
International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

Category: original scientific paper

Celar Stipe 1
Mudnic Eugen 2

Seremet Zeljko 3

STATE-OF-THE-ART OF MESSAGING FOR DISTRIBUTED COMPUTING

SYSTEMS

Abstract:

 Modern software applications rarely live in
isolation and nowadays it is common practice to
rely on services or consume information provided
by remote entities. In such a distributed
architecture, integration is key. Messaging, for
more than a decade, is the reference solution to
tackle challenges of a distributed nature, such as
network unreliability, strong-coupling of
producers and consumers and the heterogeneity of
applications. Thanks to a strong community and a
common effort towards standards and
consolidation, message brokers are today the
transport layer building blocks in many projects
and services, both within the physics community
and outside.

Moreover, in recent years, a new generation of
messaging services has appeared, with a focus on
low-latency and high-performance use cases,
pushing the boundaries of messaging
applications. This paper will present messaging
solutions for distributed applications going
through an overview of the main concepts,
technologies and services.

Keywords:
messaging; message-oriented middleware; MQ; message queuing; distributed systems

Author´s data:
1 Celar, Stipe, PhD, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split,
Croatia, Stipo.Celar@fesb.hr
2 Mudnic, Eugen, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, Croatia,
Eugen.Mudnic@fesb.hr
3 Seremet, Zeljko, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split, Croatia

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/212455542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

6

Introduction
This paper presents an overview of messaging
concepts, functionalities and modern technologies.
It starts with an introduction of messaging for
distributed communication and system integration.
A review of the main messaging features is then
provided, followed by an overview of the major
technologies for messaging, from broker to broker-
less systems. In conclusion, a list of successful
CERN's stories concerning the use of messaging for
solving the communication problem of distributed
applications is presented.

Message-oriented middleware
To cope with increasing demands on scalability,

flexibility, and reliability, a message-oriented
middleware (MOM) is an infrastructure for loosely
coupled interprocess communication in an
enterprise service bus or clouds [1] [2]. Particularly
in clouds, loose coupling allows to rapidly scale
message producers and consumers. A message with
respect to MOM is an autonomous, self-contained
entity that models an event and separates into a
header and a body or payload. The middleware
provides technical means of exchange, so a peer can
exchange messages with other connected peers. A
central concept in MOM is the notion of a message
queue (or channel) for storing, transforming, and
forwarding messages. Message queues enable
asynchronous interaction, and a simple form is a
First-In-First-Out (FIFO) queue. There are two
different approaches to MOM using message queues
as shown in Fig. 1.:

• Peer-to-peer messaging. A unified
middleware component in every peer coordinates
discovery and interaction between peers.

• Broker-based messaging. The middleware
acts as a broke to provide a messaging
infrastructure between the heterogeneous peers.

Peers can participate as client, service, or both
[1]. A broker reduces the communication complexity
between a numbers of peers but can incur delays in
real-time applications because an additional store-
and-forward procedure is necessary. [3]

a)

b)

Figure. 1. A message-oriented middleware
abstracts communication between heterogeneous
peers: (a) Peer-to-peer messaging; (b) Broker-based
messaging

In terms of interaction patterns, a trivial
message queue allows bilateral Send and Receive,
for asynchronous messaging, and multilateral One-
to-Many Send, e.g., publish-subscribe. Using
message queues in a broker architecture allows to
implement sophisticated routing patterns. In
general, a MOM is characterized by Curry [1]:

• Messaging specification. A MOM needs to
specify th format of messages and transport

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

7

mechanisms. Interconnectin proprietary MOM
systems is achieved through adapters or bridges.

• Message filtering. A core functionality of a
MOM is filtering for message delivery. Curry [1]
distinguishes:

o A channel-based system offers predefined
groups of events as channels, where clients can
subscribe to.

o Messages in a subject-based system carry
metadata in the message header, e.g., a subject. A
client subscribes messages, where the metadata
matches some given pattern.

o In a content-based system, a client
subscribes messages, where the message body
satisfies a set of properties expressed in a query
language.

o Composite events functionality extends a
content based filtering with property matching
across sets or sequences of messages.

• Message transformation. Messages can
originate from various heterogeneous sources and
consequently carry all kinds of content types as
payload. A MOM can offer APIs to modify messages,
e.g., XML transformations.

• Integrity, reliability, and availability. A MOM
can have properties to increase the overall Quality-
of-Service:

o Transactions and Atomic Multicast
Notification;

o Reliable message delivery: at-least-once,
exactly-once, or at-most-once;

o Guaranteed message delivery by
acknowledgments;

o Prioritization of messages;

o Load balancing over several brokers or
queues; and

o Message broker clustering for fault
tolerance.

A MOM is typically accessed through an API to
abstract the technical details of message exchange.
Due to the transport-agnostic design of SOAP/WS-*
services, a MOM can also serve as a transport
mechanism for SOAP messages. [3]

Java Message Service

The general purpose API named Java Message
Service (JMS) [4] is maintained in a Java community
process for MOM support. JMS defines a number of
operations for creating, sending, receiving, and
reading messages. It is transport-agnostic to
abstract messaging from MOM implementations and
therefore relaxes vendor lock-in. JMS is a universal
interface for interacting with heterogeneous
messaging systems [1]. A message body is
dynamically typed according to the content type
information stored in the header.

Some examples for JMS-enabled software
implementations are the JMS reference
implementation OpenMQ [5], IBM Websphere MQ [6],
or TIBCO Enterprise Message Service [7]. [3]

RESTful Messaging Service

The motivation for RESTful Messaging Service
(RestMS) [8] is Web-compatible messaging by using
HTTP as transport mechanism and REST principles to
describe locations, i.e., URLs, where messages can
be posted to and received from. RestMS is an API
specification, where XML-based messages are sent
and received using HTTP methods. With respect to the
REST service, resource locations are distinguished
into feeds for incoming and pipes for outgoing
messages. Feeds are joined with pipes on the
service-side for message distribution. Message
types in RestMS refer to XML, JSON, and a set of MIME
content types for dynamically typing data. The
specification also includes profiles to connect to
other messaging infrastructures, e.g., AMQP. [3]

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

8

Open Middleware Agnostic Messaging API

Due to the diversity in middleware standards
and wire formats, the Open Middleware Agnostic
Messaging API (OpenMAMA) [9] initiative is an
attempt to provide a single API for developing
applications spanning across multiple MOMs. For
correct translation messages and operations, a MOM
has to provide a so-called OpenMAMA bridge
implementation.

OpenMAMA is available as open-source library.
It offers a built-in bridge for AMQP-enabled Apache
Qpid and supports several bridges for proprietary
messaging infrastructures in the finance sector. [3]

Proprietary messaging solutions

MSMQ [10] is a MOM for standalone integration
or as a transport mechanism in Microsoft’s WCF,
next to Web services and COM+. It offers guaranteed
message delivery, message routing, transactions,
prioritization, and a simple type system for message
body types. When used as a transport in WCF, a
message body is either XML, binary, or ActiveX
format. Beside its proprietary protocols, messages
can also be transmitted over COM+. In terms of
security, MSMQ allows authentication and
encryption of messages. There is no broker in MSMQ;
similar to Fig. 18a, a queue is hosted locally on a peer,
and processes can store and retrieve messages. In
terms of service interaction patterns, MSMQ is
bilateral Send and Receive. MSMQ can exploit IP
multicast to replicate a message for addressing
multiple queues. A Microsoft alternative with
brokerage support is SQL Server Service Broker [11].

Other proprietary MOM software products are
the brokerless TIBCO Rendezvous [12], which uses
direct connections between peers similar to MSMQ,
Oracle Tuxedo Message Queue [13] as part of the
Oracle Tuxedo application server for cloud
middleware, and Terracotta Universal Messaging
[14]. [3]

Advanced Message Queuing Protocol
Historically, MOM solutions have relied on

proprietary protocols, and JMS is an attempt to agree
on a compatible interface. Interoperability between
varying MOM solutions is still difficult; costly JMS
adapters or bridges are necessary to connect
different transport mechanisms. AMQP [15] unifies
messaging through an agreed-on wire format and
has a similar role like HTTP in Web applications.
While the OASIS AMQP 1.0 standard is restricted to the
transport model for interoperability over the
Internet, messaging architectures are specified by
the AMQP working group [16].

The AMQP specification distinguishes a
transport model and a queuing model [17]. The
semantic queuing model defines terms like
message, queue, exchange, and binding with respect
to AMQP. Messages always end up in queues which
are analogous to postal mailboxes. A queue stores
messages and offers functionality for searching,
reordering, or transaction participation. If a client
wants to send a message, it chooses a broker-like
exchange which is responsible for delivering
messages to queues. An exchange can be offered as
a service, and there exists an individual URI scheme
(amqp: or amqps:) [18] to locate an exchange. A
binding is a set of queue-specific arguments for an
exchange. As shown in Fig. 2., there are different
exchange types with respect to message filtering
capabilities [19]:

• In a direct exchange, a message has a
routing key and is sent to the queue, whose binding
is equivalent to the routing key. In case of multiple
queues with identical bindings, multiple message
copies are delivered, i.e., a channel-based system.

• A topic exchange forwards copies of a
message to all client queues, where the message
routing key matches a queue’s binding pattern, i.e.,
a subject-based system for publish-subscribe
delivery.

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

9

• In a fan-out exchange, messages are
forwarded to a set of queues without a specified
binding, i.e., channel-based system.

• A headers exchange matches the headers of
a message against predicate arguments of client
queues beyond the routing key, i.e., a content-based
system.

Messages are finally fetched from queues by
consumer processes. AMQP provides guaranteed
delivery, authentication, wire-level encryption, and
transaction-based messaging for reliability. In
terms of patterns, an exchange applies pattern Send
in case of direct delivery or One-to-Many Send in
other cases. Due to the self-contained type system
and self describing message content, messages are
dynamically typed in AMQP.

Examples for JMS-compatible broker
implementations are OpenAMQ [20], JORAM [21],
WSO2 Message Broker [22], SwiftMQ [23], Apache
Qpid [24], and Red Hat Enterprise MRG [25].

AMQP defines four types of exchanges. A
producer creates a message and sends it to an
exchange. Depending on the exchange type and
bindings, the message is delivered to queues, where
consumers can fetch it from (a) direct exchange; (b)
topic exchange; (c) fan-out exchange; (d) headers
exchange. [3]

Message
key= news

Exchange

Queue

bindings = news

Message
key= news.wsj

Exchange

Queue

bindings = news.*

a) b)
Message

Exchange

Queue Queue. . .

binding = #

Message
key= news.wsj

Exchange

Queue

bindings = match
 type = log V report

 c) d)

Figure. 2. AMQP types of message exchange

Extensible Messaging and Presence Protocol

While the XMPP [26][27][28] has been intended
as an open standard for instant messaging,
presence information, and contact list maintenance
in chat applications, it also has middleware
properties. In its base specification, XMPP
exchanges messages as XML stanzas in client-to-
service and service-to-service communication for
federated services. An XMPP service therefore takes
the role of a broker.

XMPP is particular attractive for MOM scenarios,
where Web agents are involved because it supports
HTTP as transport mechanism and most Web
browsers and JavaScript runtime environments are
capable of processing XML stanzas. Furthermore,
XMPP is also considered as a suitable messaging
protocol for Internet of Things applications [29]. The
protocol is extensible, and extensions are specified
in a community process. MOM-specific extensions
are:

• Transfer of Base64-encoded binary content
with an assigned MIME media type [30];

• RPC over XMPP [31];

• Service discovery [32];

• Publish-subscribe [33] for broker
scenarios, extended addressing [34] for message
routing, and event notification extensions [35][36];

• Reliable message transport [37]; and

• SSL/TLS protected transport mechanism and
S/MIME [38] for end-to-end message encryption.

By default, messages in XMPP are XML stanzas
and bodies are restricted to text only; there exists a
notion of message type, but it is limited to instant
messaging applications. Therefore, out-of-band
signaling or a custom protocol, e.g., XMPP bits of
binary [39], is required to discover message content
types in a middleware scenario.

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

10

XMPP can also serve as a messaging
infrastructure for SOAP/WS-* Web services [40][41].
Beside instant messaging, XMPP has been
successfully deployed in the VIRTUS middleware for
Internet of Things applications [42] using the real-
time collaboration server software OpenFire [43].
Another software that offers XMPP messaging over
Web-Socket is the Kaazing WebSocket Gateway [44].
[3]

Streaming Text Oriented Messaging Protocol

The simple text-based wire protocol STOMP [45]
is for asynchronous message exchange between a
client and a service or broker with simplicity and
interoperability in mind. In the open standard of
STOMP, a client and a service establish a session and
asynchronously exchange frames of type Message,
Receipt, or Error; a frame is partitioned into a
command, header fields for metadata, and content
of a certain MIME type. Messages are therefore
dynamically typed. The protocol supports
transactions and acknowledgments for reliable
message delivery.

STOMP supports either bilateral messaging, i.e.,
Send and Receive, or broker-based publish-
subscribe for One-to-Many Send interaction. Two
notable service implementations are CoilMQ [46]
and, for the latest protocol version 1.2, Stampy [47].
[3]

Message Queue Telemetry Transport

MQTT [48] originates from IBM and is now an
open OASIS standard [49] for lightweight machine-
to-machine messaging and Internet of Things
applications, where bandwidth is limited. MQTT is
intended for broker-based publish-subscribe
architectures, One-to-Many Send interaction. An
MQTT message can encapsulate binary payload up to
256 megabytes, but there is no notion of content
type. The participating parties therefore have to
agree on allowed formats out-of-band. For

reliability, the protocol offers acknowledgments and
retransmissions, but there is no transaction
functionality.

Two notable MQTT broker software
implementations are HiveMQ [50] and Mosquitto
[51]. Both support Web clients using WebSocket.
Another application that relies on MQTT messaging is
Facebook Messenger [52].

Data Distribution Service for real-time systems

The open standard DDS [53] specifies a
machine-to-machine MOM for publish-subscribe
message distribution, real-time message delivery,
scalability, and high throughput. Fields of
application include the finance and defense sector,
industry, aerospace, Internet of Things, and mobile
devices [54].

Contrary to MQTT, DDS facilitates a data-centric,
peer-to-peer interaction in the spirit of Fig. 1. (a). A
domain partitions entities such as publisher,
subscriber, and topic. A topic in a domain has a
unique name and a strong datatype for publishing;
these types are specified in an IDL, and messages are
therefore statically typed. Subscribers in the domain
request data via the topic, and publishers in the
domain are responsible for message distribution
[55].

DDS supports rich Quality-of-Service policies for
data transmission. Interoperability between
software implementations is achieved by the RTPS
[56] wire protocol. To locate endpoints of peers, DDS
provides dynamic discovery of publishers,
subscribers, topics, and datatypes with respect to
topics [54]. Reliable message delivery is achieved by
negative acknowledgment when data is missing
[57]. Security extensions for DDS, e.g., encrypted
transport, are still in a beta state at time of writing
[58].

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

11

Notable software implementations are OpenDDS
[59], RTI Connext DDS [60], PrismTech OpenSlice DDS
[61], and Twin Oaks CoreDX DDS [62]. [3]

Apache Kafka

Developed by LinkedIn, Apache Kafka [63] is a
message broker specification and implementation
for high-throughput publish-subscribe messaging,
i.e., One-to-Many Send interaction. Kafka has an
individual binary wire format protocol on top of TCP,
and for fault tolerance, it supports clustering of
brokers, persistent storage, and replication of
messages.

On a conceptual level, Kafka distinguishes between
topics for messages, producers that publish
messages, and consumers that subscribe to topics.
For every topic, a Kafka cluster maintains a
partitioned log, where every partition stores an
ordered sequence of published messages. The
messages are kept for a configurable timespan, and
partitions are replicated and distributed over
servers in the Kafka cluster for fault tolerance and
performance. The distributed log in Kafka
guarantees the ordering of published and consumed
messages in a certain topic. For a subscribed topic,
a consumer maintains an offset in the message
sequence to keep track of already processed ones.
Through this offset, a consumer can also access
older messages if they are still available on the
cluster.

A message body is a byte sequence of a certain
length and has no notion of type. Content type
information therefore needs to be agreed out-of-
band or by using a custom protocol. An interface for
Web clients to subscribe to Kafka over WebSockets is
already in an experimental state [64].

Polyglot message brokers

A natural approach for interconnecting several
MOM standards is polyglot message brokerage.
Three notable JMS-compliant software

implementations in this area are Apache ActiveMQ
[65], RabbitMQ [66], and JBoss HornetQ [67].

Beside features for scaling and clustering, the
messaging core of Apache ActiveMQ, referred to as
Apollo [68], uses the OpenWire [69] wire format, but
also supports standards like AMQP, MQTT, and STOMP
over WebSockets. ActiveMQ furthermore provides a
proprietary HTTP-based RESTful API for Web clients.

RabbitMQ supports AMQP, STOMP, MQTT, and also
HTTP as transport. Messages over HTTP can be sent in
three ways: a native Web management API, STOMP
over WebSockets, and JSON-RPC for Web browser
integration.

HornetQ [67] is a MOM that originates from the
JBoss application server. It supports AMQP, has an
HTTP-based RESTful Web interface, and provides
STOMP over Web-Sockets for Web clients. [3]

Message queuing as a service

Message brokerage has become an attractive
cloud service. A broker is a critical component in a
MOM architecture and needs fault tolerance, regular
maintenance, and scalability; a message queue
cloud service can eventually reduce cost. Amazon
Web Services offers Simple Queue Services (SQS) [70]
for transporting untyped text-based messages up to
256 kilobytes. SQS operates on a SOAP/WS-* Web
service stack accessible through HTTP and HTTPS
bindings.

Google’s App Engine offers Pull Queues [71] and
Push Queues [72] for messaging and App Engine task
distribution. Both queue types are accessible
through a RESTful API and use JSON format for
messages. While Pull Queues need to be polled, Push
Queues rely on webhooks for HTTP-based message
delivery. Google has also announced Cloud Pub/Sub
[73], a broker-based publish-subscribe messaging
service for the App Engine, cloud apps, and Web
clients. Using a RESTful API, Cloud Pub/Sub

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

12

distributes JSON based messages according to
topics. Subscribers can either poll for new messages
or register a webhook for notification. The service
supports guaranteed message delivery by
maintaining a queue for every subscriber, and
messages are removed from the queue, when the
client acknowledges the message.

Microsoft also offers two cloud-based
messaging solutions: Azure Queues and Service Bus
Queues [74]. Azure Queues provide direct messaging
between cloud services, and they are accessible
through a RESTful interface. Messages are
sequences of bytes and therefore not typed similar
to Microsoft SQS. Service Bus Queues offer advanced
architectures such as publish-subscribe and
routing patterns. Windows applications and peers
can access a service bus through WCF or directly by
HTTP. A Brokered Message in a Service Bus Queue
explicitly refers to a user-specified message body
content. Service Bus Queues also offer an AMQP
interface [75].

Two cloud services that offer AMQP brokerage as
a service are StormMQ [76] and IronMQ [77].
CloudAMQP specifically offers the polyglot broker
RabbitMQ as a Service [78]. CloudMQTT [79] is
another pay-per-use broker for MQTT messaging,
e.g., for complex event processing in Internet of
Things environments. Rackspace Cloud Queues [80]
supports publish-subscribe architectures by a HTTP
based RESTful API in the spirit of RestMS. [3]

ZeroMQ and Nanomsg

Although there are many comprehensive
messaging systems available, matching with the
application requirements could be very difficult and
without required performance characteristics.
Consequently, in recent years, a new generation of
low level messaging services has appeared such as
ZeroMQ [81] and Nanomsg [82].

The intelligent socket library ZeroMQ aims for
more flexible connectivity between peers. ZeroMQ
offers several network transports, including TCP,
UDP, and IP multicast, and a number of sockets types
for architectural patterns. Messages are delivered to
a thread- or process-local queue and made available
through a socket. The specification defines the
following socket types:

• REQ and REP for bilateral Send–Receive;

• DEALER and ROUTER for routing patterns;

• PUB and SUB for publish-subscribe One-to-
Many Send;

• PUSH and PULL for workload distribution
through One-to-Many Send and One-from-Many
Receive;

• PAIR for asynchronous Send or Receive
between two sockets.

ZeroMQ has no notion of broker because it is a
socket abstraction. However, a MOM broker could be
implemented using ZeroMQ. Messages are
sequences of bytes and do not have a specified
content type. The content type needs to be agreed on
out-of-band or requires a custom protocol.

An attempt to provide ZeroMQ access in Web
environments is NullMQ [83]. The JavaScript library
uses Web-Sockets and a modified version of STOMP
to bridge ZeroMQ messages into Web browsers.
ZeroRPC [84] integrates RPC on top of ZeroMQ.
Information is serialized as JSON-based
MessagePack format and forwarded over ZeroMQ
connections. A service interface is dynamically
typed, and an ZeroRPC has been used in the dotCloud
PaaS.

Nanomsg, however, is a reimagining of ZeroMQ—
a complete rewrite in C. It builds upon ZeroMQ’s
rock-solid performance characteristics while
providing several vital improvements, both internal

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

13

and external. It also attempts to address many of the
strange behaviors that ZeroMQ can often exhibit.

USE CASE - CERN

This section presents several implementations
where messaging-based communication has been
successfully adopted to solve the problem of
exchange information in distributed system. [85]

CERN Beam Control middleware

The Beam Control department at the CERN
laboratory is using messaging for highly reliable
control/monitoring/alarm applications for the Large
Hadron Collider (LHC). Since 2005, a cluster of
ActiveMQ brokers, in a store and forward
configuration, is used to collect the critical data
generated by the safety systems (e.g. 30 producers,
2MB/s, 4.5K msg/s) and to forward it to many
consumers (e.g. monitoring tool, dashboards).
Being safety data mission critical, the store and
forward configuration allow to completely decouple
data production from consumption, preventing
misbehaving clients to affect data collection and
archiving [86]. Moreover, the LHC Control framework
has been recently migrated from CORBA to ZeroMQ as
communication layer [87]. [85]

DAQ Online Monitoring

Messaging has been also extensively used in
several monitoring tools for Data Acquisition (DAQ)
systems, which are responsible to filter and collect
data from detectors (e.g. high energy physic
experiments) to storage facilities. [85]

The ATLAS TDAQ shifter assistant project

It relies on messaging to distribute operational
alarms from private TDAQ network to GPN to a number
of heterogeneous consumers. An ActiveMQ cluster is
used in a master/slave configuration in order to

minimize the impact on the required firewall
configuration to a single outbound connection. [88]

The STAR Online framework

It relies on an AMQP-based system for flexible,
loosely coupled distribution of detector metadata,
using messaging as unified transport layer for
processing, storage and monitoring. Moreover,
investigation has been done to re-write the control
framework over MQTT, profiting from the protocol
flexibility and interoperability [89]. [85]

WLCG Messaging Service

Messaging has been also successfully used on
large-scale geographically distributed
infrastructure. The WLCG (Worldwide LHC Computing
Grid) messaging service is the backbone transport
layer used for monitoring WLCG sites and services
around the world, with more than 50000 clients and
an average message rate of 100 KHz. The monitoring
infrastructure is based on STOMP with JSON payload.
Thanks to the interoperability of the STOMP protocol
across several broker flavours, heterogeneous
message-broker clusters (ActiveMQ, Apollo or
RabbitMQ) are used in a scenario where client
applications produce to any and consume to all [90].
[85]

Conclusion

Messaging is pragmatic reaction to the problem of
communication in distributed systems. It allows
loosely coupled communication acting as
intermediate layer between producer and consumer.
It brings many benefits in distributed applications
flexibility and scalability, with implications in
application and infrastructure complexity.
Messaging systems are still evolving technology
with the AMQP standardization effort pointing in the
good direction, but still with partial adoption.

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

14

Message brokers are solid and reliable technology
used as transport layer building blocks in many
projects and services, both within the physics
community and outside. In the recent years, a new
generation of systems is promoting messaging for
low-latency / high-throughput / data-intensive
communication, like ZeroMQ, narrowing use cases
and relaxing assumptions, but pushing the
boundaries of messaging applications towards new
domains and successfull implementations for
demanding CERN applications.

References

[1] Curry, E. (2005). Message-oriented
middleware. In: Mahmoud QH (ed) Middleware for
communications. Wiley, Chichester
[2] Celar, S.; Seremet, Z. & Turic, M. (2011). Cloud
computing: definition, characteristics, services and
models, Annals of DAAAM for 2011 & Proceedings of
the 22nd International DAAAM Symposium, Volume
22, No. 1, ISSN 1726 – 9679 ISBN 978-3-901509-83-4,
Editor B. Katalinic, Published by DAAAM
International, Vienna, Austria, EU, 2011
[3] Lampesberger, H. (2016). Technologies for
Web and cloud service interaction: a survey, Service
Oriented Computing and Applications, June 2016,
Volume 10, Issue 2, pp. 71–110
[4] Oracle: Java Message Service (2014).
Available from:
http://www.oracle.com/technetwork/java/jms/ind
ex.html Accessed: 2016-02-19
[5] GlassFish Project: Open Message Queue
(2014). Available from: https://mq.java.net/
Accessed: 2016-02-19
[6] IBM: WebSphereMQ (2014). Available from:
http://www-
03.ibm.com/software/products/en/websphere-mq.
Accessed: 2016-08-22

[7] TIBCO: Enterprise Message Service (2014).
Available from:
http://www.tibco.com/products/automation/enter
prise-messaging/enterprisemessage-
service/default.jsp. Accessed: 2016-07-21
[8] Wikidot.com: RestMS (2008). Available from:
http://www.restms.org/. Accessed: 2016–02-21
[9] OpenMAMA: Introduction to OpenMAMA
(2014). Available from:
http://www.openmama.org/what-is-
openmama/introduction-to-openmama Accessed:
2016–07–09
[10] Microsoft Developer Network: Message
Queuing (MSMQ) (2014). Available from:
http://msdn.microsoft.com/en-
us/library/ms711472.aspx Accessed: 2016-02-20
[11] Microsoft Developer Network: SQL Server
Service Broker (2014). Available from:
http://msdn.microsoft.com/en-
us/library/bb522893.aspx Accessed: 2016-02-23
[12] TIBCO: Rendezvous Messaging Middleware
(2014). Available from:
http://www.tibco.com/products/automation/enter
prise-messaging/rendezvous/default.jsp
Accessed: 2016-07-22
[13] Oracle: Oracle Tuxedo Message Queue
Product Overview (2013). Available from:
http://docs.oracle.com/cd/E35855_01/otmq/docs12
c/overview/overview.html. Accessed: 2016-04-28
[14] Software AG: Terracotta Universal
Messaging (2014). Available from:
https://www.softwareag.com/corporate/images/S
AG_Terracotta_Universal_Messaging_FS_Jun14_Web
_tcm16-114090.pdf Accessed: 2016–06–04
[15] OASIS: Advanced Message Queuing Protocol
v1.0 (2011). Available from: http://docs.oasis-
open.org/amqp/core/v1.0/os/amqp-core-
overviewv1.0-os.html Accessed: 2016-02-19

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

15

[16] OASIS: AMQP Working Group 0–10 (2014).
Available from:
http://www.amqp.org/specification/0-10/amqp-
org-download Accessed 2016–08–06
[17] O’Hara, J. (2007). Toward a commodity
enterprise middleware. Queue 5(4), 48–55. Available
from: http://queue.acm.org/detail.cfm?id=1255424
Accessed: 2016-07-24
[18] Pivotal Software Inc: AMQP URI Specification
(2014). Available from:
http://www.rabbitmq.com/uri-spec.html
Accessed: 2016-07-27
[19] O’Hara, J. (2007). Toward a commodity
enterprise middleware. Queue 5(4), 48–55. Available
from: http://queue.acm.org/detail.cfm?id=1255424
Accessed: 2016-07-21
[20] iMatix Corporation: OpenAMQ (2009).
Available from: http://www.openamq.org/
Accessed: 2016-02-21
[21] JBoss Community: JBoss Web Services
(2014). Available from:
https://www.jboss.org/jbossws Accessed: 2016-03-
28
[22] WSO2: WSO2 Message Broker (2014).
Available from:
http://wso2.com/products/message-broker/
Accessed 2016–07-23
[23] SwiftMQ: Enterprise messaging platform
(2014). Available from: http://www.swiftmq.com/
Accessed: 2016-07-23
[24] Apache Software Foundation: Apache Qpid
(2013). Available from: https://qpid.apache.org/
Accessed: 2016-07-21
[25] Red Hat Enterprise: MRG - Messaging,
Realtime, Grid (2009). Available from:
http://www.redhat.com/f/pdf/MRG_brochure_web.
pdf Accessed: 2016-07-21

[26] Saint-Andre, P. (2011). Extensible messaging
and presence protocol (XMPP): Address Format. RFC
6122 (Proposed Standard), Available from:
http://www.ietf.org/rfc/rfc6122.txt Accessed: 2016-
07-21
[27] Saint-Andre, P. (2011). Extensible Messaging
and Presence Protocol (XMPP): Core. RFC 6120
(Proposed Standard), Available from:
http://www.ietf.org/rfc/rfc6120.txt Accessed: 2016-
07-21
[28] Saint-Andre, P. (2011). Extensible messaging
and presence protocol (XMPP): Instant messaging
and presence. RFC 6121 (Proposed Standard),
Available from: http://www.ietf.org/rfc/rfc6121.txt
Accessed: 2016-07-21
[29] XMPP: IoT Systems (2013). Available from:
http://wiki.xmpp.org/web/Tech_pages/IoT_systems
Accessed: 2016–07-24
[30] Saint-Andre, P. & Simerda, P. (2008). XEP-
0231: Bits of Binary, Available from:
http://xmpp.org/extensions/xep-0231.html
Accessed: 2016-07-25
[31] Adams, D. (2011). XEP-0030: Service
Discovery, Available from:
http://xmpp.org/extensions/xep-0009.html.
Accessed: 2016-07-23
[32] Hildebrand, J.; Millard, P.; Eatmon, R. &
Saint-Andre, P. (2008). XEP-0009: Jabber-RPC,
Available from: http://xmpp.org/extensions/xep-
0030.html Accessed: 2016-07-23
[33] Millard, P., Saint-Andre, P. & Meijer, R.
(2010). XEP-0060: Publish-Subscribe, Available from:
http://xmpp.org/extensions/xep-0060.html
Accessed: 2016-07-23
[34] Hildebrand, J. & Saint-Andre, P. (2004). XEP-
0033: Extended stanza addressing, Available from:
http://xmpp.org/extensions/xep-0033.html
Accessed: 2016-07-23

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

16

[35] Saint-Andre, P. & Smith, K. (2010). XEP-0163:
PersonalEventing Protocol, Available from:
http://xmpp.org/extensions/xep-0163.html
Accessed: 2016-07-23
[36] Waher, P. (2014). XEP-0337: Event Logging
over XMPP, Available from:
http://xmpp.org/extensions/xep-0337.html
Accessed: 2016–07-23
[37] Miller, M & Saint-Andre, P. (2005). XEP-0079:
Advanced message processing, Available from:
http://xmpp.org/extensions/xep-0079.html
Accessed: 2016-07-23
[38] Ramsdell, B. & Turner, S. (2010).
Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification. RFC 5751
(Proposed Standard), Available from:
http://www.ietf.org/rfc/rfc5751.txt Accessed: 2016-
07-22
[39] Saint-Andre, P. & Simerda, P. (2008). XEP-
0231: Bits of Binary. Available from:
http://xmpp.org/extensions/xep-0231.html
Accessed: 2016-07-25
[40] Forno, F. & Saint-Andre, P. (2005). XEP-0072:
SOAP Over XMPP. Available from:
http://xmpp.org/extensions/xep-0072.html
Accessed: 2016-07-23
[41] Mansour Fallah, S. (2016). Multi Agent based
Control Architectures, Proceedings of the 26th
DAAAM International Symposium, pp.1166-1170, B.
Katalinic (Ed.), Published by DAAAM International,
ISBN 978-3-902734-07-5, ISSN 1726-9679, Vienna,
Austria
[42] Conzon, D.; Bolognesi, T; Brizzi, P.; Lotito, A;
Tomasi, R. & Spirito, M. (2012). The virtus middleware:
an xmpp based architecture for secure iot
communications. In: 21st international conference
on computer communications and networks,
ICCCN’12, pp. 1–6

[43] ignite realtime: Openfire (2014). Available
from:
http://www.igniterealtime.org/projects/openfire/
Accessed: 2016-07-23
[44] Kaazing: WebSocket Gateway - XMPP (2014).
Available from:
http://kaazing.com/products/editions/kaazing-
websocket-gateway-xmpp/ Accessed: 2016-07-23
[45] STOMP: The Simple Text Oriented Messaging
Protocol v1.2 (2012). Available from:
http://stomp.github.io/stomp-specification-
1.2.html Accessed: 2016-02-19
[46] CoilMQ: Lightweight Python STOMP message
broker (2012). Available from:
https://github.com/hozn/coilmq/ Accessed: 2016-
07-24
[47] Stampy: Java implementation of the STOMP
1.2 specification (2013). Available from:
http://mrstampy.github.io/Stampy/ Accessed:
2016-07-24
[48] IBM Developer Networks: MQ Telemetry
Transport (MQTT) V3.1 Protocol Specification (2010).
Available from:
http://www.ibm.com/developerworks/webservices
/library/ws-mqtt/ Accessed: 2016-02-20
[49] OASIS: MQTT Version 3.1.1 (2014). Available
from: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
Accessed: 2016-07-21
[50] HiveMQ: Enterprise Grade MQTT Broker (2014).
Available from: http://www.hivemq.com/ Accessed:
2016–07-22
[51] Mosquitto: an open source MQTT v3.1/v3.1.1
Broker (2014). Available from: http://mosquitto.org/
Accessed: 2016-07-24
[52] Zhang L (2011). Building facebook
messenger. Available from:
https://www.facebook.com/notes/facebook-

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

17

engineering/building-
facebookmessenger/10150259350998920. Accessed:
2016–06-13
[53] Object Management Group: Documents
Associated With Data Distribution Services, V1.2
(2007). Available from:
http://www.omg.org/spec/DDS/1.2/ Accessed: 2016-
02-20
[54] Twin Oaks Computing Inc: What can DDS do
for You? (2013). Available from:
http://www.omg.org/hot-
topics/documents/dds/CoreDX_DDS_Why_Use_DDS.
pdf Accessed: 2016-07-24
[55] Object Computing Inc.: OpenDDS
Developer’s Guide (2014). Available from:
http://download.ociweb.com/OpenDDS/OpenDDS-
latest.pdf Accessed: 2016-07-27
[56] Object Management Group: Documents
Associated With The Real-Time Publish-Subscribe
Wire Protocol DDS Interoperability Wire Protocol
Specification (DDSI), V2.1 (2009). Available from:
http://www.omg.org/spec/DDSI/2.1/ Accessed:
2016-02-20
[57] Object Computing Inc.: OpenDDS
Developer’s Guide (2014). Available from:
http://download.ociweb.com/OpenDDS/OpenDDS-
latest.pdf Accessed: 2016-07-27
[58] Object Management Group: Documents
Associated With DDS Security (DDS-Security) 1.0 -
Beta 1 (2014). Available from:
http://www.omg.org/spec/DDS-SECURITY/1.0/Beta1/
Accessed: 2016-07-25
[59] Object Computing Inc.: Welcome to
OpenDDS! (2013). Available from:
http://www.opendds.org Accessed: 2016-07-24
[60] RTI: Connext DDS Software (2014). Available
from: http://www.rti.com/products/index.html
Accessed: 2016-07-27

[61] PrismTech: OpenSplice DDS Community
(2014). Available from:
http://www.prismtech.com/opensplice/opensplice
-dds-community Accessed: 2016-07-24
[62] Twin Oaks Computing Inc: CoreDXDDS data
distribution service middleware (2014). Available
from: http://www.twinoakscomputing.com/coredx
Accessed: 2016-07-24
[63] Apache Software Foundation: Kafka (2014).
Available from: http://kafka.apache.org/ Accessed:
2016-07-15
[64] Black, B. (2014). kafka-websocket. Available
from: https://github.com/b/kafkawebsocket
Accessed: 2016-08-03
[65] Apache Software Foundation: Apache
ActiveMQ (2011). Available from:
http://activemq.apache.org/ Accessed: 2016-02-21
[66] Pivotal Software Inc: RabbitMQ (2014).
Available from: https://www.rabbitmq.com/
Accessed: 2016-02-19
[67] HornetQ: what is HornetQ? (2013). Available
from: http://hornetq.jboss.org/ Accessed: 2016-07-
24
[68] Apache Software Foundation: Apollo -
ActiveMQ’s next generation of messaging (2014).
Available from: http://activemq.apache.org/apollo/
Accessed: 2016-07-24
[69] Apache Software Foundation: OpenWire
version 2 specification (2011). Available from:
http://activemq.apache.org/openwire-version-2-
specification.html Accessed: 2016-02-20
[70] AmazonWeb Services: Amazon Simple Queue
Service (Amazon SQS) (2013). Available from:
http://aws.amazon.com/sqs/ Accessed: 2016-02-21
[71] Google Developers: Using Pull Queues in
Java (2014). Available from:
https://developers.google.com/appengine/docs/ja
va/taskqueue/overview-pull Accessed: 2016–08–07

International Journal - VALLIS AUREA • Volume 3 • Number 2 • Croatia, December 2017
004.5; DOI 10.2507/IJVA.3.2.1.34

18

[72] Google Developers: Using Push Queues in
Java (2014). Available from:
https://developers.google.com/appengine/docs/ja
va/taskqueue/overview-push Accessed: 2016–08–07
[73] Google Developers: Google Cloud Pub/Sub
(2014). Available from:
https://developers.google.com/pubsub/overview
Accessed: 2016–08–07
[74] Microsoft Azure: Azure queues and service
bus Queues—Compared and contrasted (2014).
Available from:
http://msdn.microsoft.com/library/azure/Hh76728
7.aspx Accessed: 2016-08-21
[75] Microsoft Azure: Windows Azure AMQP 1.0
Support in Service Bus (2014). Available from:
http://www.windowsazure.com/en-
us/documentation/articles/service-bus-amqp-
overview/ Accessed: 2016-02-21
[76] stormmq Limited: Message queues as a
service in the cloud (2013). Available from:
http://stormmq.com/ Accessed: 2016-02-21
[77] Iron.io: IronMQ (2014). Available from:
http://www.iron.io/mq Accessed: 2016–02–20
[78] CloudAMQP: RabbitMQ as a Service (2014).
Available from: http://www.cloudamqp.com
Accessed: 2016-07-21
[79] CloudMQTT: Hosted broker for the Internet of
Things (2014). Available from:
http://www.cloudmqtt.com Accessed: 2016-07-25
[80] Rackspace: Cloud Queues (2014). Available
from:
http://docs.rackspace.com/queues/api/v1.0/cq-
gettingstarted/content/DB_Overview.html
Accessed: 2016-07-21
[81] iMatix Corporation: ∅MQ (2013). Available
from: http://www.zeromq.org/ Accessed: 2016-02-19
[82] nanomsg (2016). Available from:
http://nanomsg.org/ Accessed: 2016-02-19

[83] Lindsay, J.; Shakirzyanov, B. (2014). NullMQ.
Available from:
https://github.com/progrium/nullmq Accessed:
2016-03-10
[84] dotCloud: ZeroRPC (2013). Available from:
http://zerorpc.dotcloud.com/ Accessed: 2016-02-19
[85] Magnoni, L. (2015). Modern Messaging for
Distributed Sytems, Journal of Physics: Conference
Series 608 (2015) 012038
[86] Ehm, F. (2011). Running a Reliable Messaging
Infrastructure for CERN’s Control System.
Proceedings of ICALEPCS2011 (Grenoble, FRANCE)
[87] Dworak, A.; Ehm, F.; Sliwinski, W. & Sobczak,
M. (2011). Middleware Trends and Market Leaders 2011.
Proceedings of ICALEPCS2011 (Grenoble, FRANCE)
[88] Kazarov, A; Miotto, G. L. & Magnoni, L. (2012).
The AAL project: automated monitoring and
intelligent analysis for the ATLAS data taking
infrastructure. Journal of Physics: Conference
Series, Volume 368
[89] Arkhipkin, D.; Lauret, J. & Betts, W. (2011). A
message-queuing framework for STARs online
monitoring and metadata collection. Journal of
Physics: Conference Series, Volume 331
[90] Cons, L. & Paladin, M. (2011). The WLCG
Messaging Service and its Future. Journal of
Physics: Conference Series, Volume 396

	Introduction
	Message-oriented middleware
	Conclusion

	References

