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Abstract: In modern smart grids, charging of local energy storage devices is coordinated within
the distribution grid to compensate the volatile aggregated power demand on the time interval of
interest. However, this results in a perpetual usage of all batteries which in return reduces their
lifetime. In this paper, we enforce group sparsity by using an �p,q-regularization on the control to
counteract this phenomenon. This leads to a non-smooth convex optimization problem, for which
a tailored Alternating Direction Method of Multipliers algorithm is proposed. Furthermore, the
algorithm is embedded in a Model Predictive Control framework. Numerical simulations show
that the proposed scheme yields sparse control while achieving reasonable overall peak shaving.
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1. INTRODUCTION

The energy transition comes along with a fundamental
transition of energy networks from centralized to decen-
tralized power generation. As a result, residential storage
devices have been installed in the grid to compensate the
volatile generation via renewable energies and the accom-
panied bidirectional power flow, see e.g. Stecca et al. (2020)
for an extensive review of the integration of batteries into
the distribution gird. This paradigm shift in energy supply
comes along with great optimization potential as discussed
in Lezhniuk et al. (2019); Atzeni et al. (2013); Bolognani
and Zampieri (2013). For instance, the integration of more
and more renewables aggravates the mismatch between
generation and demand forcing the grid operator to pro-
vide additional control energy, see Morstyn et al. (2018).
Hence, one of the main goals in smart grid optimization
is to coordinate the local energy storage devices at the
household level in such a way that this mismatch is miti-
gated as illustrated in Worthmann et al. (2015). In Hubert
and Grijalva (2011) the authors discuss the importance of
optimization algorithms on a residential level.

State-of-the-art method to tackle optimal control problems
in a receding horizon fashion is Model Predictive Control
(MPC), see e.g. Worthmann et al. (2015) for an MPC
approach in smart grids. Efficiently solving the inherent
large-scale optimization problem online is crucial for de-
signing a practical MPC scheme. To this end, distributed
optimization algorithms exploiting the network structure
have been widely applied (Boyd et al., 2011; Braun et al.,
2018; Houska et al., 2016). In practice, distributed algo-
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rithms can achieve optimality by solving local problems
in parallel and only exchanging certain data with a su-
perordinate unit. Thus, distributed optimization builds
a bridge between centralized and decentralized optimiza-
tion (Worthmann et al., 2015). A classical approach is
based on dual decomposition. A class of these techniques
use first-order methods to solve the corresponding dual
problem (Rantzer, 2009; Richter et al., 2011). Alterna-
tively, semi-smooth Newton methods are applied, which
require a line search sub-globalization routine (Frasch
et al., 2015). A centralized consensus variant of the Al-
ternating Direction Method of Multipliers (ADMM) has
been applied to solve a convex control problem in smart
grids in Braun et al. (2018). For an introduction to ADMM
we refer to Boyd et al. (2011); Hong and Luo (2017).
The approach in Braun et al. (2018) and related works,
however, enforces all subsystems within the grid to re-
peatedly charge and discharge their batteries. Studies have
shown that the lifespan of a battery decreases with the
number of (dis-)charging cycles, see e.g. Xu et al. (2017);
Ng et al. (2009) and the references therein. We aim to
counteract this so-called cycle aging by enforcing sparsity
of the optimal control.

Sparse optimal control has already been proposed to
reduce the use of batteries: In Salem et al. (2017) the
authors use an ultra sparse matrix rectifier for battery
charging while in Jain et al. (2018) an �1 penalty is applied
to enforce sparse communication of the linear quadratic
regulator. A Newton-type method proposed in Polyak and
Tremba (2019) was designed for solving a general sparse
optimal control problem. However, these methods do not
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authors use an ultra sparse matrix rectifier for battery
charging while in Jain et al. (2018) an �1 penalty is applied
to enforce sparse communication of the linear quadratic
regulator. A Newton-type method proposed in Polyak and
Tremba (2019) was designed for solving a general sparse
optimal control problem. However, these methods do not
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1. INTRODUCTION

The energy transition comes along with a fundamental
transition of energy networks from centralized to decen-
tralized power generation. As a result, residential storage
devices have been installed in the grid to compensate the
volatile generation via renewable energies and the accom-
panied bidirectional power flow, see e.g. Stecca et al. (2020)
for an extensive review of the integration of batteries into
the distribution gird. This paradigm shift in energy supply
comes along with great optimization potential as discussed
in Lezhniuk et al. (2019); Atzeni et al. (2013); Bolognani
and Zampieri (2013). For instance, the integration of more
and more renewables aggravates the mismatch between
generation and demand forcing the grid operator to pro-
vide additional control energy, see Morstyn et al. (2018).
Hence, one of the main goals in smart grid optimization
is to coordinate the local energy storage devices at the
household level in such a way that this mismatch is miti-
gated as illustrated in Worthmann et al. (2015). In Hubert
and Grijalva (2011) the authors discuss the importance of
optimization algorithms on a residential level.

State-of-the-art method to tackle optimal control problems
in a receding horizon fashion is Model Predictive Control
(MPC), see e.g. Worthmann et al. (2015) for an MPC
approach in smart grids. Efficiently solving the inherent
large-scale optimization problem online is crucial for de-
signing a practical MPC scheme. To this end, distributed
optimization algorithms exploiting the network structure
have been widely applied (Boyd et al., 2011; Braun et al.,
2018; Houska et al., 2016). In practice, distributed algo-

� The first two authors contributed equally.

rithms can achieve optimality by solving local problems
in parallel and only exchanging certain data with a su-
perordinate unit. Thus, distributed optimization builds
a bridge between centralized and decentralized optimiza-
tion (Worthmann et al., 2015). A classical approach is
based on dual decomposition. A class of these techniques
use first-order methods to solve the corresponding dual
problem (Rantzer, 2009; Richter et al., 2011). Alterna-
tively, semi-smooth Newton methods are applied, which
require a line search sub-globalization routine (Frasch
et al., 2015). A centralized consensus variant of the Al-
ternating Direction Method of Multipliers (ADMM) has
been applied to solve a convex control problem in smart
grids in Braun et al. (2018). For an introduction to ADMM
we refer to Boyd et al. (2011); Hong and Luo (2017).
The approach in Braun et al. (2018) and related works,
however, enforces all subsystems within the grid to re-
peatedly charge and discharge their batteries. Studies have
shown that the lifespan of a battery decreases with the
number of (dis-)charging cycles, see e.g. Xu et al. (2017);
Ng et al. (2009) and the references therein. We aim to
counteract this so-called cycle aging by enforcing sparsity
of the optimal control.

Sparse optimal control has already been proposed to
reduce the use of batteries: In Salem et al. (2017) the
authors use an ultra sparse matrix rectifier for battery
charging while in Jain et al. (2018) an �1 penalty is applied
to enforce sparse communication of the linear quadratic
regulator. A Newton-type method proposed in Polyak and
Tremba (2019) was designed for solving a general sparse
optimal control problem. However, these methods do not
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consider the scenario of numerous batteries incorporated
in a structured network as in our application.

In this paper, we exploit group sparsity by introducing
�p,1 regularization terms in order to extend the lifetime of
the batteries. Here, p ∈ {1, 2} denotes the choice of the
sparsity pattern. This �p,1 regularization was introduced
in Yuan and Lin (2006) in order to select grouped variables
for accurate prediction in statistical learning. The �p,1
regularization couples the control of each subsystem in
time, which differs from the classical additive control
regularization. The main advantage of group sparsity is
that in each time step some batteries remain unused
based on flexible weights. Updating these weights causes
all batteries to be used in an alternating fashion while
preserving a reasonable performance with respect to peak
shaving. Thus, the number of (dis-)charging cycles of each
battery is reduced and, hence, its lifespan is extended.
For rigorous convergence proofs we refer to literature as
such Boyd et al. (2011).

Section 2 recaps the basic model of residential energy sys-
tems. Here, for simplicity we concentrate on the problem
of power balance proposed in Worthmann et al. (2014) and
extend it in terms of sparsity. In Section 3 we elaborate
how to design and implement an ADMM based optimiza-
tion scheme to solve the underlying optimization problem
online in a distributed manner. Our numerical open-loop
results in Section 4 show the potential of this approach
to prolong the batteries’ lifespans while achieving a rea-
sonable overall performance. Moreover, we investigate the
closed-loop performance in an MPC scheme numerically.

Notation: Throughout this paper we use the notation
N = {1, 2, . . .} and N0 = N ∪ {0}. Furthermore, we denote
[m : n] := [m,n] ∩ N0 for m,n ∈ N0 with m ≤ n and 1� =
(1, 1, . . . , 1)� ∈ R� for � ∈ N; 0� is defined analogously.
The Kronecker product of two matrices A ∈ Rk×l and
B ∈ Rm×n is given by A⊗B = (aijB)i,j ∈ Rkm×ln.

2. PROBLEM FORMULATION

This section recaps the basic model of smart grids consist-
ing of residential energy systems, which are coordinated
by a grid operator in order to achieve an overall optimum
as described in Worthmann et al. (2014). Furthermore,
we introduce a regularization in order to establish group
sparsity with respect to the batteries and thus, prolong
their lifespans. At the end, the resulting optimal sparse
control problem is addressed as a distributed non-smooth
convex optimization problem.

2.1 Residential energy systems

Let us consider a smart grid with I, I ∈ N, residential
energy systems. Each system incorporates its load, power
generator, and battery serving as the energy storage de-
vice. As shown in Figure 1, the grid operator acts as a Cen-
tral Entity (CE) compensating the local power demands.

The i-th subsystem, i ∈ [1 : I], is described by

xi(n+ 1) = αixi(n) + T (βiu
+
i (n) + u−

i (n)) , (1a)

zi(n) = wi(n) + u+
i (n) + γiu

−
i (n) . (1b)

Fig. 1. Network of residential energy systems connected to
the grid operator.

State xi(n) and control inputs ui(n) =
(
u+
i (n) u−

i (n)
)�

denote the State of Charge (SoC) in kWh, and the charging
and discharging rate in kW at time instant n ∈ N0,
respectively. The output zi(n) denotes the power demand
in kW, and wi(n) is the net consumption without battery
usage, i.e. load minus generation in kW. The parameter
T > 0 represents the length of the time interval in h,
i.e., T = 0.5 corresponds to 30 min, while αi, βi, γi ∈ (0, 1]
model efficiencies with respect to self-discharge and energy
conversion, respectively.

The SoC and the (dis-)charging rate are subject to

0 ≤ xi(n) ≤ Ci , (2a)

ui ≤ u−
i (n) ≤ 0 , (2b)

0 ≤ u+
i (n) ≤ ui , (2c)

0 ≤ u−
i (n)

ui

+
u+
i (n)

ui
≤ 1 , (2d)

where Ci ≥ 0 denotes the battery capacity. Note that the
model description allows both charging and discharging
of a battery during one time step. In order to ensure
implementability of both box constraints (2b)–(2c), the
stronger condition (2d) is introduced. Furthermore, we
allow zi to be negative, i.e., the subsystems are able to
feed superfluous power to the grid. Subsystems without
generation or storage device are covered by setting their
generation or battery capacity to zero, respectively.

At the current time step k, the initial conditions are given
by

xi(k) = x̂i , i ∈ [1 : I], (3)

with x̂i ∈ [0, Ci]. Note that the future net consumption
wi(n), n ≥ k, is not known in advance. However, we
assume that it can be predicted over the subsequent N ∈
N≥2 time steps and call N the prediction horizon. Then,
we define the feasible sets

Ui :=



ui ∈ R2N

∣∣∣∣∣∣∣∣∣

∃ xi(k) , . . . , xi(k +N − 1) ∈ R :
initial condition (3) holds,
system dynamics (1a) and
constraints (2) hold for all

time instants n ∈ [k : k +N − 1]




for all i ∈ [1 : I] with stacked control inputs

ui = (ui(k)
� . . . ui(k +N − 1)�)� .

Note that the sets Ui and hence, U = U1 × . . . × UI are
(convex) polytopes.

2.2 Optimal peak shaving

From a grid operator’s point of view it is desirable to
provide a constant control energy. Therefore, our goal is to
flatten the aggregated power demand profile. To this end,
the deviation of the average power demand from a desired
reference trajectory ζ̄ = (ζ̄(k) . . . ζ̄(k +N − 1))� ∈ RN is
penalized, i.e.,

1

N

k+N−1∑
n=k

∥∥∥∥∥
1

I

I∑
i=1

zi(n)− ζ̄(n)

∥∥∥∥∥
2

2

(1b)
=

1

N

k+N−1∑
n=k

∥∥∥∥∥
1

I

I∑
i=1

(
u+
i (n) + γiu

−
i (n)

)
+ w̄(n)− ζ̄(n)

∥∥∥∥∥
2

2

with averages

z̄(n) =
1

I

I∑
i=1

zi(n) and w̄(n) =
1

I

I∑
i=1

wi(n) ,

n ∈ [k : k +N − 1]. Assuming k ≥ N − 1, we choose ζ̄ to
be the overall average net consumption

ζ̄(n) =
1

N

n∑
j=n−N+1

w̄(j) .

By introducing matrices

Ai =
1

I
· IN ⊗ (1 γi) ∈ RN×2N , i ∈ [1 : I]

and the vector b = ζ̄ − w̄ ∈ RN the objective function
value can be written as

1

N

∥∥∥∥∥
I∑

i=1

Aiui − b

∥∥∥∥∥
2

2

. (4)

In the context of group sparsity each ui ∈ R2N can
be considered a group of u = (u�

1 . . . u�
I )

� ∈ R2NI .
In the following, we will enforce group-sparsity of u by
introducing an �p,1 regularization.

2.3 Group sparse control of batteries

Optimizing (4) with respect to all feasible u ∈ U typically
results in perpetual charging and discharging of the batter-
ies (Braun et al., 2018). We counteract this phenomenon
by establishing group-sparse control, i.e., only a few bat-
teries are active at each time step. To this end we use the
weighted mixed �p,1 norm, i.e.,

‖u‖∗p,1 =

I∑
i=1

σi‖ui‖p

=

I∑
i=1

σi

(
k+N−1∑
n=k

(∣∣u+
i (n)

∣∣p + ∣∣u−
i (n)

∣∣p)
)1/p

with non-negative weights σ = (σ1 . . . σI)
� ∈ RI and

1 ≤ p < ∞ (Yuan and Lin, 2006; Hu et al., 2017). This
paper focuses on p ∈ {1, 2}. Compared to the �2,1 case, the
�1,1 norm additionally enforces each non-zero group to be
sparse. Hence, the total number of non-zero components
is further reduced. In our case, ui denotes the i-th group
of u.

The main idea of exploiting group sparsity in smart grids
is that at a fix time instant n ∈ N0 only a few batteries
are used to manipulate the power demands. In practice, if
the net consumption is below the reference trajectory, i.e.,
w̄(n) < ζ̄(n), we create an artificial demand by charging
some batteries to compensate the gap, e.g. u+

i (n) > 0 for
some i and u−

i (n) = 0 for all i, i ∈ [1 : I]. Enforcing sparse
control using �2,1 or �1,1 regularization yields that only the
batteries with the most efficient charging rates are used.
Analogous argumentation holds true for w̄(n) > ζ̄(n). To
avoid this one-sided usage of the batteries, the weights σ
are required to be updated online. In the context of MPC,
this yields that the problem setup and thus the resulting
group sparsity pattern vary.

2.4 Sparse control problem

Based on the considerations of the previous subsections we
study the group sparse control problem

min
u

1

N

∥∥z̄ − ζ̄
∥∥2
2
+ κ

I∑
i=1

(σi‖ui‖p)

s.t. z̄ =
I∑

i=1

Aiui + w̄

ui ∈ Ui , i ∈ [1 : I] ,

(5)

where the parameter κ > 0 denotes the trade-off between
the optimal peak shaving and joint sparse activity of the
batteries. Here, the stage costs of each battery based on the
�p norm yield a coupling in {ui(k), . . . , ui(k+N−1)} when
p > 1. This differs from the classical MPC formulation,
which takes additive stage costs with respect to time steps
into account. Substituting (4) into (5) yields the standard
composite optimization form

min
v,u

1

N

∥∥∥∥∥
I∑

i=1

Aivi − b

∥∥∥∥∥
2

2

+

I∑
i=1

σ̃i ‖ui‖p

s.t.

{
vi = ui | λi , i ∈ [1 : I]
ui ∈ Ui , i ∈ [1 : I]

(6)

with σ̃i = κ · σi. Here, we introduce an auxiliary variable
v ∈ R2NI and denote by λi the Lagrangian multipliers
of the constraints vi = ui. Note that, operator splitting
methods have already been developed for solving (6) in a
distributed manner; for a detailed theoretical analysis we
refer to (Boyd et al., 2011, Sec. 3.2). In the next section, we
propose a distributed model predictive control scheme to
solve (6) by using the state-of-the-art technique ADMM.

3. DISTRIBUTED SPARSE OPTIMIZATION

In this section we elaborate how to solve (6) in a dis-
tributed MPC scheme. First, Algorithm 1 outlines how
to solve (6) via ADMM in a distributed manner. The sub-
systems solve decoupled small-scale problems in parallel
and the CE solves an unconstrained Quadratic Program-
ming (QP). Then, the proposed method is embedded into
a model predictive control scheme in Algorithm 2.

3.1 Alternating Direction Method of Multipliers

Referring to (Boyd et al., 2011, Sec. 3.1), Algorithm 1 with
four main steps outlines to solve (6) by using ADMM.
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Note that the sets Ui and hence, U = U1 × . . . × UI are
(convex) polytopes.

2.2 Optimal peak shaving

From a grid operator’s point of view it is desirable to
provide a constant control energy. Therefore, our goal is to
flatten the aggregated power demand profile. To this end,
the deviation of the average power demand from a desired
reference trajectory ζ̄ = (ζ̄(k) . . . ζ̄(k +N − 1))� ∈ RN is
penalized, i.e.,

1

N

k+N−1∑
n=k

∥∥∥∥∥
1

I

I∑
i=1

zi(n)− ζ̄(n)

∥∥∥∥∥
2

2

(1b)
=

1

N

k+N−1∑
n=k

∥∥∥∥∥
1

I

I∑
i=1

(
u+
i (n) + γiu

−
i (n)

)
+ w̄(n)− ζ̄(n)

∥∥∥∥∥
2

2

with averages

z̄(n) =
1

I

I∑
i=1

zi(n) and w̄(n) =
1

I

I∑
i=1

wi(n) ,

n ∈ [k : k +N − 1]. Assuming k ≥ N − 1, we choose ζ̄ to
be the overall average net consumption

ζ̄(n) =
1

N

n∑
j=n−N+1

w̄(j) .

By introducing matrices

Ai =
1

I
· IN ⊗ (1 γi) ∈ RN×2N , i ∈ [1 : I]

and the vector b = ζ̄ − w̄ ∈ RN the objective function
value can be written as

1

N

∥∥∥∥∥
I∑

i=1

Aiui − b

∥∥∥∥∥
2

2

. (4)

In the context of group sparsity each ui ∈ R2N can
be considered a group of u = (u�

1 . . . u�
I )

� ∈ R2NI .
In the following, we will enforce group-sparsity of u by
introducing an �p,1 regularization.

2.3 Group sparse control of batteries

Optimizing (4) with respect to all feasible u ∈ U typically
results in perpetual charging and discharging of the batter-
ies (Braun et al., 2018). We counteract this phenomenon
by establishing group-sparse control, i.e., only a few bat-
teries are active at each time step. To this end we use the
weighted mixed �p,1 norm, i.e.,

‖u‖∗p,1 =

I∑
i=1

σi‖ui‖p

=

I∑
i=1

σi

(
k+N−1∑
n=k

(∣∣u+
i (n)

∣∣p + ∣∣u−
i (n)

∣∣p)
)1/p

with non-negative weights σ = (σ1 . . . σI)
� ∈ RI and

1 ≤ p < ∞ (Yuan and Lin, 2006; Hu et al., 2017). This
paper focuses on p ∈ {1, 2}. Compared to the �2,1 case, the
�1,1 norm additionally enforces each non-zero group to be
sparse. Hence, the total number of non-zero components
is further reduced. In our case, ui denotes the i-th group
of u.

The main idea of exploiting group sparsity in smart grids
is that at a fix time instant n ∈ N0 only a few batteries
are used to manipulate the power demands. In practice, if
the net consumption is below the reference trajectory, i.e.,
w̄(n) < ζ̄(n), we create an artificial demand by charging
some batteries to compensate the gap, e.g. u+

i (n) > 0 for
some i and u−

i (n) = 0 for all i, i ∈ [1 : I]. Enforcing sparse
control using �2,1 or �1,1 regularization yields that only the
batteries with the most efficient charging rates are used.
Analogous argumentation holds true for w̄(n) > ζ̄(n). To
avoid this one-sided usage of the batteries, the weights σ
are required to be updated online. In the context of MPC,
this yields that the problem setup and thus the resulting
group sparsity pattern vary.

2.4 Sparse control problem

Based on the considerations of the previous subsections we
study the group sparse control problem

min
u

1

N

∥∥z̄ − ζ̄
∥∥2
2
+ κ

I∑
i=1

(σi‖ui‖p)

s.t. z̄ =
I∑

i=1

Aiui + w̄

ui ∈ Ui , i ∈ [1 : I] ,

(5)

where the parameter κ > 0 denotes the trade-off between
the optimal peak shaving and joint sparse activity of the
batteries. Here, the stage costs of each battery based on the
�p norm yield a coupling in {ui(k), . . . , ui(k+N−1)} when
p > 1. This differs from the classical MPC formulation,
which takes additive stage costs with respect to time steps
into account. Substituting (4) into (5) yields the standard
composite optimization form

min
v,u

1

N

∥∥∥∥∥
I∑

i=1

Aivi − b

∥∥∥∥∥
2

2

+

I∑
i=1

σ̃i ‖ui‖p

s.t.

{
vi = ui | λi , i ∈ [1 : I]
ui ∈ Ui , i ∈ [1 : I]

(6)

with σ̃i = κ · σi. Here, we introduce an auxiliary variable
v ∈ R2NI and denote by λi the Lagrangian multipliers
of the constraints vi = ui. Note that, operator splitting
methods have already been developed for solving (6) in a
distributed manner; for a detailed theoretical analysis we
refer to (Boyd et al., 2011, Sec. 3.2). In the next section, we
propose a distributed model predictive control scheme to
solve (6) by using the state-of-the-art technique ADMM.

3. DISTRIBUTED SPARSE OPTIMIZATION

In this section we elaborate how to solve (6) in a dis-
tributed MPC scheme. First, Algorithm 1 outlines how
to solve (6) via ADMM in a distributed manner. The sub-
systems solve decoupled small-scale problems in parallel
and the CE solves an unconstrained Quadratic Program-
ming (QP). Then, the proposed method is embedded into
a model predictive control scheme in Algorithm 2.

3.1 Alternating Direction Method of Multipliers

Referring to (Boyd et al., 2011, Sec. 3.1), Algorithm 1 with
four main steps outlines to solve (6) by using ADMM.
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In the first step the local primal variable ui and dual

Algorithm 1 ADMM for solving (6)

Input: initial guesses (u0, v0, λ0) and step size ρ0 > 0, stop tolerance
ε > 0, tuning parameter η, µ > 0.

For m = 0 : MaxIte

1) Parallel Step: Compute for all i ∈ [1 : I] in parallel

um+1
i = argmin

ui∈Ui

σ̃i‖ui‖p +
ρm

2

∥∥∥ui −
λm
i

ρm
− vmi

∥∥∥
2

2

λm+1
i = λm

i + ρm(vmi − um+1
i )

2) Consensus Step: Solve unconstrained QP

vm+1 = argmin
v

1

N
‖Av − b‖22 +

ρ

2

∥∥∥∥v − um+1 +
λm+1

ρ

∥∥∥∥
2

2

=

(
2

N
A�A+ ρmI

)−1 ( 2

N
A�b− λm+1 + ρmum+1

)

3) Stop Criterion: Evaluate

rpri = ρ‖um+1 − vm+1‖2 , rdual = ρ‖(vm+1 − vm)‖2.

If rpri ≤ ε and rdual ≤ ε, then terminate.

4) Adpative Dual Step Size: Update ρm+1 by

ρm+1 ←




ηρm if rpri ≥ µrdual

ρm/η if rdual ≥ µrprimal

ρm otherwise

End

variable λi are updated in parallel. Then, we solve an
unconstrained QP in the consensus step. Note that the
solution map is worked out analytically. In order to check
the terminal condition, the primal and dual residual rpri,
rdual are evaluated in Step 3. Here, in contrast to Boyd and
Vandenberghe (2004) we do not use the relative tolerance
but a fixed ε > 0. In order to speed up the convergence,
we utilize an adaptive strategy to update the dual step
size ρm. This heuristic increases ρm if rpri decreases faster
than rdual and vice versa, see e.g. (Boyd et al., 2011,
Sec. 3.4.1) for a possible choice of the tuning parameters η
and µ. Algorithm 1 requires the grid operator to collect 4N
floats information from each subsystem and spread 2N+1
back to the subsystems per iteration. Note that the grid
operator does not require to have any information on the
local system model.

3.2 Local solver

At the parallel step of Algorithm 1, the ui update requires
to solve a constrained lasso 1 problem. We propose two
efficient local solvers to update ui depending on the case
p ∈ {1, 2}.
(1) If p = 1, the �1 term in the objective can be refor-

mulated into the constraints Boyd and Vandenberghe
(2004) by introducing auxiliary variables si ∈ R2N .
This yields the decoupled QP

min
si,ui

σ̃i1
�s+

ρm

2

∥∥∥∥ui −
λm
i

ρm
− vmi

∥∥∥∥
2

2

s.t. ui ∈ Ui , −s ≤ u ≤ s ,

(7)

which allows for direct usage of existent QP solvers
such as qpOASES as in Ferreau et al. (2014).

1 least absolute shrinkage and selection operator

(2) If p = 2, we propose to use a local ADMM solver as
follows,

si = Sσ̃i/ρm

(
vmi + uj

i +
λm
i − ξj

ρm

)
,

uj+1
i = argmin

ui∈Ui

ρm

2

∥∥∥∥∥ui − si −
ξji
ρm

∥∥∥∥∥
2

2

,

ξj+1
i = ξji + ρm(uj+1

i − si) ,

(8)

where superscript j represents the iteration of the
inner ADMM loop, Sa : R2N → R2N denotes the
soft thresholding operator defined by

Sa(x) = max {1− a/ ‖x‖2 , 0}x .

Here, the omitted terminal condition is analogous to
Step 3) in Algorithm 1 and a fixed dual step size
consistent with the current ρm is applied.

3.3 Distributed predictive sparse control

The model predictive control scheme requires to solve (6)
during each sampling time based on the current mea-
surements. Embedding Algorithm 1, Algorithm 2 outlines
an ADMM based distributed predictive sparse control
scheme.

Algorithm 2 Distributed predictive control scheme
Offline:

• Initial guess (u0, λ0), set k = 0, v0 = u0 and choose weights σ
and a tolerance ε > 0.

Online:

1) Subsystems measure current SoC xi(k), predict future net
consumption wi and send it to grid operator.

2) Grid Operator computes the reference trajectory ζ̄.

3) Optionally update weights σ. Run Algorithm 1 for solving (6)
to obtain u∗ and λ∗.

4) Subsystems apply u∗
i (k) if ‖ui(k)‖2 ≥ ε and 0 otherwise.

5) Reinitialize

u0
i = (u∗

i (k + 1)� . . . u∗
i (k +N − 1)� 0�2 )�

λ0
i = (λ∗

i (k + 1) . . . λ∗
i (k +N − 1) 0)�

for all i ∈ [1 : I]. Then, set k ← k + 1 and go to Step 1).

In order to achieve different sparsity patterns in each time
step we optionally update the weights σ in Step 3). In
practice, we run Algorithm 1 to a predetermined numerical
accuracy such that we choose a tolerance for applying
the sparse control at Step 4) in Algorithm 2. Step 5) in
Algorithm 2 is a warm-start step, which improves the
online convergence performance of Algorithm 1 (Braun
et al., 2018). In the following section, we will illustrate
the numerical performance of Algorithm 2 by applying it
to benchmark problems.

4. NUMERICAL RESULTS

In this section we compare the numerical results of �1,1 and
�2,1 norm for both open-loop and closed-loop control. To
this end we consider heterogeneous systems with randomly
generated parameters according to Table 1. Note that

the values were not chosen completed arbitrarily, but
inspired by the choice in Braun et al. (2018). However,
in our simulations the heterogeneity of the batteries is
essential. Furthermore, we set T = 0.5 [h], N = 24, and

Table 1. Parameters for implementation.

expected value standard deviation

Ci 2.0563 [kWh] 0.2431 [kWh]

ui 0.5229 [kW] 0.1563 [kW]

ui −0.5105 [kW] 0.1474 [kW]

αi 0.9913 0.0053

βi 0.9494 0.0098

γi 0.9487 0.0100

x̂i = 0.5 [kWh] for all i ∈ [1 : I]. The data representing
the net consumption is provided by an Australian grid
operator (Ratnam et al., 2017).

4.1 Open-loop optimal control

Let us have a closer look at the open-loop performance in
this section. Table 2 illustrates the impact of the number
of systems I for the solution sparsity with fix κ = 10−3.
We ran a case study for different weights σ and listed the
mean value, the standard deviation, and the median of
the percentage of the non-zero components of the optimal
control. One can see that the larger the grid the higher the
sparsity rate.

Table 2. Impact of the number of subsystems I
on the percentage of non-zero components of
the optimal control u ∈ R2NI for κ = 10−3.

I mean std dev median

�2,1 25 30.67 0.85 30.33

50 24.41 0.46 24.17

100 18.73 0.26 18.75

�1,1 25 8.48 0.36 8.38

50 4.65 0.10 4.65

100 3.82 0.06 3.81

In the following, we fix I = 50. Therefore, the total
number of control variables is 2400. Figure 2 visualizes
the impact of the choice of the regularization and the size
of the weighting parameter κ ∈ {10−4, 10−3} on the open-
loop sparsity pattern. Increasing κ the batteries are used
less often. For sufficiently large κ some stay even inactive
over the whole prediction horizon. Note that the �1,1
regularization enforces u+

i (n) ·u
−
i (n) = 0 for all i ∈ [1 : I],

n ∈ [k : k+N−1], i.e., only charging or discharging at one
time instant. This is not the case if an �2,1 regularization
is used.

Figure 3 shows the overall performance with respect to (4)
depending on κ ∈ [10−5, 10−2]. More precisely, the relative
deviation from the solution associated with κ = 0 is
depicted. The larger κ, i.e., the less batteries are active,
the worse the performance. The �1,1 regularization with
κ = 10−4 achieves reasonable performance with respect to
peak shaving while establishing sparsity.

Fig. 2. Impact of the choice of κ and the regularization on
the open-loop sparsity pattern for I = 50 systems.
The y-axis denotes the components of the control
vector ui ∈ R2N . Amount of non-zero control values:
51%, 24%, 19%, 5%, respectively.

(a) �2,1 (b) �1,1

Fig. 3. Relative deviation |z̄(n;κ)− z̄(n; 0)| / ‖z̄(· ; 0)‖∞ of
z̄(· ;κ) from z̄(· ; 0) for I = 50 systems.

4.2 MPC closed loop

This section illustrates the closed-loop performance of Al-
gorithm 2 depending on the choice of the penalty term and
the weighting parameter. Note that if the weights σ = σ(k)
are changed in every single MPC step k, group sparsity
cannot be established, since in each step different devices
might be active compared to the previous one. Therefore,
in our implementation, we generate varying weights every
three hours by using the MATLAB command randn, which
yields normally distributed random numbers, i.e.,

σi(k) ∼ N (0, 1).

For the same reason we omit disturbances in the forecast-
ing variables wi. Note that the choice of the parameters σ
as well as the update frequency is not yet optimized.
The percentage of non-zero components of the optimal
solution is approximately 34% and 8% for the �2,1 and
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4.2 MPC closed loop

This section illustrates the closed-loop performance of Al-
gorithm 2 depending on the choice of the penalty term and
the weighting parameter. Note that if the weights σ = σ(k)
are changed in every single MPC step k, group sparsity
cannot be established, since in each step different devices
might be active compared to the previous one. Therefore,
in our implementation, we generate varying weights every
three hours by using the MATLAB command randn, which
yields normally distributed random numbers, i.e.,

σi(k) ∼ N (0, 1).

For the same reason we omit disturbances in the forecast-
ing variables wi. Note that the choice of the parameters σ
as well as the update frequency is not yet optimized.
The percentage of non-zero components of the optimal
solution is approximately 34% and 8% for the �2,1 and
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Fig. 4. Closed-loop sparsity pattern for I = 50 systems
and κ = 10−3. The dashed black lines indicate new
weights σ.

the �1,1 case, respectively. Hence, similar to the open-
loop simulation, the �1,1 solution is sparser than the �2,1
solution. Keep in mind that the open-loop solutions involve
several devices to be inactive while others are active the
whole time, see Figure 2. Thanks to the updated weights σ
this phenomenon does not occur in the closed loop, see
Figure 4. After each three hours time interval the sparsity
might change. Note that in the plain peak-shaving sce-
nario, i.e. for κ = 0, more than half of the control values
in closed loop (60%) are non-zero indicating the benefit of
the proposed method.

5. CONCLUSIONS

In this paper we considered a smart grid optimization
problem dealing with optimal control of distributed energy
storage devices. We proposed a sparse control problem for-
mulation and designed a distributed optimization scheme
to solve it. Our numerical results show that this approach
is able to reduce the usage of the batteries in order to
prolong their life time in a receding horizon fashion. Future
research might consider more complex models, e.g. incor-
porating the power flow equation. Furthermore, more so-
phisticated methods to choose the weighting parameters σ
might be beneficial.
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