18 research outputs found

    Segmentation-free Word Spotting for Handwritten Arabic Documents

    Get PDF
    In this paper we present an unsupervised segmentation-free method for spotting and searching query, especially, for images documents in handwritten Arabic, for this, Histograms of Oriented Gradients (HOGs) are used as the feature vectors to represent the query and documents image. Then, we compress the descriptors with the product quantization method. Finally, a better representation of the query is obtained by using the Support Vector Machines (SVM)

    Query by String word spotting based on character bi-gram indexing

    Full text link
    In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasetsComment: To be published in ICDAR201

    The impact of the image processing in the indexation system

    Get PDF
    This paper presents an efficient word spotting system applied to handwritten Arabic documents, where images are represented with bag-of-visual-SIFT descriptors and a sliding window approach is used to locate the regions that are most similar to the query by following the query-by-example paragon. First, a pre-processing step is used to produce a better representation of the most informative features. Secondly, a region-based framework is deployed to represent each local region by a bag-of-visual-SIFT descriptors. Afterward, some experiments are in order to demonstrate the codebook size influence on the efficiency of the system, by analyzing the curse of dimensionality curve. In the end, to measure the similarity score, a floating distance based on the descriptor’s number for each query is adopted. The experimental results prove the efficiency of the proposed processing steps in the word spotting system

    Integrating Visual and Textual Cues for Query-by-String Word Spotting

    Full text link

    Handwritten Document Image Retrieval

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A novel image matching approach for word spotting

    Get PDF
    Word spotting has been adopted and used by various researchers as a complementary technique to Optical Character Recognition for document analysis and retrieval. The various applications of word spotting include document indexing, image retrieval and information filtering. The important factors in word spotting techniques are pre-processing, selection and extraction of proper features and image matching algorithms. The Correlation Similarity Measure (CORR) algorithm is considered to be a faster matching algorithm, originally defined for finding similarities between binary patterns. In the word spotting literature the CORR algorithm has been used successfully to compare the GSC binary features extracted from binary word images, i.e., Gradient, Structural and Concavity (GSC) features. However, the problem with this approach is that binarization of images leads to a loss of very useful information. Furthermore, before extracting GSC binary features the word images must be skew corrected and slant normalized, which is not only difficult but in some cases impossible in Arabic and modified Arabic scripts. We present a new approach in which the Correlation Similarity Measure (CORR) algorithm has been used innovatively to compare Gray-scale word images. In this approach, binarization of images, skew correction and slant normalization of word images are not required at all. The various features, i.e., projection profiles, word profiles and transitional features are extracted from the Gray-scale word images and converted into their binary equivalents, which are compared via CORR algorithm with greater speed and higher accuracy. The experiments have been conducted on Gray-scale versions of newly created handwritten databases of Pashto and Dari languages, written in modified Arabic scripts. For each of these languages we have used 4599 words relating to 21 different word classes collected from 219 writers. The average precision rates achieved for Pashto and Dari languages were 93.18 % and 93.75 %, respectively. The time taken for matching a pair of images was 1.43 milli-seconds. In addition, we will present the handwritten databases for two well-known Indo- Iranian languages, i.e., Pashto and Dari languages. These are large databases which contain six types of data, i.e., Dates, Isolated Digits, Numeral Strings, Isolated Characters, Different Words and Special Symbols, written by native speakers of the corresponding languages

    Learning-Based Arabic Word Spotting Using a Hierarchical Classifier

    Get PDF
    The effective retrieval of information from scanned and written documents is becoming essential with the increasing amounts of digitized documents, and therefore developing efficient means of analyzing and recognizing these documents is of significant interest. Among these methods is word spotting, which has recently become an active research area. Such systems have been implemented for Latin-based and Chinese languages, while few of them have been implemented for Arabic handwriting. The fact that Arabic writing is cursive by nature and unconstrained, with no clear white space between words, makes the processing of Arabic handwritten documents a more challenging problem. In this thesis, the design and implementation of a learning-based Arabic handwritten word spotting system is presented. This incorporates the aspects of text line extraction, handwritten word recognition, partial segmentation of words, word spotting and finally validation of the spotted words. The Arabic text line is more unconstrained than that of other scripts, essentially since it also includes small connected components such as dots and diacritics that are usually located between lines. Thus, a robust method to extract text lines that takes into consideration the challenges in the Arabic handwriting is proposed. The method is evaluated on two Arabic handwritten documents databases, and the results are compared with those of two other methods for text line extraction. The results show that the proposed method is effective, and compares favorably with the other methods. Word spotting is an automatic process to search for words within a document. Applying this process to handwritten Arabic documents is challenging due to the absence of a clear space between handwritten words. To address this problem, an effective learning-based method for Arabic handwritten word spotting is proposed and presented in this thesis. For this process, sub-words or pieces of Arabic words form the basic components of the search process, and a hierarchical classifier is implemented to integrate statistical language models with the segmentation of an Arabic text line into sub-words. The holistic and analytical paradigms (for word recognition and spotting) are studied, and verification models based on combining these two paradigms have been proposed and implemented to refine the outcomes of the analytical classifier that spots words. Finally, a series of evaluation and testing experiments have been conducted to evaluate the effectiveness of the proposed systems, and these show that promising results have been obtained
    corecore