
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Virtual Infrastructure Optimisation

Koulouzis, S.; Martin, P.; Zhao, Z.
DOI
10.1007/978-3-030-52829-4_11
Publication date
2020
Document Version
Final published version
Published in
Towards Interoperable Research Infrastructures for Environmental and Earth Sciences
License
CC BY

Link to publication

Citation for published version (APA):
Koulouzis, S., Martin, P., & Zhao, Z. (2020). Virtual Infrastructure Optimisation. In Z. Zhao, &
M. Hellström (Eds.), Towards Interoperable Research Infrastructures for Environmental and
Earth Sciences: A Reference Model Guided Approach for Common Challenges (pp. 192-207).
(Lecture Notes in Computer Science; Vol. 12003). Springer. https://doi.org/10.1007/978-3-
030-52829-4_11

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Feb 2023

https://doi.org/10.1007/978-3-030-52829-4_11
https://dare.uva.nl/personal/pure/en/publications/virtual-infrastructure-optimisation(f25558d7-0867-4000-ac0a-9141e1c89070).html
https://doi.org/10.1007/978-3-030-52829-4_11
https://doi.org/10.1007/978-3-030-52829-4_11


Virtual Infrastructure Optimisation

Spiros Koulouzis , Paul Martin , and Zhiming Zhao(B)

Multiscale Networked Systems, University of Amsterdam, 1098XH Amsterdam,
The Netherlands

{s.koulouzis,z.zhao}@uva.nl, pwmartin.research@gmail.com

Abstract. The increasing volumes of data being produced, curated and made
available by research infrastructures in the environmental science domain require
services able to optimise the delivery staging and process of data on behalf of
researchers. Specialised data services for managing the data lifecycle, for creating
and delivering data products, and for customised data processing and analysis,
all play a crucial role in how these research infrastructures serve their commu-
nities, and many of these activities are time-critical needing to be carried out
frequently within specific time windows. We describe our experiences identifying
the time-critical requirements of environmental scientists making use of com-
putational research support environments. We also present a microservice-based
infrastructure optimisation suite, the Dynamic Real-time Infrastructure Planner,
used for constructing virtual infrastructures for research applications on demand.
This chapter is partially based on a recent paper presented in [1].

Keywords: Infrastructure optimization · Cloud computing

1 Introduction

The ENVRI community works together to provide shared technological and governance
solutions for data-driven science, in particular defining common operations for environ-
mental research infrastructures and identifying and adopting technologies that implement
those operations. Addressing the need for interoperable services for such diverse topics
as identification and citation, curation, provenance and cataloguing, the Data for Science
theme of ENVRIplus brought together a cluster of environmental research infrastruc-
tures (RIs) and (Information and Communication Technologies) institutions to come up
with practical solutions to long-standing problems in such diverse areas as identification
and citation, curation, cataloguing, processing and provenance. One particular area of
interest, however, was optimisation; particularly the optimisation of virtual infrastructure
used to support scalable data workflows needed both by RIs as part of their own internal
data pipelines, and by RI users as part of their data science applications. Therefore, it
is necessary to provide sufficiently advanced computational networked infrastructure
to manage both the transportation of large (distributed) datasets and the data-intensive
processing of such datasets.

© The Author(s) 2020
Z. Zhao and M. Hellström (Eds.): Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences, LNCS 12003, pp. 192–207, 2020.
https://doi.org/10.1007/978-3-030-52829-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52829-4_11&domain=pdf
http://orcid.org/0000-0001-8652-315X
http://orcid.org/0000-0003-1916-864X
http://orcid.org/0000-0002-6717-9418
https://doi.org/10.1007/978-3-030-52829-4_11


Virtual Infrastructure Optimisation 193

Performance is a crucial factor for many scenarios involving research support
environments, influencing the quality of experience factors such as responsiveness to
requests, to more system-level concerns such as efficient load distribution across dis-
tributed nodes in a confederation of data services. An example of a performance-critical
system involving environmental data would be an early warning system where real-time
sensor data have to be analysed quickly enough to identify events and provide adequate
time for response. Even in non-emergency contexts, there are many cases where RIs
collect real-time data continuously from sensors for swift processing to provide “nearly
real-time” services to researchers. The specific example used in this paper is that of a
data subscription service whereby updates to tailored subsets of a dataset are pushed to
subscribers within a requested deadline. Notably, these services often cut across research
support environments; RIs provide the service but delegate the hosting and management
of the data processing pipeline to an e-infrastructure, generally to take advantage of
elastic infrastructure resources rather than provide dedicated infrastructure within their
data centres (which often operate as loose confederations with limited budgets for ser-
vices beyond data curation and publication). Virtual Research Environments (VREs)
may also be involved as part of the interface with researchers: for example, to subscribe
to RI services or retrieve (and process) the results from such services.

To deliver acceptable performance, time-critical applications thus rely not only on
the infrastructure for parallel computing or fast communication between components
but also on optimisation of system-level application behaviour [2, 3]. The customisation
of the infrastructure must consider performance constraints on applications at run-time
as well as the utilisation and cost of the underlying resources across applications [4, 5].
In this chapter, we present a smart infrastructure optimisation engine, called Dynamic
Real-time Infrastructure Planner (DRIP), that has been developed to bridge the gap
between application requirements and service delivery on the part of research support
environments, to optimise the quality of service at all levels. DRIP can be used to
deploy, control and manage the kinds of distributed data pipelines needed for advanced
RI services on the Cloud-based infrastructures now being provided by e-infrastructures.

2 Requirements and State of the Art

In this section, we analyse the basic requirements for service performance optimisation
for time-critical data services in research support environments, review the state-of-the-
art in real-time systems that may bear an impact on the development or operation of such
data services, and summarise the essential challenges for time-critical data services on
modern e-infrastructures.

2.1 Requirements

When we refer to time-critical applications, we do not usually mean speed-critical appli-
cations in the sense of applications that simply need tominimise the completion time (i.e.
must be run fast). True “real-time” applications are characterised by bounded response
time constraints on inputs, with certain consequences upon failure to meet deadlines [6].
Based on those consequences, real-time applications are referred to as hard real-time



194 S. Koulouzis et al.

if any missed deadline leads to immediate failure of the application, soft real-time if
missing deadlines merely leads to degradation of user experience, and firm real-time if
failure is brought about by too many missed deadlines in succession. Nearly real-time
applications meanwhile are those with an intrinsic yet bounded delay introduced by
data processing or transmission. Note that this does not make all nearly real-time appli-
cations “soft”-such applications can still impose a hard requirement for processing to
fall within the permitted bounds. We might consider most processes in research support
environments to be soft insomuch as failure to meet deadlines is usually not immediately
disastrous. However, processes that are continuously run in tandem with real-time data
acquisition can be seen to be “firm” due to the cascading impact of repeated failure to
process their inputs on time; similarly, any highly parallelised workflow with bottle-
necks in the data pipeline can suffer a precipitous drop in general quality of service if
delays in one parallel element impact a non-parallelised bottleneck downstream. When
we refer to time-critical applications, we therefore generally mean real-time or nearly
real-time applications that are “firm” (or harder) in terms of the consequences of failure
to meet the quality of service requirements. True hard real-time constraints in research
infrastructure are rare but may emerge in particular for safety-critical applications that
depend on real-time observational data.

In practical terms, the “firmness” of a response time constraint dictates the degree of
a limited resource that should be allocated to ensuring the constraint. Isolated failures do
not have the same impact as failures that beget further failures. It may be possible (and
desirable) in specific research support environments to be able to assign a metric to con-
straints based on firmness that can be translated into concrete resource level requirements
or adaptation strategies so that this information can be passed to optimisation services
that must prioritise particular services or metrics. The requirements for optimising per-
formance in research support environments are mainly dominated by the requirements
of the data-centric research activities (the simplest but most important being the retrieval
of specific datasets on request) that demand high performance or responsiveness. Within
RIs, services are often developed with time constraints imposed on the acquisition, pro-
cessing and publishing of real-time observations, in scenarios such as disaster early
warning [7]. For VREs and RIs, performance factors are strongly influenced by the time
needed to customise the runtime environment and to schedule the workflow applications
[8]. Steering of applications during complex experiments is also temporally bounded [9].
Computing tasks and services provided by e-infrastructures are managed and offered to
clients based on service-level agreements (SLAs). Time constraints are also imposed on
the scheduling and execution of tasks that require high performance or high throughput
computing (HPC/HTC). The overhead introduced by the customisation, reservation and
provisioning of suitable infrastructure, the monitoring of runtime behaviour for infras-
tructure, and the support for runtime control also needs to be reduced and maintained
within minimum levels. Failure recovery for deployed services and applications in real-
time is also important when supporting time-critical applications; time constraints are
not only imposed on failure detection, but also on decision-making and recovery.



Virtual Infrastructure Optimisation 195

2.2 Related Work

Within the Cloud context, many approaches have been proposed to address the schedul-
ing, scaling and execution of tasks with deadlines. The majority of these proposals,
however, adopt the viewpoint of the Cloud provider, which is often concerned with opti-
mal VM placement on physical machines [10, 11]. In other cases, complex scheduling
algorithms consider only the planning phase and do not react at runtime to changes in
performance or failures [12]. Moreover, the majority of these approaches consider either
synthetic tasks and workloads, simulated Cloud environments or both [13, 14].

2.3 State of the Art

The fulfilment of most time-critical requirements for research support environments
relies on optimal execution of tasks on e-infrastructures, as well as efficient movement
of data across networks. We identify several categories of time-critical application.

Time-Critical Information Search and Query. Typical technologies for real-time
data query and search model the search activities of users, and their projected needs,
predicting future queries [15], optimising catalogues [16] or prioritising urgent tasks
[17], as well as optimising the presentation of contextual information [18]. Information
retrieval is a core part of many data services and may require the retrieval of multiple
datasets to answer a given query or considerable internal processing of data files for
document-oriented data.

Time-Critical Workflow Execution. Time-critical constraints on workflows are typi-
cally expressed as deadlines for completing (part of) the workflow, or for responding to
invocations or events within a certain time window. Scheduling the execution of such
workflows requires consideration of not only individual task deadlines but also cost and
occupation of resources [19]. Algorithms based on partial critical paths can be used to
solve such problems [20, 21], applying meta-heuristic approaches, e.g. particle swarm
optimisation [22]. When customising virtual infrastructures, a common approach will 1)
select suitable virtual machines (VMs) based on specific task-VM performance metrics,
2) minimise communication costs between tasks by grouping tasks needing frequent
communication in the same VM, and 3) refine the selection based on the calculation
of new critical paths. Most current work focuses on guaranteeing a single deadline
encompassing the entire application, e.g. the Critical Path-based Iterative (CPI) [23] and
Complete Critical paths (CPIS) [24] algorithms. All these technologies have beenwidely
investigated for applications modelled as directed acyclic graphs (DAGs) as DAG-based
methods are popular for building data-flows for data-intensive applications.

Real-Time Modelling and Simulation. In data science, coupling different simulation
models of individual systems can be performed to study the behaviours of complex
systems, e.g. combining species distribution models with weather models to study how
diseases are distributed via insects and species migration at different times. Simulat-
ing physical systems does not always require the simulation to run at wall clock rates
[25], but executing such simulations on distributed infrastructure does impose require-
ments on managing the simulation times of different sub-components, e.g. to control the
relationships among events and time [26].



196 S. Koulouzis et al.

Real-Time Computational Steering. Real-time steering of a computing system
requires monitoring of the runtime status of both application and infrastructure.
Infrastructure-level monitoring takes place at the network level and on computing and
storage nodes [27]. Monitoring service quality of Cloud environments allows providers
or users to evaluate compliance with SLAs [28]. At application level monitoring often
requires embedded probes within application components [29]. Logging and provenance
subsystems often capture the runtime status of the overall system as well [30]. To visu-
alise the runtime status and to allow a user to make correct decisions regarding system
control, different kinds of monitoring information together with the context of the sys-
tem execution have to be harmonised based on the timestamp. Semantic technologies are
often used to integrate such information and to offer query interfaces to link them [29].
Runtime steering of computing systems can take the form of adaptations of application
logic at specific control points where the system actively provides time windows for
users to intercede, or else the system can be interrupted by the user during execution
[31]. The controllability of infrastructures e.g. dynamically configuring or scaling nodes
[32], or controlling network flows [33], offer applications opportunities to refine the
system performance.

Real-Time Data Acquisition. Acquiring real-time observations is important for many
RIs. The quality of communication between sensors and data processing units is crucial
for timely acquisition. Software-defined sensor networks can be used to optimise com-
munication between sensors [34], as can applying edge computing solutions to tightly
coupled sensors with data processing [35]. To make sensor data available to users in
near real-time, partially automating data quality control and annotation is important
[36], but currently, most data quality control is performed manually. Standardising this
process and exploiting scalable virtualised infrastructure are recurring requirements for
environmental RI [37].

Real-Time Data Transfer. Real-time data transfer between components occurs fre-
quently within e-infrastructures. At the network level, real-time data protocols [38],
multi-path TCP and other protocols are used to optimise data streaming throughput. SDN
[50] technologies are used to adapt network flows between data nodes dynamically, and
traffic programming models such as co-flow [39] are used to reschedule runtime data
transfer. At the transfer service level, dynamic schedule data transfer workers are used
in the LOBCDER service to handle the balance of downloads [40].

Infrastructure Provisioning for Time-Critical Applications. Fast provisioning of
virtualised infrastructure opens the possibility of runtime adaptation tomeet time-critical
requirements. Optimising VM image size [41], directly forking runtime images from
memory [42], or parallelising the provision procedure [43]. Using P2P or SND technol-
ogy to optimise image transfer among data centres is also possible. Zhou et al. describe a
transparent networked virtual infrastructure graph partitioning and parallel provisioning
approach to map infrastructure across data centres [44].

Real-Time Service Level Agreement. Real-time support of virtualised infrastructure
has attracted increasing interest [45]. SLAs for real-time applications and their nego-
tiation at runtime will be crucial for supporting real-time applications in Cloud. Most



Virtual Infrastructure Optimisation 197

approaches are based on graph mapping using key quality parameters such as execution
time; improving themapping procedure can be done byparallelising the search procedure
for matching resources and applications [46], pre-processing the resource information
by clustering the resource information based on the SLA request, and multi-objective
optimisation for searching out alternative solutions [47]. Rich contextual information
and semantic annotation is another key issue influence the search quality [48].

3 Challenges for Time-Critical Applications on e-Infrastructure

In data science, the research data lifecycle is considered to be of primary importance, but
at each stage of that lifecycle, we must also consider the lifecycle of the data pipelines
or data processing workflows that are needed to support each stage. Given the increas-
ing availability and adoption of virtualised e-infrastructure and Cloud services targeted
towards RIs and the general research community, we are particularly interested in the
life cycle for applications on virtual infrastructure (i.e. configurations of networked VMs
upon which data processing workflows are deployed on behalf of researchers either for
specialised tasks or as part of the general data lifecycle managed by RIs).

For static infrastructures, the development and configuration of a particular appli-
cation (e.g. a data processing pipeline or workflow) can be adapted with respect to the
hardware and host architecture known to the developers. This may still require consider-
able technical expertise of course, but can nonetheless be considered to at least represent
a single initial investment to providing an efficient, performant technical solution.

In contrast, deploying application workflows on virtual infrastructures allows RIs
to make use of commodity e-infrastructure resources as and when needed, rather than
requiring an investment in dedicated hardware, and in principle offers the additional
advantages of scalability and seamless migration which can to some extent be man-
aged almost entirely by the e-infrastructure provider. It is difficult, however, to opti-
mise generic virtual infrastructure for specific applications, and so difficult to guaran-
tee a certain level of performance, which is particularly of concern for time-critical
applications.

Figure 1 illustrates the lifecycle of application workflows on virtual infrastructure.
Five main phases are identified:

1. Virtual infrastructure planning. Regarding the scheduling of application workflows
onto a topology of virtual machines that ensure the availability and suitability of
virtual resources at all stages of the workflow.

2. Virtual infrastructure optimisation. Regarding the iterative refinement of an infras-
tructure plan to meet all (or a maximal subset of) requirements for performance,
reliability, quality of service, etc.

3. Virtual infrastructure provisioning. Regarding the actual provisioning of planned
infrastructure across one or more data centres or Clouds in such a way as to create a
network of resources thatmeet the control and data-flow requirements of a distributed
application.

4. Software platform deployment. Regarding the actual deployment of application ele-
ments onto the provisioned infrastructure, as well as the initialisation and control of
such elements at runtime.



198 S. Koulouzis et al.

Fig. 1. The lifecycle of application workflows on virtual infrastructure.

5. Applicationmonitoring and adaptation. Regarding themonitoring of a running appli-
cation with respect to selected metrics necessary for evaluating the performance
and liveness of the application, as well as the ability to intelligently take measures
to improve and regain a desired quality of service, e.g. by automatically scaling
or migrating application elements in the virtual infrastructure, or re-configuring
components where practical.

While there exist a number of general solutions for managing each of these phases for the
most common technologies for providing virtual infrastructure, or even subsets thereof,
there is no single integrated solution for managing the entire lifecycle just described.
Moreover, if we want to apply such a solution to time-critical applications, then it is
necessary to address additional challenges:

• To meet time requirements for discovering and retrieving data from distributed
access/storage services and virtual infrastructures provided by different RIs it is nec-
essary to be able to define deadlines throughout the application deployment lifecycle
both individually and collectively

• To develop a time-critical application, either the developer needs to be able to describe
how constraints at application level propagate down to the level of restrictions on
infrastructure and quality of service, or else the optimisation services developed for
the infrastructure must be able to do that for the developer.

• During the execution of time-critical applications, data sources, software components,
and the execution engines of some parts of the application may have to be handled
by different underlying infrastructures, making it difficult to calculate and enforce
quality of service constraints across the entire application/infrastructure stack.



Virtual Infrastructure Optimisation 199

To help address these concerns,we have developed theDynamicReal-time Infrastructure
Planner, which provides a set of services to optimise the automation from infrastructure
customisation and provisioning to application deployment and runtime control.

4 Dynamic Real-Time Infrastructure Planner

The Dynamic Real-time Infrastructure Planner (DRIP) is a service suite for planning
and provisioning networks of virtual machines and then deploying distributed applica-
tions across those networks, managing the virtual infrastructure during runtime based
on certain time-critical constraints defined with the application workflow. The DRIP ser-
vice provides an engine for automating all these procedures by making use of pluggable
microservices for providing specific functionalities orchestrated via a single manager
component behind a RESTful Web API for easy use and retrieval of results. This app-
roach enables a more holistic approach to the optimisation of resources and meeting
application-level constraints such as deadlines or SLAs. It also allows application devel-
opers to seamlessly plan a customised virtual infrastructure based on constraints on
QoS, time-critical constraints or constraints on budget. Based on such a plan DRIP can
provision a virtual infrastructure across several Cloud providers, and then be used for
deploying application components, starting execution on-demand, and managing the
runtime application deployment state. Therefore, DRIP is not bound to any particular
application. Instead, it is flexible and can deploy a wide range of applications on top
of a customised and heterogeneous virtual infrastructure composed of multiple Clouds
providers to meet the application’s constraints.

4.1 Architecture and Functional Components

The DRIP services include a number of components, interacting via an internal mes-
sage brokering service orchestrated by a single manager. These components and their
interaction are shown in Fig. 2.

All components of DRIP under the control of the DRIP manager are designed to
be independently replaceable, to allow for improved or alternative implementations of
e.g. the planner or the provisioner. Indeed, multiple versions of a component could
coexist, allowing for greater flexibility or even simply to better balance the load of
requests to DRIP. The types of service that can be included in DRIP, and their current
implementations, are now detailed:

• The DRIP manager is a Web service that allows DRIP functions to be invoked
by external clients. Each request is directed to the appropriate component by the
manager, which coordinates the individual components and scales them up if neces-
sary. Resource information, credentials, performance profiles and application work-
flows used by the manager and other components are all internally managed via the
knowledge base as described below.

• The planner uses a partial critical path algorithm [1] optimised for workflows with
multiple internal deadlines in order to produce efficient infrastructure topologies,
selecting the most cost-effective virtual machines [20]. Multiple planner components



200 S. Koulouzis et al.

Fig. 2. Howservices provided byDRIP are invoked byRI services to provide downstream services
to users.

can be attached to DRIP in order to manage different kinds of application workflow
or infrastructure topology, taking of different technologies such as software-defined
networking [49] to customise the network topology among VMs and optimally place
network controllers for the networked VMs [50].

• The performancemodeler is a tool which automates the execution of a given applica-
tion on a virtual machine and collects the performance information of the application.
In this way, it can profile the performance characteristics of specific applications.
The output will be used by the planner to select virtual machines during its planning
procedure.

• The provisioner is responsible for automating the provisioning of infrastructure plans
produced by the planner(s) onto the underlying Cloud or e-infrastructure. The cur-
rent provisioner can decompose the infrastructure description and provision it across
multiple data centres (possibly from different providers) with transparent network
configuration [44].

• The deployment agent installs application components onto provisioned infrastruc-
ture. The current deployment agent is able to schedule the deployment sequence based
on network bottlenecks, and maximise the fulfilment of deployment deadlines for all
the Cloud providers currently supported by the default DRIP provisioner [51].

• Infrastructure control agents provide sets of APIs that DRIP can then provide to
applications to control the scaling of containers or VMs and for adapting network
flows or to use itself in conjunction with a monitoring framework to automatically
maintain the quality of service of the deployed application.



Virtual Infrastructure Optimisation 201

• A DRIP knowledge base is employed by DRIP for storing information about user
credentials, the types of the resource offered by Clouds or e-infrastructure, and other
useful data that the DRIP manager or any other component can retrieve or contribute
to.

• The message bus connects all the components in the DRIP to enable the communi-
cation among them.

• The service interface provides a standardised API to the application developers, or
software clients (e.g. data portal or workflow system) to invoke the function.

4.2 Implementation Details

DRIP was developed in the context of EU H2020 projects SWITCH1 (as part of a
workbench for time-critical, self-adaptive applications on Cloud) and ENVRIPLUS2 (to
provide e-infrastructure optimisation services for scientific workflows).

The prototype of DRIP adopts industrial and community standards. The infrastruc-
ture planner uses the TOSCA specification3 to get descriptions of applications and their
constraints. The infrastructure provisioner uses OCCI as its default provisioning inter-
face, and currently supports the Amazon EC2, EGI FedCloud and ExoGen4 Clouds.
Since DRIP relies on multiple Cloud providers it offers a best-effort approach for the
provision, stability and performance of the underlying virtual infrastructure. However,
using performance and reliability models for each provider and each region, DRIP is
able to provide an optimal, stable and responsive vitalised infrastructure for time-critical
applications [52]. The deployment agent can deploy overlay Docker clusters such as
Docker Swarm or Kubernetes. It may also deploy any type of customised application
based on Ansible playbooks [53]. The infrastructure control agents are a set of APIs
that DRIP provides to applications to allow for scaling of containers or VMs and for
adapting network flows. The manager provides a RESTful interface to allow integrated
interaction with all components and uses RabbitMQ as its internal message broker to
direct requests appropriately. All DRIP software is available via open source repository5

under the Apache-2.0 license.

4.3 How DRIP Works

Figure 3demonstrates howDRIPworks.Wechoose an example of disaster earlywarning,
in which a legacy application needs to be migrated in Cloud environments using DRIP.

1. The application developer needs to identify the application components to be
deployed in Cloud, describe the dependencies between components, and specify
the time-critical constraints (the deadlines between specific application tasks), as
shown in the step in Fig. 3.

1 www.switchproject.eu.
2 www.envriplus.eu.
3 https://www.oasis-open.org/committees/tosca/.
4 http://www.exogeni.net/.
5 https://github.com/QCAPI-DRIP/.

http://www.switchproject.eu
http://www.envriplus.eu
https://www.oasis-open.org/committees/tosca/
http://www.exogeni.net/
https://github.com/QCAPI-DRIP/


202 S. Koulouzis et al.

Fig. 3. A conceptual demonstrator of DRIP.

2. The DRIP planner will plan the virtual infrastructure for the application based on the
description provided by step 1. Currently, the description structure is based on the
template derived fromTOSCAstandard. The planned virtual infrastructure including
a) a set of virtual machines (VM), with specific size of CPU, memory and storage, b)
the network topology among VMs, and c) the controller for the network. The output
of this step will use the same TOSCA format, but with concrete information of the
virtual infrastructure.

3. The DRIP provisioner will continue with the step 2; it will select specific data
centres or Cloud providers to provision the planned VM. The provisioner is able
to parallelise the provisioning procedure and automate the network configuration
among VMs. The step 3 modifies the TOSCA description from step 2 with concrete
public IP address. After step 3, all the VM will be remotely accessible.

4. The DRIP deployment agent will use the provisioned virtual infrastructure to deploy
the application components identified in step 1. After the fourth step, the application
is ready to execute.

The application topology is currently described using TOSCA and must be part of
the request made to DRIP. When a planning request comes, the manager will direct
the request to the infrastructure planner to generate a plan, which can be sent back
to the user for further confirmation. If the constraints cannot be satisfied the planner
informs the user that a plan cannot be generated. The DRIP manager stores the neces-
sary Cloud credentials on behalf of the user. The provisioning agent can provision the
virtual infrastructure via interfaces offered by the Cloud providers. Once this has fin-
ished, the deployment agent will deploy all necessary components onto the provisioned
infrastructure from designated repositories and set up the control interfaces needed for
runtime control of application and infrastructure. Figure 4 shows a detailed sequence
diagram.



Virtual Infrastructure Optimisation 203

Fig. 4. A detailed sequence diagram of DRIP.

4.4 Future Work: Workflow Reproducibility

One of the key objectives in environmental research facilitated by the contextualisation
of processes and actors in research infrastructure is that of workflow reproducibility,
whereby the provenance of experiments conducted by scientists using the infrastructure
is recorded so as to allow the experiments to be re-executed with minimal difficulty.
Recording provenance in various workflow systems has been explored before, but more
effort is needed to adopt standard provenance frameworks with standard vocabulary (e.g.
based on PROV) that can be implemented independently by different workflow systems
and data processing platforms. The use of ontologies for verification and validation of
workflows has already been explored. For example, Miksa and Rauber [54] provide such
ontologies and accompanying tool support for just this kind of activity.

Virtualisation, of both computing resources and the interstitial network, provide a
good basis for fluid intelligent infrastructure, providing flexible logical networks of
computing and data nodes on demand that can be optimised based on some co-extant
knowledge fabric.

5 Summary

The ability to comprehend, facilitate and augment how researchers use research infras-
tructure to support data-driven science is crucial, but also extremely challenging to
acquire given the proliferation of competing systems and standards in the world com-
putational landscape. This problem is not limited to the logical aggregation of research
data products for the purposes of cataloguing and access, but also extends to the use of
information to promote the efficient operation of research infrastructure and the effective
use of ‘e-infrastructure’ including the compute, data and network resources provided via
initiatives such as EGI and PRACE. The seamless, easy access to distributed data and the



204 S. Koulouzis et al.

use of community computing platforms requires significant automation via brokering
agents and other software services operating over the baseline infrastructure, which in
turn requires substantial knowledge infrastructure to support the planning and optimal
execution of a host of different concurrent operational and data-driven workflows.

Most scientific investigations follow a clear workflow, and for data-driven or oth-
erwise computational workflows, different processes can be linked together into a sin-
gle distributed application managed by a single system. There have been a number of
scientific workflow management systems developed in order to address the manifold
challenges raised by modern scientific computing in the last two decades, all with dif-
ferent characteristics and target applications and such systems have been made use of
in many different scientific disciplines. The composition and execution of workflows
require careful consideration of how to manage the communication between processing
elements and maintain sufficient quality of service across the entire workflow.

Acknowledgements. This work was supported by the European Union’s Horizon 2020 research
and innovation programme via the ENVRIplus project under grant agreement No 654182. This
work was also partially supported by the European Union’s Horizon 2020 research and innovation
programme via the SWITCH project under grant agreement No 643963, and ARTICONF project
under grant agreement No 825134.

References

1. Koulouzis, S., et al.: Time-critical datamanagement in clouds: challenges and aDynamic Real
Time Infrastructure Planner (DRIP) solution. Concurr. Comput. Pract. Exp. e5269 (2019).
https://doi.org/10.1002/cpe.5269

2. Foster, I., Kesselman, C.: Scaling system-level science: scientific exploration and it implica-
tions. Computer 39(11), 31–39 (2006)

3. Štefanič, P., et al.: SWITCH workbench: a novel approach for the development and deploy-
ment of time-critical microservice-based cloud-native applications. Future Gener. Comput.
Syst. 99, 197–212 (2019). https://doi.org/10.1016/j.future.2019.04.008

4. Koulouzis, S., et al.: Distributed data management service for 0 applications. IEEE Internet
Comput. 20(2), 34–41 (2015)

5. Zhao, Z., Belloum, A., De Laat, C., Adriaans, P., Hertzberger, B.: Using Jade agent frame-
work to prototype an e-Science workflow bus. In: Seventh IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 2007), Rio de Janeiro, Brazil, pp. 655–660. IEEE
(2007). https://doi.org/10.1109/CCGRID.2007.120

6. Laplante, P.A., Ovaska, S.J.: Real-Time Systems Design and Analysis: Tools for the
Practitioner. Wiley, Hoboken (2011)

7. Poslad, S., Middleton, S.E., Chaves, F., Tao, R., Necmioglu, O., Bügel, U.: A semantic IoT
early warning system for natural environment crisis management. IEEE Trans. Emerg. Top.
Comput. 3(2), 246–257 (2015)

8. Hu, Y., Zhou, H., de Laat, C., Zhao, Z.: Concurrent container scheduling on heterogeneous
clusters with multi-resource constraints. Future Gener. Comput. Syst. 102, 562–573 (2020).
https://doi.org/10.1016/j.future.2019.08.025

9. Evans, K., et al.: Dynamically reconfigurable workflows for time-critical applications. In:
Proceedings of the 10thWorkshop onWorkflows in Support of Large-Scale Science -WORKS
2015, Austin, Texas, pp. 1–10. ACM Press (2015). https://doi.org/10.1145/2822332.2822339

https://doi.org/10.1002/cpe.5269
https://doi.org/10.1016/j.future.2019.04.008
https://doi.org/10.1109/CCGRID.2007.120
https://doi.org/10.1016/j.future.2019.08.025
https://doi.org/10.1145/2822332.2822339


Virtual Infrastructure Optimisation 205

10. Dashti, S.E., Rahmani, A.M.: Dynamic VMS placement for energy efficiency by PSO in
Cloud computing. J. Exp. Theor. Artif. Intell. 28(1–2), 97–112 (2016)

11. Usmani, Z., Singh, S.:A survey of virtualmachine placement techniques in a cloud data center.
Procedia Comput. Sci. 78, 491–498 (2016). https://doi.org/10.1016/j.procs.2016.02.093

12. Gao, Y., Wang, Y., Gupta, S.K., Pedram, M.: An energy and deadline aware resource pro-
visioning, scheduling and optimization framework for Cloud systems. In: Proceedings of
the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, p. 31 (2013)

13. Li, D., Chen, C., Guan, J., Zhang, Y., Zhu, J., Yu, R.: DCloud: deadline-aware resource
allocation for Cloud computing jobs. IEEE Trans. Parallel Distrib. Syst. 27(8), 2248–2260
(2016)

14. Shi, J., Luo, J., Dong, F., Zhang, J.: A budget and deadline aware scientific workflow resource
provisioning and scheduling mechanism for Cloud. In: Proceedings of the 2014 IEEE 18th
International Conference on Computer Supported Cooperative Work in Design (CSCWD),
pp. 672–677 (2014)

15. Downey, D., Dumais, S.T., Horvitz, E.:Models of searching and browsing: languages, studies,
and application. IJCAI 7, 2740–2747 (2007)

16. Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating
user behavior information. In: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 19–26 (2006)

17. Mishra, N., White, R.W., Ieong, S., Horvitz, E.: Time-critical search. In: Proceedings of
the 37th International ACM SIGIR Conference on Research & Development in Information
Retrieval, pp. 747–756 (2014)

18. Ingwersen, P., Järvelin, K.: The Turn: Integration of Information Seeking and Retrieval in
Context, vol. 18. Springer, Heidelberg (2006). https://doi.org/10.1007/1-4020-3851-8

19. Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow applications on
utility grids. In: e-Science and Grid Computing (2005)

20. Wang, J., et al.: Planning virtual infrastructures for time critical applications with multiple
deadline constraints. Future Gener. Comput. Syst. 75, 365–375 (2017)

21. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow scheduling
algorithms for infrastructure as a service Clouds. Future Gener. Comput. Syst. 29(1), 158–169
(2013)

22. Rodriguez, M.A., Buyya, R.: Deadline based resource provisioning and scheduling algorithm
for scientific workflows on Clouds. IEEE Trans. Cloud Comput. 2(2), 222–235 (2014)

23. Cai, Z., Li, X., Gupta, J.: Heuristics for provisioning services to workflows in XaaS Clouds.
IEEE Trans. Serv. Comput. 9(2), 250–263 (2016)

24. Taal, A., Wang, J., de Laat, C., Zhao, Z.: Profiling the scheduling decisions for handling
critical paths in deadline-constrained cloud workflows. Future Gener. Comput. Syst. 100,
237–249 (2019). https://doi.org/10.1016/j.future.2019.05.002

25. Alawneh, S., Dragt, R., Peters, D., Daley, C., Bruneau, S.: Hyper-real-time ice simulation and
modeling using GPGPU. IEEE Trans. Comput. 64(12), 3475–3487 (2015)

26. Zhao, Z., Albada, D.V., Sloot, P.: Agent-based flow control for HLA components. Simulation
81(7), 487–501 (2005)

27. Bulut, A., Koudas, N., Meka, A., Singh, A.K., Srivastava, D.: Optimization techniques for
reactive network monitoring. IEEE Trans. Knowl. Data Eng. 21(9), 1343–1357 (2009)

28. Zhou, H., Ouyang, X., Su, J., Laat, C., Zhao, Z.: Enforcing trustworthy cloud SLA with
witnesses: a game theory–based model using smart contracts. Concurr. Comput. Pract. Exp.
(2019). https://doi.org/10.1002/cpe.5511

29. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-adaptive
applications within edge computing frameworks: a state-of-the-art review. J. Syst. Softw. 136,
19–38 (2018). https://doi.org/10.1016/j.jss.2017.10.033

https://doi.org/10.1016/j.procs.2016.02.093
https://doi.org/10.1007/1-4020-3851-8
https://doi.org/10.1016/j.future.2019.05.002
https://doi.org/10.1002/cpe.5511
https://doi.org/10.1016/j.jss.2017.10.033


206 S. Koulouzis et al.

30. Chebotko, A., Lu, S., Chang, S., Fotouhi, F., Yang, P.: Secure abstraction views for scientific
workflow provenance querying. IEEE Trans. Serv. Comput. 3(4), 322–337 (2010)

31. Kritikakou,A., Pagetti, C., Baldellon,O., Roy,M., Rochange, C.: Run-time control to increase
task parallelism in mixed-critical systems. Real-Time Syst. (ECRTS) 2014(26), 119–128
(2014)

32. Serrano, N., Gallardo, G., Hernantes, J.: Infrastructure as a service and Cloud technol-ogies.
IEEE Softw. 32(2), 30–36 (2015)

33. Nussbaum,A., Choodamani, S.M.C., Schwan,K.: ObsCon: Integratedmonitoring and control
for parallel, real-time applications. Clust. Comput. (CLUSTER) 2015, 474–477 (2015)

34. Anadiotis, A.C.G., Galluccio, L., Milardo, S., Morabito, G., Palazzo, S.: Towards a software-
defined network operating system for the IoT. In: 2015 Internet of Things (WF-IoT), pp. 579–
584 (2015)

35. Papageorgiou, A., Cheng, B., Kovacs, E.: Real-time data reduction at the network edge of
Internet-of-Things systems. Netw. Serv. Manag. (CNSM) 2015(11), 284–291 (2015)

36. Hu, S., et al.: Data acquisition for real-time decision-making under freshness constraints. In:
2015 IEEE Real-Time Systems Symposium, pp. 185–194. IEEE (2015)

37. Laranjeiro, N., Soydemir, S.N., Bernardino, J.: A survey on data quality: classifying poor
data. Dependable Comput. (PRDC) 2015, 179–188 (2015)

38. Shamani, M.J., Zhu, W., Naghshin, V.: TMPTCP: tailless multi-path TCP. In: Broadband
and Wireless Computing, Communication and Applications (BWCCA), vol. 2015, no. 10,
pp. 325–332 (2015)

39. Fu, Z., Song, T., Wang, S., Wang, F., Qi, Z.: Seagull–a real-time coflow scheduling system.
Cyber Secur. Cloud Comput. (CSCloud) 2015, 540–545 (2015)

40. Koulouzis, S., Belloum, A.S.Z., Bubak, M.T., Zhao, Z., Živković, M., de Laat, C.T.A.M.:
SDN-aware federation of distributed data. Future Gener. Comput. Syst. 56, 64–76 (2016).
https://doi.org/10.1016/j.future.2015.09.032

41. Tang, C.: FVD: a high-performance virtual machine image format for Cloud. In: USENIX
Annual Technical Conference, vol. 2 (2011)

42. Lagar-Cavilla, H.A., et al.: SnowFlock: rapid virtual machine cloning for Cloud computing.
In: Proceedings of the 4th ACMEuropean Conference on Computer Systems, pp. 1–12. ACM
(2009)

43. Zhou, H., et al.: CloudsStorm: a framework for seamlessly programming and controlling
virtual infrastructure functions during the DevOps lifecycle of cloud applications. Softw.:
Pract. Exp. 49, 1421–1447 (2019). https://doi.org/10.1002/spe.2741

44. Zhou, H., Hu, Y., Wang, J., Martin, P., Laat, C.D., Zhao, Z.: Fast and dynamic resource provi-
sioning for quality critical Cloud applications. In: 2016 IEEE 19th International Symposium
on Real-Time Distributed Computing (ISORC), pp. 92–99 (2016)

45. Wartel, R., et al.: Image distributionmechanisms in large scaleCloud providers. In: 2010 IEEE
Second International Conference onCloudComputing Technology and Science, pp. 112–117.
IEEE (2010)

46. Müller, C., et al.: Comprehensive explanation of SLA violations at runtime. IEEE Trans. Serv.
Comput. 7(2), 168–183 (2013)

47. Casale, G., et al.: Current and future challenges of software engineering for services and
applications. Procedia Comput. Sci. 97, 34–42 (2016). https://doi.org/10.1016/j.procs.2016.
08.278

48. Liao, X., Zhao, Z.: Unsupervised approaches for textual semantic annotation, a survey. ACM
Comput. Surv. 52, 1–45 (2019). https://doi.org/10.1145/3324473

49. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.:
Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

https://doi.org/10.1016/j.future.2015.09.032
https://doi.org/10.1002/spe.2741
https://doi.org/10.1016/j.procs.2016.08.278
https://doi.org/10.1145/3324473


Virtual Infrastructure Optimisation 207

50. Wang, J., de Laat, C., Zhao, Z.: QoS-aware virtual SDNnetwork planning. In: 2017 IFIP/IEEE
Symposiumon IntegratedNetwork and ServiceManagement (IM), Lisbon, Portugal, pp. 644–
647. IEEE (2017). https://doi.org/10.23919/INM.2017.7987350

51. Hu, Y., et al.: Deadline-aware deployment for time critical applications in clouds. In: Rivera,
F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 345–357.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64203-1_25

52. Martin, P., et al.: Information modelling and semantic linking for a software workbench for
interactive, time critical and self-adaptive Cloud applications. In: 2016 30th International
Conference on Advanced Information Networking and Applications Workshops (WAINA),
pp. 127–132. IEEE (2016)

53. Miller, M.A., Pfeiffer, W., Schwartz, T.: The CIPRES science gateway: enabling high-impact
science for phylogenetics researchers with limited resources. In: Proceedings of the 1st Con-
ference of the Extreme Science and Engineering Discovery Environment: Bridging from the
eXtreme to the Campus and Beyond, p. 39 (2012)

54. Mayer,R.,Miksa,T.,Rauber,A.:Ontologies for describing the context of scientific experiment
processes. In: 2014 IEEE 10th International Conference on e-Science, vol. 1, pp. 153–160.
IEEE (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.23919/INM.2017.7987350
https://doi.org/10.1007/978-3-319-64203-1_25
http://creativecommons.org/licenses/by/4.0/

	Virtual Infrastructure Optimisation
	1 Introduction
	2 Requirements and State of the Art
	2.1 Requirements
	2.2 Related Work
	2.3 State of the Art

	3 Challenges for Time-Critical Applications on e-Infrastructure
	4 Dynamic Real-Time Infrastructure Planner
	4.1 Architecture and Functional Components
	4.2 Implementation Details
	4.3 How DRIP Works
	4.4 Future Work: Workflow Reproducibility

	5 Summary
	References




