With VISOR, the management of clouds interoperability can be seamlessly abstracted from the underlying procedures details. In this way, it aims to provide users with the ability to manage and expose virtual machine images across heterogeneous clouds, throughout the same generic and centralized repository and management service. VISOR is an open source software with a community-driven development process, thus it can be freely customized and further improved by everyone. The conducted tests to evaluate its performance and resources usage rate have shown VISOR as a stable and high performance service, even when compared with other services already in production. Lastly, placing clouds as the main target audience is not a limitation for other use cases. In fact, virtualization and virtual machine images are not exclusively linked to cloud environments. Therefore and given the service agnostic design concerns, it is possible to adapt it to other usage scenarios as well.A Computação em Nuvem (”Cloud Computing”) é um paradigma relativamente novo que visa cumprir o sonho de fornecer a computação como um serviço. O mesmo surgiu para possibilitar o fornecimento de recursos de computação (servidores, armazenamento e redes) como um serviço de acordo com as necessidades dos utilizadores, tornando-os acessíveis através de protocolos de Internet comuns. Através das ofertas de ”cloud”, os utilizadores apenas pagam pela quantidade de recursos que precisam e pelo tempo que os usam. A virtualização é a tecnologia chave das ”clouds”, atuando sobre imagens de máquinas virtuais de forma a gerar máquinas virtuais totalmente funcionais. Sendo assim, as imagens de máquinas virtuais desempenham um papel fundamental no ”Cloud Computing” e a sua gestão eficiente torna-se um requisito que deve ser cuidadosamente analisado. Para fazer face a tal necessidade, a maioria das ofertas de ”cloud” fornece o seu próprio repositório de imagens, onde as mesmas são armazenadas e de onde são copiadas a fim de criar novas máquinas virtuais. Contudo, com o crescimento do ”Cloud Computing” surgiram novos problemas na gestão de grandes conjuntos de imagens. Os repositórios existentes não são capazes de gerir, armazenar e catalogar images de máquinas virtuais de forma eficiente a partir de outras ”clouds”, mantendo um único repositório e serviço centralizado. Esta necessidade torna-se especialmente importante quando se considera a gestão de múltiplas ”clouds” heterogéneas. Na verdade, apesar da promoção extrema do ”Cloud Computing”, ainda existem barreiras à sua adoção generalizada. Entre elas, a interoperabilidade entre ”clouds” é um dos constrangimentos mais notáveis. As limitações de interoperabilidade surgem do fato de as ofertas de ”cloud” atuais possuírem interfaces proprietárias, e de os seus serviços estarem vinculados às suas próprias necessidades. Os utilizadores enfrentam assim problemas de compatibilidade e integração difíceis de gerir, ao lidar com ”clouds” de diferentes fornecedores. A gestão e disponibilização de imagens de máquinas virtuais entre diferentes ”clouds” é um exemplo de tais restrições de interoperabilidade. Esta dissertação apresenta o VISOR, o qual é um repositório e serviço de gestão de imagens de máquinas virtuais genérico. O nosso trabalho em torno do VISOR visa proporcionar um serviço que não foi concebido para lidar com uma ”cloud” específica, mas sim para superar as limitações de interoperabilidade entre ”clouds”. Com o VISOR, a gestão da interoperabilidade entre ”clouds” é abstraída dos detalhes subjacentes. Desta forma pretende-se proporcionar aos utilizadores a capacidade de gerir e expor imagens entre ”clouds” heterogéneas, mantendo um repositório e serviço de gestão centralizados. O VISOR é um software de código livre com um processo de desenvolvimento aberto. O mesmo pode ser livremente personalizado e melhorado por qualquer pessoa. Os testes realizados para avaliar o seu desempenho e a taxa de utilização de recursos mostraram o VISOR como sendo um serviço estável e de alto desempenho, mesmo quando comparado com outros serviços já em utilização. Por fim, colocar as ”clouds” como principal público-alvo não representa uma limitação para outros tipos de utilização. Na verdade, as imagens de máquinas virtuais e a virtualização não estão exclusivamente ligadas a ambientes de ”cloud”. Assim sendo, e tendo em conta as preocupações tidas no desenho de um serviço genérico, também é possível adaptar o nosso serviço a outros cenários de utilização

    STATE-OF-THE-ART OF MESSAGING FOR DISTRIBUTED COMPUTING SYSTEMS

    Get PDF
    Modern software applications rarely live in isolation and nowadays it is common practice to rely on services or consume information provided by remote entities. In such a distributed architecture, integration is key. Messaging, for more than a decade, is the reference solution to tackle challenges of a distributed nature, such as network unreliability, strong-coupling of producers and consumers and the heterogeneity of applications. Thanks to a strong community and a common effort towards standards and consolidation, message brokers are today the transport layer building blocks in many projects and services, both within the physics community and outside. Moreover, in recent years, a new generation of messaging services has appeared, with a focus on low-latency and high-performance use cases, pushing the boundaries of messaging applications. This paper will present messaging solutions for distributed applications going through an overview of the main concepts, technologies and services

    The user support programme and the training infrastructure of the EGI Federated Cloud

    Get PDF
    The EGI Federated Cloud is a standards-based, open cloud system as well as its enabling technologies that federates institutional clouds to offer a scalable computing platform for data and/or compute driven applications and services. The EGI Federated Cloud is based on open standards and open source Cloud Management Frameworks and offers to its users IaaS, PaaS and SaaS capabilities and interfaces tuned towards the needs of users in research and education. The federation enables scientific data, workloads, simulations and services to span across multiple administrative locations, allowing researchers and educators to access and exploit the distributed resources as an integrated system. The EGI Federated Cloud collaboration established a user support model and a training infrastructure to raise visibility of this service within European scientific communities with the overarching goal to increase adoption and, ultimately increase the usage of e-infrastructures for the benefit of the whole European Research Area. The paper describes this scalable user support and training infrastructure models. The training infrastructure is built on top of the production sites to reduce costs and increase its sustainability. Appropriate design solutions were implemented to reduce the security risks due to the cohabitation of production and training resources on the same sites. The EGI Federated Cloud educational program foresees different kind of training events from basic tutorials to spread the knowledge of this new infrastructure to events devoted to specific scientific disciplines teaching how to use tools already integrated in the infrastructure with the assistance of experts identified in the EGI community. The main success metric of this educational program is the number of researchers willing to try the Federated Cloud, which are steered into the EGI world by the EGI Federated Cloud Support Team through a formal process that brings them from the initial tests to fully exploit the production resources. © 2015 IEEE

    Automated Software Configuration for Cloud Deployment

    Get PDF
    Nowadays the Internet is being used as a platform for providing a wide variety of different services. That has created challenges related to scaling IT infrastructure management. Cloud computing is a popular solution for scaling infrastructure, either by building a self-hosted cloud or by using cloud platform provided by external organizations. This way some the challenges related to large scale can be transferred to the cloud administrators. OpenStack is a group of open-source software projects for running cloud platforms. It is currently the most commonly used software for building private clouds. Since initially published by NASA and Rackspace, it has been used by various organizations such as Walmart, China Mobile and Cern nuclear research institute. The largest production deployments of OpenStack clouds consist of thousands of physical server computers located in multiple datacenters. The OpenStack community has created many deployment methods that take advantage of automated software configuration management. The deployment methods are built with state of the art software for automating different administrative tasks. They take different approaches to automating infrastructure management for OpenStack. This thesis compares some of the automated deployment methods for OpenStack and examines the benefits of using automation for configuration management. We present comparisons based on technical documentations as well as reference literature. Additionally, we conducted a questionnaire for OpenStack administrators about the use of automation. Lastly, we tested one of the deployment methods in a virtualized environment
    corecore