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Abstract
To develop new meta-heuristic algorithms and evaluate on the benchmark functions is the most challenging task. In this

paper, performance of the various developed meta-heuristic algorithms are evaluated on the recently developed CEC 2021

benchmark functions. The objective functions are parametrized by inclusion of the operators, such as bias, shift and

rotation. The different combinations of the binary operators are applied to the objective functions which leads to the

CEC2021 benchmark functions. Therefore, different meta-heuristic algorithms are considered which solve the benchmark

functions with different dimensions. The performance of some basic, advanced meta-heuristics algorithms and the algo-

rithms that participated in the CEC2021 competition have been experimentally investigated and many observations,

recommendations, conclusions have been reached. The experimental results show the performance of meta-heuristic

algorithms on the different combinations of binary parameterized operators.
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1 Introduction

Metaheruistic algorithms represent a class of derivative-

free, nature inspired algorithms and provide robust opti-

mization tools for problems. Mostly, the analytical process

may fail for solving the complex, and real-world opti-

mization problems. Therefore, meta-heuristic algorithms

prove very efficient and effective algorithms in solving

these types of problems. The applications of meta-heuristic

algorithms are found in the numerous fields of science,

machine learning, engineering, operations research [1–7].

The performance evaluation and comparison of algo-

rithms are very much dependent on benchmarking. The

benchmarking experiments are developed to predict/select

the best algorithm for solving real-world problems [8]. In

the past two decades, proposing new benchmark real-pa-

rameter single-objective optimization problems with sev-

eral novel characteristics to evaluate and analyze the
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performance of meta-heuristic algorithms is considered as

the cornerstone of research in the optimization field. Fur-

thermore, it has been attracted by computer science,

operations research practitioners and specialists as well as

mathematicians and engineers. There are following

important reasons for developing benchmark problems:

1. It is considered the basis for developing more complex

optimization problems such as single-objective com-

putationally expensive numerical optimization prob-

lems, single objective multi-niche optimization

problems, constrained real-parameter single-objective

optimization problems, constrained / bound-con-

strained multi/many-objective optimization problems.

2. It must simulate the degree of difficulty of the real-

world optimization problems.

3. It must be able to detect the weakness and strengths of

the novel optimization algorithms which have been

significantly improved during the past few years.

Two benchmark series are common in evaluation of real-

parameter evolutionary algorithms, namely IEEE Congress

on Evolutionary Computation (CEC) competitions and the

Comparing Continuous Optimizer (COCO). The COCO

benchmark suite provides a platform to compare the per-

formance of large number of algorithms for unconstrained

continuous optimization problems. COCO benchmark suits

specially represent the single objective noiseless and noise

problems and bi-objective noiseless problems [9–11]. On

the other hand, CEC benchmark represents the most elab-

orated platform for the comparison of stochastic search

algorithms. The CEC benchmark suite includes single,

multi-objective, noiseless, noise, large-scale, real-world

problems, constrained optimization problems. Moreover, it

also provides the performance metrices, test environment

for assessment and comparison. To evaluate the perfor-

mance of state-of-the-art algorithms, CEC competitions

functions are most frequently used for benchmarking.

Since 2005, a new generation of benchmark problems

have been developed to evaluate with the new era of nat-

ure-inspired algorithms or meta-heuristics. 2005 IEEE

Congress on Evolutionary Computation was the inception

of the first benchmark problems that overcome the afore-

mentioned shortcoming features, named CEC’05 [12].

CEC’05 report included 25 benchmark functions with

different properties such as separable, non-separable,

rotated, unrotated, unimodal and multimodal functions

with shifts in dimensionality, multiplicative noise in fitness

and composition of functions, continuous functions, non-

continuous functions, global optimum on the bounds, glo-

bal optimum not on the bounds, function with no clear

structure in the fitness landscape, the narrow global basin

of attraction and so on.

Eight years later, CEC’13 test suite which includes 28

benchmark functions has been proposed [13]. In the

CEC’13 test suite, the previously proposed composition

functions [14] are improved and additional test functions

are included. In the same context, CEC’14 test suite which

includes 30 benchmark functions has been proposed [15].

CEC’14 developed benchmark problems with several novel

features such as novel basic problems, composing test

problems by extracting features dimension-wise from

several problems, graded level of linkages, rotated trap

problems, and so on. Three years later, CEC’17 test suite

which includes 30 benchmark functions has been proposed

[16]. In the CEC’17 test suite, similar to CE’14, new basic

functions with different features have been added. These

benchmark functions are discussed in detailed in the next

section. The same benchmark suite of CEC’17 has been

used in CEC’18, CEC’19 and CEC’20 [17]. As algorithms

improve, ever more challenging functions are developed.

This interplay between methods and problems drives pro-

gress, the CEC’20 [17] and CEC’21 [18] Special Sessions

on Real-Parameter Optimization are developed to promote

this symbiosis. In CEC’20 competition, the objective

function is transformed into another function with the

inclusion of the rotation matrix. Moreover, new benchmark

objective functions are set in CEC’21 competition by

including the different combination of bias, shift and

rotation operators. These benchmark functions make a new

challenge for researchers to develop meta-heuristic algo-

rithms which handle all the complexity of the functions.

Additionally, it is pointed out that in order to compare

and analyse the solution quality of different algorithms

statistically and to verify the behaviour of stochastic

algorithms [19], the results are compared using two non-

parametric statistical hypothesis tests: I the Friedman test

(to determine the final rankings of different algorithms for

all functions) and (ii) the multi-problem Wilcoxon signed-

rank test (to check the differences between all algorithms

for all functions). Besides, the algorithm complexity has

been taken into consideration by evaluating the computa-

tion time just for specific function for predefined evalua-

tions of a certain dimension. Nonetheless CEC’17

proposed a new performance measure which is called score

metric. Thus, the evaluation method for each algorithm is

based on a score of 100 which is based on two criteria

taking into account higher weights will be given for higher

dimensions. Thus, the calculated score is used instead of

using a statistical test [16].
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In this paper, CEC’21 benchmark functions are con-

sidered to evaluate the performance of meta-heuristic

algorithms. We divided the algorithms into three category,

i.e., basic algorithms, advanced algorithms and CEC2021’s

Algorithms. The basic algorithms include the basic or

standard version of the old and recent meta-heuristic

algorithms and it includes the basic or standard versions of

differential evolution (DE) [20], gaining-sharing knowl-

edge-based algorithm (GSK) [21], grey wolf optimizer

(GWO) [22], particle swarm optimization (PSO) [23], and

teaching learning-based optimization algorithm (TLBO)

[24]. The advanced algorithms are the adaptive and self-

adaptive version of those algorithms which have been the

winner of some CEC competitions. These algorithms

include the following: LSHADE was ranked as the winner

in real-parameter single objective optimization competi-

tion, CEC 2014 [25], AGSK was ranked second in real-

parameter single objective optimization competition,

CEC2020 [26], EBOwithCMAR is the winner of CEC2017

single objective with bound constraints competition [27],

IMODE is the winner of CEC2020 single objective with

bound constraints competition [28] and ELSHADE_-

SPACMA algorithm was ranked third in real-parameter

single objective optimization competition CEC 2018 and,

is an enhanced version of LSHADE-SPACMA algorithm

[29]. The CEC2021’s algorithms are the set of algorithms

that participated in the CEC2021 competition. These

algorithms include Self-organizing Migrating Algorithm

with CLustering-aided migration and adaptive Perturbation

vector control (SOMA-CLP) [30]; A Multi-start Local

Search Algorithm with L-SHADE (MLS-LSHADE);

LSHADE based on ordered and roulette-wheel-based

mutation (L-SHADE-OrdRw); LSHADE algorithm with

Adaptive Archive and Selective Pressure (NL-SHADE-

RSP) [31]; Self-adaptive Differential Evolution Algorithm

with Population Size Reduction for Single Objective

Bound-Constrained Optimization (j21) [32]; A New Step-

Size Adaptation Rule for CMA-ES Based on the Popula-

tion Midpoint Fitness ( RB-IPOP-CMAES) [33]; Improved

DE through Bayesian Heperparameter Optimization

(MadDE) [34]; Gaining-Sharing Knowledge Algorithm

with Adaptive Parameters Hybrid with Improved Multi-

operator DE algorithm (APGSK-IMODE) [35] and DE

with Distance-based Mutation-selection (DEDMNA) [36].

The objective functions of the benchmarks are param-

eterized using operators such as bias, rotation, and trans-

lation. The primary goal of parameterization is to evaluate

the influence of all operator combinations on all benchmark

functions. Parametric benchmarking is a first step towards

gaining a comprehensive understanding of algorithmic

performance and optimization concerns [37]. To this end,

ten scalable benchmark challenges utilising these binary

operators are proposed.

The contribution of the paper are summarized as:

• Evaluating the performance of the previously proposed

swarm and evolutionary algorithms in the recently

proposed CEC2021 competition on Single Objective

Bound Constrained Numerical Optimization;

• Discussing the algorithms participated in the CEC2021

competition on Single Objective Bound Constrained

Numerical Optimization;

• Comparing the performance of those algorithms based

on different criteria, such as Wilcoxon test and

Friedman ranking test;

• Proposing some future directions that would benefit the

evolutionary computation research community.

The organization of the paper is as follows: Sect. 2 includes

the literature review of the benchmark functions and

algorithms. Section 3 presents the detailed description of

parameterized benchmark for CEC 2021 competition.

Section 4 represents the numerical experiments with the

comparative results and Sect. 5 concludes the whole paper.

2 Related work

Liang et al. [13] stated that many of classical popular

benchmark functions have some features that have been

used by some algorithms to achieve excellent results.

According to their experience, some of these shortcoming

properties associated with the existing benchmark prob-

lems are:

• A Global optimum having the same parameter values

for different dimensions/variables. In this case, the

global optimum may be reached quickly if some

operators exist to duplicate the value of one dimension

to the other dimensions.

• At the origin, there is a global optimum. As a result,

numerous mutation operators may be simply built to

take use of this common trait of a large number of

benchmark functions.

• The global optimum is located at the search range’s

centre. When the uniform initial population is generated

randomly, the mean-centric technique has a tendency to

lead the population to the search range’s centre.

• The global optimum is located on the bounds of the

search space that are easily discovered by the majority

of methods.

• Local optima located along the coordinate axes or a

lack of connectivity between the variables/dimensions.

In this situation, the local optimal information might be

used to determine the global optimum.
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By analyzing these problems, they proposed a general

framework to construct novel and challenging composition

test functions possessing many desirable properties.

Recently, during the past few years, there have been a

few attempts to investigate the relationship between the

benchmark sets and the performance of the optimization

algorithms. Mersmann et al. [38], discussed that the main

objective of benchmarking optimization algorithms is to

answer two questions. The first one: which algorithm is the

best? And the second one: which algorithm can be used to

solve a specific real-world problem? Therefore, they sug-

gested that the first question can be answered by using

consensus ranking procedures. Regarding the second

question, they proposed a new term, named Exploratory

Landscape Analysis (ELA), which is based on developing

ways to cheaply and automatically extracts problem prop-

erties from a concrete problem instance. However, this

procedure has not been applied in this study. On the other

hand, they suggested many problem properties such as

multi-modality, global structure, separability, variable

scaling, search space homogeneity, basin size homogene-

ity, global to local optima contrast and plateau. Then, real-

parameter black-box optimization benchmarking 2009,

named BBOB’09 [39], has been used to analyze the per-

formance of 30 optimization algorithms. they applied

consensus ranking instead of using individual ranking.

Thus, in order to gain insights to answer these questions,

many classical statistical exploratory data analyses have

been used.

Firstly, the expected running time of each algorithm has

been calculated for each test function and dimension and

consensus ranking has been applied. Then, distance mea-

sure has been used to calculate the distance between all

rankings. Besides, to retrieve groups or clusters from the

distance matrix, multidimensional scaling (MDS, [40]), to

visualize the relationship between observations, and the

clustering algorithm PAM [41], to find clusters or groups in

data, have been used. Finally, to describe these groups,

decision trees for modelling the unknown cluster boundary

have been applied. In the same context, in order to answer

the second question, Mersmann et al. [42], extended their

work by applying Exploratory Landscape Analysis (ELA).

They suggested several low-level features of functions

which are convexity, y-distribution, level set, meta-model,

local search and curvature. Then, they try to relate these

features to the high-level features of Mersmann et al. [38].

The relationship between the problem properties and

algorithm optimization can be estimated using a small

sample of function values combined with statistical and

machine learning techniques. In order to simultaneously

optimize feature sets according to quality and cost, a multi-

objective evolutionary algorithm SMS-EMOA [43], has

been employed. Later on, Mersmann et al. [8], the 2009

and 2010 BBOB benchmark results [9, 44] are used to

analyze more than 50 optimization algorithms. The com-

pared algorithms have been divided into 11 groups such

that all optimization algorithms based on the same base

mechanism will be put into the same group. Then, in order

to choose the best optimizer from each group as the rep-

resentative for this group, the Borda [45] consensus over all

algorithms in each group for the accuracy levels 10-3 and

10-4 has been used. Then, they applied the same approach

used in Mersmann et al. [38]. Altogether, no consistent

results have been reached. Thus, they concluded that the

proposed features of the benchmark problems are not

enough or not adequate to describe the groups of different

algorithms.

Morgan and Gallagher [46] proposed a novel framework

based on a length scale. The length scale is the change of

the objective function value with respect to the change in

the points in the search space. The main objective was to

study the structural features of the landscape of the prob-

lems regardless of any particular algorithm. They discussed

some important properties of the concept of the length

scale and its distribution. Then, the proposed framework

has been applied to the 2010 BBOB benchmark

(BBOB’10) [44]. Experimental analysis and results showed

that the proposed framework can differentiate easily

between uni-modal and multi-modal functions. On the

other hand, many researchers have focused on the bench-

marking process of optimization algorithms that must be

followed to perform a fair comparison. Opara and Arabas

[47] proposed an overview of benchmarking procedures.

Based on some functions from CEC and BBOB bench-

marks, they discussed the main points in this field such as

theoretical aspects of the comparison of the algorithms,

available benchmarks, evaluation criteria and standard

methods of presenting and interpreting results and the

related appropriate statistical procedures. Finally, they

proposed a novel concept of parallel implementation of test

problems which is considered as a qualitative improvement

to the benchmarking procedures. Beiranvand et al. [48]

presented complete and detailed standards and guidelines

on how to benchmark optimization algorithms. They

reviewed the benchmark test suites for all types of opti-

mization problems. Besides, they discussed the main per-

formance measures to evaluate the efficiency of the

optimization algorithms. Moreover, pitfalls to avoid and

main issues that should be taken into account to conduct

fair and systematic comparison have been highlighted.

Muñoz et al. [49] introduced a survey of selected methods

for optimization algorithm in the black-box continuous

optimization problems. Firstly, the algorithm selection

framework by Rice in [50] has been described. The four-

component spaces- problem, algorithm, performance and

characteristic- are described. Therefore, the fitness
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landscape concept is discussed. Then, they discussed the

different classes of search algorithms. Besides, the methods

used to measure algorithm performance have been intro-

duced. A classification and a summary of well-known

exploratory landscape analysis methods have been pre-

sented. Finally, they presented the implementations of the

algorithm selection framework for solving continuous

optimization problems. Opara et al. [37] extended CEC’17

benchmark problems by employing different parametriza-

tion to the problems. Each function is parametrized by

interpretable, high-level characteristics (rotation vs non-

rotation, noise vs noise-less, etc.) which are used in pre-

dicting multiple regression model to explain the algorith-

mic performance.

2.1 Description of used algorithms

In this subsection, all the algorithms that have been used in

the paper to solve the parameterized CEC2021 test func-

tions are briefly discussed and explained. Also, compar-

isons between these algorithms have been conducted at the

end of the paper. These algorithms have been classified

into basic, advanced and recently-developed ones.

2.1.1 Basic algorithms

• Differential evolution (DE)

It is a type of evolutionary computing method that

belongs to a broader family of evolutionary algorithms.

DE algorithm, developed by Storn and Price in 1997

[20], is also a popular direct search technique such as

genetic algorithm and evolution strategies which starts

with a population of initial solutions. Then, by intro-

ducing mutations into the population, these initial

solutions are iteratively improved. It is most popular

evolutionary algorithm and has been applied to various

nonlinear, high dimensional and complex optimization

problem to obtain the optimal solution. Moreover, dif-

ferent variants of DE algorithm such as self adaptive,

binary, multi-objective, etc. have been introduced.

• Gaining sharing knowledge-based algorithm (GSK)

GSK algorithm [21] is based on the human behavior

of gaining and sharing knowledge which consists of two

phases: junior and senior gaining and sharing phase. In

junior phase, initial solutions are produced and later,

they are sent to senior phase to interact with others. This

is key idea behind the GSK algorithm. Many different

variants of GSK algorithm have been developed to

show its capability in solving real-world optimization

problems [51–53].

• Grey Wolf optimizer (GWO)

The GWO algorithm is modelled after the natural

leadership structure and hunting mechanism of grey

wolves by Mirjalili et al. [22]. For modelling the

leadership structure, four sorts of grey wolves are used:

alpha, beta, delta, and omega. Furthermore, the three

primary phases of hunting are implemented: looking for

prey, surrounding prey, and attacking prey. Grey

wolves have the capacity to locate and surround prey.

The alpha is generally in charge of the hunt. Hunting is

something that the beta and delta could do on occasion.

They separate to hunt for prey and then converge to

attack prey. The proposed technique was evaluated on

29 benchmark test functions and outperformed others.

Researcher have been developed its variants to solve

different problems.

• Particle swarm optimization (PSO)

It is one of the nature-inspired evolutionary algo-

rithms and stochastic optimisation techniques devel-

oped by James Kennedy and Russ Eberhart in 1995 [23]

to solve computationally difficult and difficult optimi-

sation problems. Since then, it has been applied to a

wide variety of search and optimisation problems. It

abstracts the mechanism of action of swarms such as

swarms of birds, fish, and so on. It is an algorithm for

population-based evolution in which each swarm (par-

ticle) represents a unique solution. Each particle

updates its current position via its velocity vector and

attempts to find the optimal solution.

• Teaching Learning based optimization algorithm

(TLBO)

This technique focuses on the impact of a teacher’s

influence on students. TLBO, like other nature-inspired

algorithms, is a population-based approach that pro-

gresses to the global answer through a population of

solutions [24]. A population is defined as a group of

students or a class of students. The TLBO procedure is

broken into two parts: The ‘Teacher Phase’ is the first

section. and the ‘Learner Phase’ makes up the second

portion. The terms ’Teacher Phase’ and ’Learner Phase’

refer to learning from a teacher and ’Learning by

Interaction Between Learners’ respectively. It has been

successfully applied to several numerical optimization

problems and it proved its superiority in solving them.

2.1.2 Advanced algorithms

• LSHADE [25]

It is an extended version of the previously developed

success history-based adaptive DE (SHADE) algorithm

[54]. There are three main control parameters of DE

algorithm i.e. population size, scaling factor F and

crossover rate CR. SHADE algorithm employs a his-

torical memory MCR, MF that saves a set of CR, F val-

ues which have worked successfully in the past. Based
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on SHADE algorithm, Tanabe and Fukunaga [25]

developed LSHADE algorithm which is based on

population size parameter for DE algorithm. In this, a

linear population size reduction formula has been used

which gradually decreases the population size during a

DE run. The proposed algorithm LSHADE was applied

to the special session on Real parameter single objec-

tive optimization benchmark suite. The performance of

LSHADE algorithm outperformed other algorithms and

it was ranked as winner in CEC2014 competition.

• AGSK [35]

It depicts adaptive version of gaining-sharing knowl-

edge (GSK) based optimization algorithm. The GSK

algorithm has two main parameters: knowledge factor

kf and knowledge ratio kr that control junior and senior

phase during optimization. Therefore, to accommodate

this situation, adaptation process has been included with

the parameter settings. Moreover, population size

reduction scheme is also employed to decrease the

population size gradually. This leads to adaptive

gaining sharing knowledge-based algorithm and the

performance of the AGSK algorithm is evaluated on

CEC2020 benchmark functions. It performed signifi-

cantly better than other comparative algorithms due to

the remarkably balance between the exploration and

exploitation. In CEC2020, AGSK algorithm was ranked

second among all competitive algorithms.

• EBOwithCMAR [27]

This algorithm is a combination of global optimizer

and a local optimizer. The global optimizer, i.e.

effective butterfly optimizer (EBO) is a self-adaptive

version of butterfly optimization algorithm which uses

success history-based adaption and linear population

size reduction to the increase the diversity of the

population. While it also incorporates a co-variance

matrix adapted retreat (CMAR) phase to produce the

new solution. Moreover, it also increase the local search

capability of EBO algorithm. This hybrid algorithm is

tested over single objective CEC 2017 benchmark

problems and ranked as winner of CEC2017.

• IMODE [28]

It introduces an improve multi-operator differential

evolution algorithm (IMODE). It begins by segmenting

the initial population into many sub-population, each of

which is developed using a different DE variation. The

size of each sub-population is continually adjusted

depending on two indicators: solution quality and sub-

population variety. The proposed algorithm is tested

over 10 benchmark functions of CEC2020 competitions

and ranked as winner among all competitive algorithms.

• ELSHADE_SPACMA [29]

Many researcher or practitioners have been

introduced different variants of DE algorithm. In DE

algorithm, crossover rate reflects the chance that the test

solution inherits a certain gene. Montgomery and Chen

[55] claimed that CR is a very sensitive parameter in

order to solve optimization problems. Thus, to tackle

with this problem, Mohamed et al. [56] proposed

LSHADE_SPACMA algorithm. Furthermore, Hadi

et al. [29] enhanced the performance of LSHADE_-

SPACMA by developing ELSHADE_SPACMA algo-

rithm with the two improvements. The first was a

hybridization of LSHADE_SPACMA and adaptive

guided differential evolution (AGDE) in which all the

population were assigned to LSHADE_SPACMA for

one generation. And then all the population will be

assigned to AGDE algorithm. The next improvement

was made in the mutation parameter to balance the

exploration and exploitation quality. The proposed

technique has been applied to CEC2017 benchmark

problems and obtained third rank among all algorithms.

2.1.3 CEC2021’s algorithms

In this subsection, we will discuss and summarize the

algorithms that have been participated in CEC2021

competition.

• APGSK-IMODE [35]

A hybrid algorithm based on Adaptive Parameters

gaining sharing knowledge (APGSK) [57] and

improved multi-operator differential evolution

(IMODE) [28]. For a predetermined number of gener-

ations (cycle), two sub-populations are evolved to an

optimal or near-optimal solution using APGSK and

IMODE. Probabilistically, each algorithm evolves its

sub-population for the next cycle that is done via

probability, which is adjusted based on each algo-

rithm’s quality. It is worth to mention that, APGSK-

IMODE was the winner of the CEC2021 Single

Objective Bound Constrained Numerical Optimization

for non-shifted cases.

• SOMA-CLP [30]

Kadavy et al. [30] introduced a new Self-organizing

Migrating Algorithm (SOMA) variant with clustering-

aided migration and adaptive perturbation vector con-

trol (SOMA-CLP). SOMA-CLP is a recent variation of

SOMA, which is an improved SOMA-CL [58]. SOMA-

CLP promotes the worldwide transition from explo-

ration to exploitation by linearly adapting the prt

control parameter. Its workflow is split into three

phases: search space mapping, mapped space cluster-

ing, and further screening of areas of interest revealed

in the first phase.
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• L-SHADE-OrdRw [59]

L-SHADE-OrdRw, which is an improved L-SHADE

algorithm based on ordered and roulette-wheel-based

mutation has been proposed in [59]. Also, in order to

further improves the performance of L-SHADE-

OrdRw, an adaptive and non-adaptive ensemble sinu-

soidal method, to automatically adjust the scaling factor

values, has been used. Moreover, a selection pressure,

which put more weights on the better solutions, based

on the roulette-wheel strategy has been utilized to select

random solutions in mutation strategy. To further

enhance the efficiency of L-SHADE-OrdRw algorithm

uses a local search based on Gaussian Walks [60].

• NL-SHADE-RSP [31]

Stanovov et al. [31] proposed an improved LSHADE

algorithm, called NL-SHADE-RSP. NL-SHADE-RSP

incorporates different novel parameter control methods

including nonlinear population size reduction, rank-

based selective pressure in mutation strategy to select

one of two mutation operators (with and without

archive), adaptive archive set usage, and adapting the

crossover rate control based on some rules. It also

utilizes a mechanism to adapt the p value in the current-

to-pbest mutation operator.

• j21 [32]

The j21 algorithm is built on the self-adapting

jDE100 and j2020 algorithms. It uses two populations, a

restart mechanism in both populations, a crowding

mechanism, and a system to choose vectors from both

sub-populations for the mutation process. The jDE100

[61] and j2020 [62] algorithms use similar processes.

j21 algorithm uses a mechanism to reduce population

size throughout evolution, unlike the prior two algo-

rithms. The self-adaptive control parameter CR also has

a wider range of values.

• RB-IPOP-CMAES [33]

RB-IPOP-CMAES [33] is an extension of IPOP-

CMAES, in which previous population midpoint fitness

(PPMF) is used as an adaptation of the 1/5th success

rule to the CMA-ES algorithm. PPMF is utilized to

adjust the step-size multiplier r which compares the

current population’s fitness value to the previous

population’s midpoint. The stepsize is changed to make

sure that the success probability fluctuates around the

reference target value.

• MadDE [34]

In MadDE [34], the control settings and search

techniques are simultaneously adapted in the optimiza-

tion process. It is based on self-adaptive DE algorithms

like JADE, SHADE [54] and LSHADE [25], whose

core structure has been used to build modern DE

algorithms [28]. Similar to IMODE [28], it uses several

mutation and crossover processes to build trial vectors.

MadBE uses various search algorithms because they are

likely to deliver consistent results across a wide range

of objective functions (landscape). The following

describes the MadDE algorithm has several character-

istics. First, it mixes existing powerful mutation strate-

gies and selects them probabilistically and the

likelihood of choosing a mutation strategy depends on

its historical success rate. Second, it uses probabilistic

crossover to choose between binomial and q-best

binomial crossover. Third, it adapts the DE control

parameters NP, Cr, and F using the LSHADE algorithm

[25].

• DEDMNA [36]

Bujok and Kolenovsky proposes and tests a new DE

algorithm with distance-based mutation selection, pop-

ulation size reduction, and an archive for good old

solutions [36], called DEDMNA, which is an improved

variant of DE algorithm with a selection of mutation

strategy based on the mutant point distance (DEMD)

[63]. DEDMNA uses a linear population size reduction

approach to and an archive to store old solutions.

In the summary, in this section, several algorithms have

been discussed that have been used to solve the CEC2021

benchmark functions. These algorithms are categorized as

basic algorithms, advanced algorithms and the recently

developed algorithms used in the CEC2021 competitions.

In this paper, a comparison between these algorithms have

been conducted to see their performance on the parame-

terized CEC2021 problems, as to the best of the authors

knowledge, there is no such comparison in the literature.

The aim of this paper is to evaluate the performance of

these algorithms on the recently proposed parameterized

CEC2021 problems. As, it can be concluded from the

results and analysis section, the recently developed algo-

rithms have been performed better than others.

3 Parametrized benchmark

Based on the aforementioned discussion, it can be seen

from CEC’05 to CEC’2020 that regardless of the type and

feature of benchmark problems, the same experimental

analysis approach has been used. All benchmark problems

have been used with the fixed-parameter settings for all

features i.e. no different values for different features have

been experimentally investigated. All benchmark problems

have been manipulated as a black-box with no permeation

for a possible change to evaluate the performance of the

algorithms with different combinations of parameters’

values. Therefore, to the best of our knowledge, this is the

first study that opens this black-box for all benchmark

problems and tests different DE-based algorithm with
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different predetermined levels for different controlled

features.

The benchmarks plays very important role in improve-

ment of global meta-heuristics. The two-benchmark series

CEC [64] and COCO [39] are proposed to check the per-

formance of the real parameter meta-heuristic algorithms.

In these competition, the benchmark functions are trans-

formed by using different operators such as bias, rotation

and shift in the objective function [14, 37, 65]. Various

possible combination of the operators can be formed. The

total eight combinations of operators are possible and they

are as

• Only bias exists.

• Bias does not exist.

• Only rotation exists

• Rotation does not exist.

• Only shift exists.

• Shift does not exist.

• Bias and rotation exist but shift does not exist.

• Bias and shift exist but rotation does not exist.

• Rotation and shift exist but bias does not exist.

• Bias, shift and rotation exist simultaneously.

The main aim of benchmarking is to find the best trans-

formation by checking the effect of all possible combina-

tion of the operators. Thus, the resulting set is known as

parameterized benchmark.

In CEC’20 [17] benchmark, new objective function is

defined by including shift vector, rotation matrix and bias

in the original objective function. In the variable x, shift

vector si is included with the multiplication of rotation

matrix R and the bias vector b�i is added in the original

objective function. Therefore, the mathematical formula-

tion of the new benchmark is given as:

FiðXÞ ¼ fiðRðx� siÞÞ þ b�i ð1Þ

The FiðXÞ is known as parameterized benchmark function

on which the performance of the operators will be tested.

There are some detailed variations for hybrid and compo-

sition functions, which make the full pattern slightly more

complicated. Therefore, the decomposition allows to define

the binary parameters that demonstrate which transforma-

tion should be applied and ensures that predictors are

standardized to the same scale. The values taken by the

parameters is presented in Table 1 with the reference

Equation number from which the value can be obtained.

The operators bias, shift and rotation can be controlled,

activated or deactivated. While, there are some other

parameters such as problem type, separability, symmetry,

and number of local optima which can be observed only.

The type of problems can be unimodal, hybrid, simple

multimodal, and composition, the optimization problem

may be of different kind such as separable or non-separa-

ble. A few or a huge number of local optima can be existed

and the shape of the problem may be symmetric or

asymmetric. The values of the parameters are fixed there-

fore, these type of parameters can be observed only. Thus,

total 8 combination are possible for each function. One

example is illustrated to understand these binary parame-

ters. For example, only shift operator exists and the rotation

and bias operator do not exist then R ¼ I (identity matrix)

and F�
i ¼ 0 must set on. The detailed description of each

binary operator applied on function Fi has been shown in

Table 2. To show the effect of these configurations on the

benchmark set, F9 has been selected as an example. The 3-

D maps for 2 dimensions F9 in all 8 configurations are

shown in Fig. 1. In each figure, the subfigure (a) shows the

Table 1 Parametrization of the benchmark problems

ID Parameter Values Reference Type

C1 Bias F�
i or 0 Eq. (1) Controlled

C2 Shift si or 0 Eq. (1) Controlled

C3 Rotation R or I Eq. (1) Controlled

Table 2 Binary parameter

values for each transformation

applied on the function Fi

Name of the functions Bias Shift Rotation Parameterized vector

Fi Basic 0 0 I (000)

Fi Bias F�
i 0 I (100)

Fi Shift 0 si I (010)

Fi Rotation 0 0 R (001)

Fi Bias and shift F�
i si I (110)

Fi Bias and rotation F�
i 0 R (101)

Fi Shift and rotation 0 si R (011)

Fi Bias, shift and rotation F�
i si R (111)
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(a)Basic function (b)Shifted function

(c)Rotated function (d) Biasedfunction

(e)Shifted and rotated function (f) Biasedand shifted function

(g) Biased and rotated function (h) Biased,shifted and rotated function

Fig. 1 3-D map for 2-D composite parametrized function 9
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(a) Basic function (b) Shifted function

(c) Rotated function (d) Biased function

(e) Shifted and rotated function (f) Biased and shifted function

(g) Biased and rotated function (h) Biased , shifted androtatedfunction

Fig. 2 Contour maps for composite parameterized function 9
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basic 3-D map of function such that the no parametrization

is used. The subfigures (b), (c), (d) present the function

with only shift parameter, only rotation and only bias,

respectively. In the subfigures (e), (f), (g), two operations

are simultaneously used that are shift with rotation, shift

with bias and rotation with bias, respectively. The subfig-

ure (h) shows all the three parameters with the original

function. These figures illustrate the effect of all parame-

ters on the original benchmark functions. Moreover, their

contour maps (For F9) are also drawn in Fig. 2. The

interested research can be found full details in CEC’21

technical report [18].

4 Numerical experiments

This section presents the numerical experiments of per-

formance of meta-heuristic algorithms on CEC 2021

benchmark functions. The experiments conducted on two

types of meta-heuristic algorithms, i.e. basic algorithms

and advanced algorithms. Basic algorithms includes the

basic or standard versions of differential evolution (DE)

[20], gaining-sharing knowledge-based algorithm (GSK)

[21], grey wolf optimizer (GWO) [22], particle swarm

optimization (PSO) [23], and teaching learning-based

optimization algorithm (TLBO) [24]. The advanced algo-

rithms include the adaptive and self-adaptive version of

those algorithms which have been the winner of of

previously held CEC competitions. The advanced algo-

rithms are as:

• LSHADE [25] was ranked as the winner in real-

parameter single objective optimization competition,

CEC 2014.

• AGSK [26] was ranked second in real-parameter single

objective optimization competition, CEC2020.

• EBOwithCMAR [27] is the winner of CEC2017 single

objective with bound constraints competition.

• IMODE [28] is the winner of CEC2020 single objective

with bound constraints competition.

• ELSHADE_SPACMA algorithm [29] was ranked third

in real-parameter single objective optimization compe-

tition CEC 2018 and, is an enhanced version of

LSHADE-SPACMA algorithm [56] which was ranked

fourth in real-parameter single objective optimization

competition CEC 2017. Besides, IMODE, LSHADE

and ELSHADE_SPACMA are DE- based algorithms.

Moreover, the performance of the state-of-the-art algo-

rithms is evaluated on evaluation criteria [18].

The values of the parameters used for the basic algo-

rithms are considered from the GSK algorithm paper [21]

and the parameters values for the advanced algorithm are

taken from their original paper. The performance of the

algorithms for 10 D and 20 D are compared with the two

criteria (i) among the parametrized vector for each algo-

rithm, and (ii) among the obtained results of all algorithms

for each parametrized vector.

Table 3 Ranks of all basic

algorithms with each

parameterized vector for 10 D

Alg Parameterized vector (000) (001) (010) (011) (100) (101) (110) (111)

DE R 1 5.5 3.5 7 2 5.5 3.5 8

SE 50.00 20.85 30.59 18.50 50.00 20.85 30.59 18.50

SR 50.00 20.45 26.79 18.75 47.87 20.45 26.79 18.75

S 100.00 41.31 57.38 37.25 97.87 41.31 57.38 37.25

GSK R 1 4 5.5 7.5 2 3 5.5 7.5

SE 50.00 49.38 33.69 23.92 50.00 49.38 33.69 23.92

SR 50.00 24.77 34.87 21.37 48.18 25.24 34.87 21.37

S 100.00 74.14 68.56 45.29 98.18 74.62 68.56 45.29

GWO R 1.5 3.5 5.5 7.5 1.5 3.5 5.5 7.5

SE 50.00 0.01 0.00 0.00 50.00 0.01 0.00 0.00

SR 50.00 35.29 22.64 17.39 50.00 35.29 22.64 17.39

S 100.00 35.30 22.64 17.39 100.00 35.30 22.64 17.39

PSO R 1 3 6 7 2 4 5 8

SE 50.00 8.44 7.48 3.80 50.00 8.44 7.48 3.80

SR 50.00 16.50 17.01 12.89 47.14 16.50 17.37 12.50

S 100.00 24.94 24.49 16.69 97.14 24.94 24.85 16.30

TLBO R 1.5 3.5 5.5 7.5 1.5 3.5 5.5 7.5

SE 50.00 1.67 0.55 0.48 50.00 1.67 0.55 0.48

SR 50.00 22.37 15.74 11.97 50.00 22.37 15.74 11.97

S 100 24.03 16.29 12.45 100 24.03 16.29 12.45
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4.1 Evaluation criteria

Algorithms are evaluated with a score that is composed of

two parts, SE and SR, both of which assign equal weights

to 10 and 20 dimensional results. SE is based on sums of

normalized error values, while SR is composed of sums of

ranks. Each score contributes 50% to the total Score, which

has a maximum value of 100.

Table 4 Ranks of all basic

algorithms with each

parameterized vector for 20 D

Alg Paramertized Vector (000) (001) (010) (011) (100) (101) (110) (111)

DE R 1.5 5.5 3.5 7.5 1.5 5.5 3.5 7.5

SE 50.00 33.23 30.42 25.92 50.00 33.23 30.42 25.92

SR 50.00 24.55 36.49 22.13 50.00 24.55 36.49 22.13

S 100.00 57.78 66.91 48.05 100.00 57.78 66.91 48.05

GSK R 1 3.5 6 7.5 2 3.5 5 7.5

SE 50.00 36.51 26.67 23.28 50.00 36.51 26.67 23.28

SR 50.00 23.94 23.44 17.86 47.87 23.94 24.46 17.86

S 100.00 60.44 50.11 41.13 97.87 60.44 51.12 41.13

GWO R 1.5 3.5 5.5 7.5 1.5 3.5 5.5 7.5

SE 50.00 37.60 0.64 0.63 50.00 37.60 0.64 0.63

SR 50.00 30.56 20.75 15.94 50.00 30.56 20.75 15.94

S 100.00 68.16 21.39 16.57 100.00 68.16 21.39 16.57

PSO R 2 4 6 8 1 3 5 7

SE 50.00 7.87 6.78 4.29 50.00 7.88 6.78 4.29

SR 47.30 18.42 18.04 13.06 50.00 18.82 18.42 13.06

S 97.30 26.30 24.82 17.35 100.00 26.69 25.20 17.35

TLBO R 2 4 6 7.5 1 3 5 7.5

SE 50.00 4.60 0.82 0.53 50.00 4.60 0.82 0.53

SR 45.00 23.38 16.51 13.04 50.00 24.00 16.82 13.04

S 95.00 27.98 17.33 13.57 100 28.60 17.64 13.57

Table 5 Comparative results of

basic algorithm for each

parameterized vector in case of

10 dimensions

(000) (001)

Alg DE GSK GWO PSO TLBO Alg DE GSK GWO PSO TLBO

R 3 5 1 4 2 R 2 4 3 5 1

SE 0.28 0.14 50.00 0.21 2.15 SE 49.30 28.46 50.00 22.23 41.81

SR 41.38 33.33 46.15 34.29 50.00 SR 39.22 36.36 26.32 25.64 50.00

S 41.66 33.47 96.15 34.49 52.15 S 88.52 64.83 76.32 47.88 91.81

(010) (011)

R 1 4 5 2 3 R 1 4 5 3 2

SE 50.00 18.01 9.56 49.97 41.72 SE 49.15 19.45 10.23 44.49 50.00

SR 50.00 35.00 21.88 38.89 43.75 SR 50.00 34.21 20.74 31.45 40.63

S 100.00 53.01 31.43 88.86 85.47 S 99.15 53.66 30.98 75.94 90.63

(100) (101)

R 3 5 1 4 2 R 2 4 3 5 1

SE 0.28 0.14 50.00 0.21 2.15 SE 49.30 28.46 50.00 22.23 41.81

SR 41.38 33.33 46.15 34.29 50.00 SR 39.22 36.36 26.32 25.64 50.00

S 41.66 33.47 96.15 34.49 52.15 S 88.52 64.83 76.32 47.88 91.81

(110) (111)

R 1 4 5 2 3 R 1 4 5 3 2

SE 50.00 18.01 9.56 49.97 41.72 SE 49.15 19.45 10.23 44.49 50.00

SR 50.00 35.00 21.88 38.89 43.75 SR 50.00 34.21 20.74 31.45 40.63

S 100.00 53.01 31.43 88.86 85.47 S 99.15 53.66 30.98 75.94 90.63

Neural Computing and Applications

123



In particular, SE begins as an average of 2 sums of

normalized functional error values:

SNE ¼ 0:5
X8

m¼1

X10

i¼1

ne10Di;m þ 0:5
X8

m¼1

X10

i¼1

ne20Di;m ð2Þ

where ne is an algorithm’s normalized error value for a

given function, configuration and dimension and SNE is

the average of all normalized error values over all func-

tions, configurations and dimensions. For this competition,

ne is defined as:

ne ¼ f ðxbestÞ � f ðx�Þ
f ðxbestÞmax � f ðx�Þ ð3Þ

where f ðxbestÞ is the algorithm’s best result out of 30 trials,

f ðx�Þ is the function’s known optimal value and f ðxbestÞmax
is the largest f ðxbestÞ among all algorithms for the given

function/dimension combination. Once SNE has been

determined for all algorithms, SE is computed as:

SE ¼
 
1� SNE � SNEmin

SNE

!
� 50 ð4Þ

where SNEmin is the minimal sum of normalized errors

among all algorithms. SR1 begins as an average of 2 sums

of ranks:

SR1 ¼ 0:5
X8

m¼1

X10

i¼1

rank10Di;m þ 0:5
X8

m¼1

X10

i¼1

rank20Di;m ð5Þ

where rank is the algorithm’s rank among all algorithms for

a given function, configuration and dimension that is based

on its mean error value (not normalized). Once SR has

been determined for all algorithms, SR is computed as:

SR ¼
 
1� SR1� SR1min

SR

!
� 50 ð6Þ

where SR1min is the minimal sum of ranks among all

algorithms. The final Score is the sum of SE and SR:

Score ¼ SE þ SR ð7Þ

The entries will be ranked based on the score.

Also, as the results in this paper were presented as best,

medium, maximum, average and standard deviation values

for each problem for the same number of runs,

Table 6 Comparative results of

basic algorithm for each

parameterized vector in case of

20 dimensions

(000) (001)

Alg DE GSK GWO PSO TLBO Alg DE GSK GWO PSO TLBO

R 4 3 2 5 1 R 4 3 1 5 2

SE 2.95 3.08 16.81 4.71 50.00 SE 11.14 13.04 50.00 9.04 19.63

SR 35.61 36.72 50.00 31.76 47.96 SR 42.86 50.00 34.78 30.77 48.98

S 38.56 39.80 66.81 36.47 97.96 S 54.00 63.04 84.78 39.81 68.61

(010) (011)

R 3 4 5 1 2 R 3 2 5 4 1

SE 31.33 30.33 13.88 50.00 48.15 SE 33.58 34.07 16.30 38.21 50.00

SR 50.00 48.08 26.60 49.02 47.17 SR 50.00 50.00 25.00 37.10 42.59

S 81.33 78.41 40.48 99.02 95.32 S 83.58 84.07 41.30 75.31 92.59

(100) (101)

R 4 3 2 5 1 R 4 3 1 5 2

SE 2.95 3.08 16.81 4.71 50.00 SE 11.14 13.04 50.00 9.11 19.63

SR 35.61 36.72 50.00 31.76 47.96 SR 42.86 50.00 34.78 30.77 48.98

S 38.56 39.80 66.81 36.47 97.96 S 54.00 63.04 84.78 39.88 68.61

(110) (111)

R 3 4 5 1 2 R 3 2 5 4 1

SE 31.33 30.33 13.88 50.00 48.15 SE 33.58 34.07 16.30 38.21 50.00

SR 50.00 48.08 26.60 49.02 47.17 SR 50.00 50.00 25.00 37.10 42.59

S 81.33 78.41 40.48 99.02 95.32 S 83.58 84.07 41.30 75.31 92.59

Table 7 Overall ranking of all basic algorithms

Algorithms R SE RS S

DE 2 33.34803 47.67157 81.0196

TLBO 1 50 50 100

GSK 3 26.4721 42.84141 69.31351

GWO 5 24.10357 31.37097 55.47453

PSO 4 32.26599 36.76749 69.03347
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nonparametric tests such as Friedman ranking test can be

used to compare the competing algorithms.

4.2 Results of basic algorithms

This section describes the performance of all basic algo-

rithms on the CEC2021 benchmark functions. The statis-

tical results of all algorithms are given in Tables S1-S5 in

the supplementary file. Tables 3, 4, 5 and 6 show the result

for the above-mentioned criteria. Table 3 presents the

obtained rank, evaluation scores (SE and SR) and the total

score of each algorithm for each parametrized vector in

case of 10 dimensions. Table 3 shows that DE, GSK and

PSO algorithm get first rank in case of basic function or

when there is no parametrized vector. GWO and TLBO

algorithms perform similar in case of basic function and

when only bias operator is applied. Moreover, when the

three binary operators are applied simultaneously, DE and

PSO algorithms achieve the last rank. This implies this

operator has significant effect on the both algorithms.

Similarly, in case of GSK, GWO and TLBO algorithms,

the effect of bias, shift and rotation operators (all of three

i.e. (111)) and shift and rotation (both i.e. (110)) are same,

Table 8 Average Rankings of

the algorithms based on the

Friedman Ranking test

Dimension Algorithms (000) (001) (010) (011) (100) (101) (110) (111)

10D DE 2.9 2.55 2.1 1.95 2.9 2.55 2.1 1.95

GSK 3.6 2.75 3 2.85 3.6 2.75 3 2.85

GWO 2.6 3.8 4.8 4.7 2.6 3.8 4.8 4.7

PSO 3.5 3.9 2.7 3.1 3.5 3.9 2.7 3.1

TLBO 2.4 2 2.4 2.4 2.4 2 2.4 2.4

20D DE 3.3 2.8 2.5 2.35 3.3 2.8 2.5 2.35

GSK 3.2 2.4 2.6 2.25 3.2 2.4 2.6 2.25

GWO 2.35 3.45 4.7 4.6 2.35 3.45 4.7 4.6

PSO 3.7 3.9 2.55 3.15 3.7 3.9 2.55 3.15

TLBO 2.45 2.45 2.65 2.65 2.45 2.45 2.65 2.65

A result in boldface indicates the best rank

Table 9 Ranks of all advanced algorithms with each parameterized vector for 10 D

Algo Parametrized vector (000) (001) (010) (011) (100) (101) (110) (111)

LSHADE R 2 3 5 8 1 6 4 7

SE 48.87 39.43 27.84 21.12 50.00 35.19 26.81 23.02

SR 48.04 24.26 31.01 18.28 50.00 22.07 33.56 20.08

S 96.91 63.69 58.85 39.40 100.00 57.26 60.37 43.11

AGSK R 1 8 3.5 5 2 7 3.5 6

SE 50.00 15.78 31.86 20.04 50.00 15.78 31.86 20.04

SR 50.00 20.87 32.43 19.67 46.15 21.24 32.43 19.67

S 100.00 36.64 64.29 39.72 96.15 37.01 64.29 39.72

EBOwithCMAR R 1 4 6 8 2 3 5 7

SE 50.00 27.26 23.13 20.25 49.15 35.61 24.20 19.94

SR 50.00 26.80 28.26 21.14 41.94 29.89 29.55 21.85

S 100.00 54.06 51.39 41.38 91.08 65.50 53.75 41.79

IMODE R 1.5 4 6 8 1.5 3 5 7

SE 50.00 49.81 12.47 7.09 50.00 49.93 12.92 7.34

SR 50.00 31.51 22.33 16.20 50.00 32.39 21.90 17.16

S 100.00 81.31 34.80 23.28 100.00 82.32 34.82 24.51

ELSHADE_SPACMA R 1 4 6 7 2 3 5 8

SE 48.96 34.84 18.77 13.33 50.00 37.80 18.88 13.34

SR 50.00 27.78 29.41 18.52 46.30 29.07 30.12 18.25

S 98.96 62.62 48.18 31.85 96.30 66.87 49.00 31.59
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as the algorithms achieve same rank in the both parame-

terized vectors.

Although in case of 20 dimensions, Table 4 shows that

PSO and TLBO algorithm get the first rank when the bias

operator is applied. PSO algorithm has significantly effect

of shift and rotation operator simultaneously whereas,

TLBO algorithm has similar effect of shift and rotation

operator (011) and bias, shift and rotation operators (111)

simultaneously. It performs similar in both the cases. DE

and GWO algorithm perform similar in case of basic

function and only bias operator. GSK algorithm get the first

rank for basic functions.

According to (ii) criteria, the comparison is made among

the algorithms for each parameterized vector. In Table 5,

the comparative results are shown for dimension 10. It can

be observed that, GWO algorithm outperforms others in

case of basic function and only bias operator. TLBO

algorithm gets the first position for only rotation operator

(001) and bias and rotation operator (101). DE algorithm

obtains first rank in 4 out of total 8 cases and the total score

is almost equal to 100. Moreover, DE algorithm is at the

second place in 2 cases ((001) and (101)). Although in case

of 20 dimensions, TLBO algorithm obtains the first rank in

4 cases ((000), (011), (100), and (111)) and in the other

cases it is at the second place only. The algorithm obtains

total score above 90 in 6 out of 8 cases. It implies that in

the higher dimensions TLBO algorithm performs better

than other algorithms. When the three operators (bias, shift

and rotation) has been applied to the basic function, TLBO

algorithm outperforms others and the worst performance is

of GWO algorithm. The total score obtained by GWO

algorithm is 41.30 which is very less.

The overall comparison is made among basic algorithms

and among advanced algorithms. Table 7 shows the overall

comparative results obtained by all algorithms. In the basic

algorithms, TLBO performs better than other basic algo-

rithms in each parameterized vector. It gets the first rank

and DE, GSK, PSO and GWO are come to next places. The

score of DE algorithm which got the second rank, it score

is only 81.01 out of 100.

Table 8 presents the results obtained from the basic

algorithms DE, GSK, GWO, PSO and TLBO algorithms

based on the Friedman ranking test. For the 10D test

problems, DE algorithm obtained the best rank for the

problem with shift, shift and rotation, bias and shift and the

ones with bias, shift and rotation operators, while TLBO

algorithm achieve the best rank for problems with other

operators.

For the 20D test problems, DE obtained the best rank for

the problems with shift and the ones with bias and shift

operators. GWO achieved the best rank for the test

Table 10 Ranks of all advanced algorithms with each parameterized vector for 20 D

Algo Parametrized Vector (000) (001) (010) (011) (100) (101) (110) (111)

LSHADE R 2 6 3 7 1 5 4 8

SE 49.93 25.86 30.05 19.55 50.00 27.73 29.61 18.76

SR 50.00 27.18 37.84 21.71 50.00 28.28 35.90 22.40

S 99.93 53.05 67.89 41.25 100.00 56.01 65.50 41.16

AGSK R 1 5 3 7.5 2 6 4 7.5

SE 50.00 14.46 17.60 10.05 50.00 14.04 17.39 10.05

SR 50.00 23.79 33.11 18.85 48.04 22.48 33.11 18.85

S 100.00 38.24 50.71 28.89 98.04 36.52 50.50 28.89

EBOwithCMAR R 1 6 3 8 2 4 5 7

SE 50.00 37.75 35.63 24.66 47.24 42.17 35.46 29.42

SR 50.00 26.21 39.13 23.68 43.55 27.27 29.03 21.43

S 100.00 63.96 74.76 48.35 90.78 69.44 64.49 50.85

IMODE R 2 4 5 8 1 3 6 7

SE 50.00 45.85 9.70 5.43 49.53 48.37 10.19 5.67

SR 48.00 30.38 25.00 16.22 50.00 33.80 24.00 18.75

S 98.00 76.23 34.70 21.64 99.53 82.17 34.19 24.42

ELSHADE_SPACMA R 2 3 6 7 1 4 5 8

SE 50.00 35.65 23.65 15.16 48.84 35.53 23.74 15.12

SR 46.67 28.57 35.44 22.22 50.00 28.57 36.36 22.22

S 96.67 64.22 59.10 37.38 98.84 64.10 60.11 37.34
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problems with basic and bias, while GSK obtained the best

rank for the remaining categories.

4.3 Results of Advanced Algorithms

This section includes the performance of advance algo-

rithms on CEC2021 benchmark functions. The statistical

results of all algorithms are given in Tables S6-S10 in the

supplementary file. Tables 9, 10, 11 and 12 show the results

obtained by the advanced algorithms. Table 9 shows the

rank obtained by the algorithms for each parameterized

vector for dimension 10. LSHADE algorithm performs

better when the bias operator is applied. It obtains the first

rank in this case. There is a significant effect of shift and

rotation operators on LSHADE algorithm therefore, it did

not perform well in (011) case. AGSK and EBOw-

ithCMAR get first rank only in the basic function means

that no operator has been applied, whereas the only rotation

operator has significant effect on AGSK algorithm. The

combination of shift and rotation operators affect the

EBOwithCMAR algorithm. IMODE algorithm perform

similar in case of basic functions and with the bias oper-

ator. Therefore, it obtains the same rank in the both the

cases. ELSHADE_SPACMA algorithm gets the first rank

in the basic function only and did not perform well in case

of all three operators.

Table 10 presents the result of advanced algorithms of

dimensions 20. When the dimension increases, ELSHA-

DE_SPACMA and IMODE algorithms obtain the first rank

in the (100) case only. AGSK and EBOwithCMAR algo-

rithms outperform in the only basic functions and

LSHADE algorithm gets first rank in case of the inclusion

of bias operator only. According to Table 10, LSHADE

and ELSHADE_SPACMA algorithms have the significant

effect of all three operators simultaneously.

Now the comparison is made among the advanced

algorithms for each operator. Table 11 presents the

obtained rank and score for the dimensions 10. It shows

that IMODE algorithm obtains first rank in 6 out of 8 cases

and EBOwithCMAR algorithm get first rank in rest of two

cases. When the only shift and rotation operator (011) and

three operator (111) are applied, IMODE does not perform

better. However, in case of 20 dimensions, IMODE algo-

rithms outperforms other advanced algorithms in 5 cases.

The results are depicted in Table 12. AGSK algorithm

obtains first rank in only 1 case that is (010) and EBOw-

ithCMAR algorithm gets first rank in (011) and (111) case.

For the overall comparison, the results are shown in

Table 13. IMODE algorithm outperforms other in the

advanced algorithm category and obtains the first place

among others. ELSHADE_SPACMA, LSHAEDE,

EBOwithCMAR and AGK algorithm take place. It can be

said that TLBO and IMODE algorithm are the most effi-

cient and capable algorithm among the mentioned algo-

rithms to solve the CEC2021 benchmark problems.

Table 14 presents the results obtained from the advanced

algorithms LSHADE, AGSK, EBOwithCMAR, IMODE

and LSHADE_SPACMA algorithms based on the Fried-

man ranking test. For the 10D test problems, EBOw-

ithCMAR algorithm obtained the best rank for the problem

with (011) and (111) operators, while IMODE algorithm

achieved the best rank for the remaining problems.

Table 13 Overall ranking of all advanced algorithms

Algorithms R SE RS S

LSHADE 3 39.49021 39.58333 79.07354

AGSK 5 36.90186 37.3442 74.24606

IMODE 1 50 50 100

EBOwithCMAR 4 38.40685 40.11329 78.52013

ELSHADE_SPACMA 2 46.06877 38.07429 84.14306

Table 14 Average Rankings of

the algorithms based on the

Friedman Ranking test

Dimension Algorithms (000) (001) (010) (011) (100) (101) (110) (111)

10D LSHADE 3.2 3.4 2.7 2.9 3.05 3.6 2.7 2.75

AGSK 3.05 4.1 2.6 3.3 3.1 4.1 2.6 3.15

EBOwithCMAR 3.65 3 3.6 2.05 3.85 2.9 3.7 2.25

IMODE 1.9 1.8 2.2 3.25 1.85 1.8 2.3 3.2

LSHADE_SPACMA 3.2 2.7 3.9 3.5 3.15 2.6 3.7 3.65

20D LSHADE 3.25 3.35 2.9 2.7 3.25 3.4 2.9 2.8

AGSK 2.95 3.9 2.85 3.55 2.95 3.9 2.7 3.65

EBOwithCMAR 3.55 2.95 2.95 2.25 3.65 2.8 3.35 2.15

IMODE 2.05 1.9 2.85 3.7 2.05 2 2.75 3.3

LSHADE_SPACMA 3.2 2.9 3.45 2.8 3.1 2.9 3.3 3.1

A result in boldface indicates the best rank
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For the 20D test problems, AGSK obtained the best rank

for the problems with (010), and (110) problems. EBOw-

ithCMAR achieved the best rank based on the Friedman

test for (011) and (111) test problems, while the IMODE

attained the best rank for the remaining test functions.

4.4 Results and discussion of CEC2021
algorithms

In this section, the performance of the algorithms that

participated in the CEC2021 is presented and analyzed.

The list of the algorithms are below:

1. SOMA-CLP: Self-organizing Migrating Algorithm

with CLustering-aided migration and adaptive Pertur-

bation vector control [30];

2. MLS-LSHADE: A Multi-start Local Search Algorithm

with L-SHADE;

3. L-SHADE-OrdRw: LSHADE based on ordered and

roulette-wheel-based mutation.

4. NL-SHADE-RSP: LSHADE algorithm with Adaptive

Archive and Selective Pressure [31].

5. j21: Self-adaptive Differential Evolution Algorithm

with Population Size Reduction for Single Objective

Bound-Constrained Optimization [32].

Table 15 Ranks for all

CEC2021’s algorithms on each

parameterized vector for 10D

Alg Criteria 000 001 010 011 100 101 110 111

APGSK_IMOSE R 1.5 3 5.5 7.5 1.5 4 5.5 7.5

SE 50.00 50.00 0.00 0.00 50.00 50.00 0.00 0.00

SR 50.00 47.46 25.23 21.05 50.00 45.90 25.23 21.05

S 100.00 97.46 25.23 21.05 100.00 95.90 25.23 21.05

DEDMNA R 2 6 3 7.5 1 5 4 7.5

SE 50.00 4.86 20.85 4.63 50.00 4.86 19.00 4.63

SR 39.80 18.93 22.41 15.23 50.00 19.31 22.94 15.23

S 89.80 23.80 43.26 19.86 100.00 24.16 41.94 19.86

MadDE R 1.5 3 5 8 1.5 4 6 7

SE 50.00 50.00 0.00 0.00 50.00 50.00 0.00 0.00

SR 50.00 47.41 25.94 19.93 50.00 45.83 24.12 20.52

S 100.00 97.41 25.94 19.93 100.00 95.83 24.12 20.52

RB_IPOP_CMAES_PPMF R 1 3 8 7 2 4 5 6

SE 39.99 34.65 4.51 6.23 50.00 29.67 5.76 6.03

SR 50.00 46.55 20.45 22.69 39.71 43.55 24.55 23.08

S 89.99 81.20 24.97 28.92 89.71 73.22 30.31 29.11

J21 R 1 7 3 8 2 5 4 6

SE 50.00 0.00 0.01 0.00 15.01 0.00 0.01 0.01

SR 46.08 19.75 30.92 19.58 50.00 21.17 30.13 19.92

S 96.08 19.75 30.94 19.59 65.01 21.17 30.14 19.92

NL-SHADE-RSP R 1 5 3 7 2 6 4 8

SE 50.00 1.01 8.58 1.11 21.99 0.88 1.56 0.88

SR 50.00 21.63 26.47 18.60 50.00 19.40 27.78 18.29

S 100.00 22.65 35.05 19.70 71.99 20.27 29.34 19.18

SOMA-CLP R 2 5 4 7 1 8 3 6

SE 22.91 3.28 6.23 2.10 50.00 3.10 7.74 2.83

SR 43.15 30.58 44.37 28.64 43.15 25.61 50.00 30.29

S 66.06 33.87 50.60 30.73 93.15 28.71 57.74 33.12

MLS-LSHADE R 3.5 2 6 8 3.5 1 5 7

SE 0.00 0.00 0.00 0.00 0.00 50.00 0.00 0.00

SR 37.50 50.00 21.43 16.78 37.50 50.00 21.82 18.32

S 37.50 50.00 21.43 16.78 37.50 100.00 21.82 18.32

L-SHADE-OrdRW R 2.5 4 5.5 8 1 2.5 5.5 7

SE 50.00 50.00 0.00 0.00 50.00 50.00 0.00 0.00

SR 44.55 42.98 21.88 17.38 50.00 44.55 21.88 17.63

S 94.55 92.98 21.88 17.38 100.00 94.55 21.88 17.63
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6. RB-IPOP-CMAES: A New Step-Size Adaptation Rule

for CMA-ES Based on the Population Midpoint Fitness

[33].

7. MadDE: Improved DE through Bayesian Heperparam-

eter Optimization [34].

8. APGSK-IMODE: Gaining-Sharing Knowledge Algo-

rithm with Adaptive Parameters Hybrid with Improved

Multi-operator DE algorithm [35]

9. DEDMNA: DE with Distance-based Mutation-selec-

tion [36].

The detailed of the obtained results (Best, Worst, Median,

Mean and Std) form the above-mentioned algorithms for

10D and 20D are presented at the Supplementary material

file in Table S11-S19.

Tables 15, 16, 17 and 18 present the results produced

from the CEC2021’s algorithms. Table 15 presents the rank

obtained from the competing algorithms for every param-

eterized vector for the 10D problems. APGSK_IMODE

and MadDE algorithms obtain the first rank for basic and

bias cases. They also gives better results for rotation and

when the combination of bias and rotation are applied.

Their performance is affected when the shift operator is

applied.

Table 16 Ranks for all

CEC2021’s algorithms on each

parameterized vector for 20D

Alg Criteria 000 001 010 011 100 101 110 111

APGSK_IMOSE R 2.5 2.5 5.5 7 2.5 2.5 5.5 8

SE 50.00 50.00 0.00 0.00 50.00 50.00 0.00 0.00

SR 50.00 50.00 29.00 20.57 50.00 50.00 29.00 19.73

S 100.00 100.00 29.00 20.57 100.00 100.00 29.00 19.73

DEDMNA R 2 5 4 8 1 6 3 7

SE 50.00 4.12 7.33 2.84 49.96 4.12 7.34 2.84

SR 43.10 26.04 31.25 19.23 50.00 25.00 32.89 19.23

S 93.10 30.16 38.58 22.07 99.96 29.12 40.23 22.07

MadDE R 2.5 2.5 5 8 2.5 2.5 6 7

SE 50.00 50.00 0.00 0.00 50.00 50.00 0.00 0.00

SR 50.00 50.00 28.71 20.28 50.00 50.00 28.16 20.57

S 100.00 100.00 28.71 20.28 100.00 100.00 28.16 20.57

RB_IPOP_CMAES_PPMF R 2 3 5 7 4 1 6 8

SE 44.74 27.92 8.91 8.30 28.63 50.00 7.27 7.98

SR 43.65 42.31 26.44 23.31 36.67 50.00 25.46 20.83

S 88.39 70.23 35.35 31.60 65.29 100.00 32.73 28.81

J21 R 2 5 3 8 1 6 4 7

SE 50.00 2.19 4.25 1.09 47.46 1.75 4.26 1.16

SR 46.23 23.56 35.51 18.28 50.00 23.56 31.82 18.85

S 96.23 25.75 39.76 19.37 97.46 25.31 36.08 20.01

NL-SHADE-RSP R 2 6 3 7 1 5 4 8

SE 8.83 0.18 0.24 0.11 50.00 0.23 0.31 0.12

SR 50.00 21.00 25.93 15.79 50.00 21.88 24.14 15.11

S 58.83 21.18 26.17 15.90 100.00 22.11 24.45 15.22

SOMA-CLP R 1 5 4 8 2 6 3 7

SE 50.00 12.76 13.14 7.30 41.38 13.14 14.23 7.06

SR 50.00 25.48 36.30 20.54 46.49 22.84 40.77 21.54

S 100.00 38.24 49.44 27.84 87.87 35.99 55.00 28.60

MLS-LSHADE R 2 1 5 7 3 4 6 8

SE 0.00 50.00 0.00 0.00 0.00 0.00 0.00 0.00

SR 45.38 50.00 31.05 23.98 42.75 38.31 30.41 21.85

S 45.38 100.00 31.05 23.98 42.75 38.31 30.41 21.85

L-SHADE-OrdRW R 4 1 5 7 2.5 2.5 6 8

SE 50.00 50.00 0.00 0.00 50.00 50.00 0.00 0.00

SR 44.64 50.00 22.52 18.38 45.45 45.45 21.37 17.86

S 94.64 100.00 22.52 18.38 95.45 95.45 21.37 17.86
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A comparison is conducted among the CEC2021’s

algorithms for every parameterized operator. Table 17

shows the obtained rank and score for problems with 10

variables. The results show that APGSK_IMODE achieves

the first rank in 5 cases out of 8, DEDMNA obtains the first

in 2 cases while NL-SHADE-RSP obtains the first rank in

the remaining case. APGSK_IMODE is ranked 4th when

used to solve (010) and (110) and 3rd when all the three

operators are used (111).

Table 18 shows the obtained rank and score for prob-

lems with 20 variables. The results show that APGSK_I-

MODE and MadDE obtain the first rank in 4 cases out of 8.

However, APGSK_IMODE obtains better rank than

MadDE in the other 4 cases. J21 and NL-SHADE-RSP

obtain the first rank in 2 and 2 cases out of 8 cases,

respectively.

5 Conclusions and future directions

This paper presents the performance of various meta-

heuristic algorithms on CEC 2021 benchmark functions.

The benchmark objective functions are parameterized by

including the different combinations of bias, shift and

Table 17 Comparative results of CEC2021’s algorithms for each parameterized vector in case of 10D problems

Alg Criteria DEDMNA APGSK_IMODE MadDE RB_IPOP_CMAES_PPMF j21 NL-

SHADE-

RSP

SOMA-

CLP

MLS-

LSHADE

L-

SHADE-

OrdRW

(000) R 6 1.5 1.5 9 7 5 8 4 3

SE 0.00 50.00 50.00 0.00 0.00 0.00 0.00 0.00 50.00

SR 32.84 50.00 50.00 20.94 28.39 36.02 25.00 37.64 47.86

S 32.84 100.00 100.00 20.94 28.39 36.02 25.00 37.64 97.86

(001) R 6 1 2 8 7 5 9 4 3

SE 0.00 50.00 50.00 0.00 0.00 0.00 0.00 0.00 50.00

SR 25.00 50.00 49.14 20.21 20.65 25.45 17.92 45.97 48.31

S 25.00 100.00 99.14 20.21 20.65 25.45 17.92 45.97 98.31

(010) R 1 4 6 9 3 2 7 5 8

SE 50.00 19.20 7.18 1.95 45.44 40.87 8.26 14.26 3.46

SR 50.00 30.12 27.17 15.24 30.12 41.67 20.16 25.77 17.01

S 100.00 49.33 34.36 17.20 75.56 82.53 28.42 40.03 20.47

(011) R 4 1 5 9 2 3 7 6 8

SE 36.71 47.45 24.80 9.81 50.00 30.98 19.23 19.14 13.39

SR 41.78 44.20 32.45 21.33 33.15 50.00 23.46 26.99 24.40

S 78.49 91.66 57.25 31.14 83.15 80.98 42.70 46.14 37.79

(100) R 6 2 2 9 7 5 8 4 2

SE 0.00 50.00 50.00 0.00 0.00 0.00 0.00 0.00 50.00

SR 33.33 50.00 50.00 21.25 28.81 36.56 25.37 38.20 50.00

S 33.33 100.00 100.00 21.25 28.81 36.56 25.37 38.20 100.00

(101) R 5 1.5 3 8 7 6 9 4 1.5

SE 0.00 50.00 50.00 0.00 0.00 0.00 0.00 50.00 50.00

SR 25.45 50.00 48.31 20.50 20.65 24.57 17.92 45.24 50.00

S 25.45 100.00 98.31 20.50 20.65 24.57 17.92 95.24 100.00

(110) R 1 4 6 9 2 3 7 5 8

SE 50.00 9.08 6.70 2.04 45.12 7.60 9.88 15.71 3.42

SR 50.00 30.77 25.26 14.91 25.81 33.33 21.82 24.00 16.78

S 100.00 39.85 31.96 16.95 70.92 40.93 31.70 39.71 20.21

(111) R 4 3 6 9 2 1 7 5 8

SE 24.53 27.00 15.25 5.07 50.00 41.88 14.94 21.23 7.77

SR 38.89 40.91 30.88 22.03 36.63 50.00 26.69 28.90 26.03

S 63.42 67.91 46.14 27.10 86.63 91.88 41.63 50.13 33.80
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rotation operators. These parameterized functions are

evaluated on the some basic and advanced meta-heuristic

algorithms. The performance of the meta-heuristic algo-

rithms are based on the evaluation metric which includes

the score. The score is composed of two parts, i.e. sum of

normalized error values and sum of the ranks and each

score contributes 50% to the total score of 100. 10

benchmark functions are considered with 10 and 20

dimensions. Two types of meta-heuristic algorithms, basic

and advanced, are considered which includes different

algorithms. The obtained results of these algorithms state

that Teaching learning-based optimization algorithm

outperforms other in case of basic algorithm. It gets the

first rank among others for overall comparison. It presents

the best results with the bias operator in case of 20

dimensions. Although it depicts that it has significant effect

for both parametrized vectors i.e. shift and rotation oper-

ator (011) and bias, shift and rotation operators (111).

Moreover, IMODE is one of the advanced algorithms

which performs better than others and place itself at the

first position. It performs best with the case of bias operator

only for 20 dimensions. IMODE algorithm presents the

best results among other algorithms in case of (000), (001),

(010), (100), (101) and (110) for 10 dimensions. Moreover,

Table 18 Comparative results of CEC2021’s algorithms for each parameterized vector in case of 20D problems

Alg Criteria DEDMNA APGSK_IMODE MadDE RB_IPOP_CMAES_PPMF j21 NL-

SHADE-

RSP

SOMA-

CLP

MLS-

LSHADE

L-

SHADE-

OrdRW

(000) R 6 1.5 1.5 9 7 4 8 5 3

SE 0.00 50.00 50.00 0.00 0.00 0.00 0.00 0.00 50.00

SR 30.77 50.00 50.00 19.51 29.63 37.21 22.86 32.00 45.71

S 30.77 100.00 100.00 19.51 29.63 37.21 22.86 32.00 95.71

(001) R 6 2 2 8 7 5 9 4 2

SE 0.00 50.00 50.00 0.00 0.00 0.00 0.00 50.00 50.00

SR 22.92 50.00 50.00 18.84 22.18 23.31 17.63 38.73 50.00

S 22.92 100.00 100.00 18.84 22.18 23.31 17.63 88.73 100.00

(010) R 3 4 5 9 1 2 6 7 8

SE 24.61 21.09 16.00 7.62 50.00 25.18 18.56 14.19 12.28

SR 32.24 26.92 27.22 15.12 31.82 50.00 21.88 24.75 17.01

S 56.84 48.01 43.23 22.74 81.82 75.18 40.44 38.93 29.29

(011) R 4 6 5 9 3 1 7 2 8

SE 48.30 35.48 36.79 18.24 41.02 50.00 33.32 47.18 30.32

SR 30.50 31.12 32.45 22.43 38.61 50.00 23.64 39.61 24.21

S 78.80 66.60 69.24 40.66 79.63 100.00 56.97 86.79 54.52

(100) R 6 1.5 1.5 9 7 4 8 5 3

SE 0.00 50.00 50.00 0.00 0.00 0.00 0.00 0.00 50.00

SR 31.86 50.00 50.00 19.82 30.09 36.93 23.21 32.50 47.79

S 31.86 100.00 100.00 19.82 30.09 36.93 23.21 32.50 97.79

(101) R 6 1.5 1.5 8 7 5 9 4 3

SE 0.00 50.00 50.00 0.00 0.00 0.00 0.00 0.00 50.00

SR 22.08 50.00 50.00 18.66 21.03 22.46 16.99 34.87 47.32

S 22.08 100.00 100.00 18.66 21.03 22.46 16.99 34.87 97.32

(110) R 3 4 5 9 1 2 6 7 8

SE 24.73 21.20 15.50 5.97 50.00 27.71 20.42 13.95 12.21

SR 36.96 29.31 28.65 15.55 31.48 50.00 23.39 23.83 17.83

S 61.69 50.51 44.15 21.52 81.48 77.71 43.82 37.78 30.04

(111) R 3 4 5 9 2 1 7 6 8

SE 47.38 41.54 35.90 17.87 42.52 50.00 32.03 36.17 29.46

SR 29.50 32.42 34.30 21.38 39.33 50.00 22.52 32.78 22.69

S 76.88 73.96 70.20 39.25 81.86 100.00 54.55 68.95 52.16
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It gets the total score of 100 for (000), (001), (100), (101),

(110) parameterized vectors in case of 20 dimensions.

Among the algorithms that participated in CEC2021

competitions, APGSK-IMODE obtains the best results for

both 10D and 20D.

This paper benefits to researchers to get the various

meta-heuristic algorithms under one roof. It presents the

results of the standard and advanced algorithms for 10

and 20 dimensions. It can be extended for the higher

dimensions such as 30, 50, 100, 500, and 1000. Besides

the mentioned algorithms, more algorithms must be

included to check the performance on benchmark func-

tions. Moreover, the other evaluation criteria or perfor-

mance metrices must be developed to evaluate the

performance of the algorithms. The interested researchers

can be considered these objectives for the further study.
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Orsay, France: Université Paris Sud, Institut National de

Recherche en Informatique et en Automatique (INRIA) Futurs,
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