202 research outputs found

    Certification aspects of the fast gradient method for solving the dual of parametric convex programs

    Get PDF
    This paper examines the computational complexity certification of the fast gradient method for the solution of the dual of a parametric convex program. To this end, a lower iteration bound is derived such that for all parameters from a compact set a solution with a specified level of suboptimality will be obtained. For its practical importance, the derivation of the smallest lower iteration bound is considered. In order to determine it, we investigate both the computation of the worst case minimal Euclidean distance between an initial iterate and a Lagrange multiplier and the issue of finding the largest step size for the fast gradient method. In addition, we argue that optimal preconditioning of the dual problem cannot be proven to decrease the smallest lower iteration bound. The findings of this paper are of importance in embedded optimization, for instance, in model predictive contro

    Custom optimization algorithms for efficient hardware implementation

    No full text
    The focus is on real-time optimal decision making with application in advanced control systems. These computationally intensive schemes, which involve the repeated solution of (convex) optimization problems within a sampling interval, require more efficient computational methods than currently available for extending their application to highly dynamical systems and setups with resource-constrained embedded computing platforms. A range of techniques are proposed to exploit synergies between digital hardware, numerical analysis and algorithm design. These techniques build on top of parameterisable hardware code generation tools that generate VHDL code describing custom computing architectures for interior-point methods and a range of first-order constrained optimization methods. Since memory limitations are often important in embedded implementations we develop a custom storage scheme for KKT matrices arising in interior-point methods for control, which reduces memory requirements significantly and prevents I/O bandwidth limitations from affecting the performance in our implementations. To take advantage of the trend towards parallel computing architectures and to exploit the special characteristics of our custom architectures we propose several high-level parallel optimal control schemes that can reduce computation time. A novel optimization formulation was devised for reducing the computational effort in solving certain problems independent of the computing platform used. In order to be able to solve optimization problems in fixed-point arithmetic, which is significantly more resource-efficient than floating-point, tailored linear algebra algorithms were developed for solving the linear systems that form the computational bottleneck in many optimization methods. These methods come with guarantees for reliable operation. We also provide finite-precision error analysis for fixed-point implementations of first-order methods that can be used to minimize the use of resources while meeting accuracy specifications. The suggested techniques are demonstrated on several practical examples, including a hardware-in-the-loop setup for optimization-based control of a large airliner.Open Acces

    Stabilizing Linear Model Predictive Control Under Inexact Numerical Optimization

    Full text link

    Distributed Control Enforcing Group Sparsity in Smart Grids

    Get PDF
    In modern smart grids, charging of local energy storage devices is coordinated on a residential level to compensate the volatile aggregated power demand on the time interval of interest. However, this results in a perpetual usage of all batteries which reduces their lifetime. We enforce group sparsity by using an â„“p,q\ell_{p,q}-regularization on the control to counteract this phenomenon. This leads to a non-smooth convex optimization problem, for which we propose a tailored Alternating Direction Method of Multipliers algorithm. We elaborate further how to embed it in a Model Predictive Control framework. We show that the proposed scheme yields sparse control while achieving reasonable overall peak shaving by numerical simulations
    • …
    corecore