7,862 research outputs found

    Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges

    Full text link
    Research on new optimization algorithms is often funded based on the motivation that such algorithms might improve the capabilities to deal with real-world and industrially relevant optimization challenges. Besides a huge variety of different evolutionary and metaheuristic optimization algorithms, also a large number of test problems and benchmark suites have been developed and used for comparative assessments of algorithms, in the context of global, continuous, and black-box optimization. For many of the commonly used synthetic benchmark problems or artificial fitness landscapes, there are however, no methods available, to relate the resulting algorithm performance assessments to technologically relevant real-world optimization problems, or vice versa. Also, from a theoretical perspective, many of the commonly used benchmark problems and approaches have little to no generalization value. Based on a mini-review of publications with critical comments, advice, and new approaches, this communication aims to give a constructive perspective on several open challenges and prospective research directions related to systematic and generalizable benchmarking for black-box optimization

    The True Destination of EGO is Multi-local Optimization

    Full text link
    Efficient global optimization is a popular algorithm for the optimization of expensive multimodal black-box functions. One important reason for its popularity is its theoretical foundation of global convergence. However, as the budgets in expensive optimization are very small, the asymptotic properties only play a minor role and the algorithm sometimes comes off badly in experimental comparisons. Many alternative variants have therefore been proposed over the years. In this work, we show experimentally that the algorithm instead has its strength in a setting where multiple optima are to be identified

    A hybrid swarm-based algorithm for single-objective optimization problems involving high-cost analyses

    Full text link
    In many technical fields, single-objective optimization procedures in continuous domains involve expensive numerical simulations. In this context, an improvement of the Artificial Bee Colony (ABC) algorithm, called the Artificial super-Bee enhanced Colony (AsBeC), is presented. AsBeC is designed to provide fast convergence speed, high solution accuracy and robust performance over a wide range of problems. It implements enhancements of the ABC structure and hybridizations with interpolation strategies. The latter are inspired by the quadratic trust region approach for local investigation and by an efficient global optimizer for separable problems. Each modification and their combined effects are studied with appropriate metrics on a numerical benchmark, which is also used for comparing AsBeC with some effective ABC variants and other derivative-free algorithms. In addition, the presented algorithm is validated on two recent benchmarks adopted for competitions in international conferences. Results show remarkable competitiveness and robustness for AsBeC.Comment: 19 pages, 4 figures, Springer Swarm Intelligenc

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners
    • …
    corecore