
Handwritten Document Image

Retrieval

Xi Zhang

School of Computing

National University of Singapore

Supervisor: Prof. Chew Lim Tan

A thesis submitted for the degree of

Philosophy of Doctor (PhD)

November 2014

mailto:xizhang@comp.nus.edu.sg
http://www.comp.nus.edu.sg
http://www.nus.edu.sg

ii

I would like to dedicate this thesis to my

beloved parents and Su Bolan for their

endless support and encouragement.

Acknowledgements

I would like to express my deep and sincere appreciation to my PhD super-

visor Professor Chew Lim Tan, in School of Computing, National University

of Singapore. He is very kind and provides a lot of support to my research

work. Moreover, he always makes my research environment full of freedom,

so that I can really focus on the works what I am interested in. With his

wide knowledge and constructive advice, I am inspired with various ideas in

order to solve the challenges and open my eyes to different new directions.

Without his generous help, this thesis would not have been possible.

I also would like to thank all my lab fellows, who always have great ideas and

work very hard. I can discuss difficult problems with them and obtain ex-

citing solutions. They are Dr. Chen Qi, Situ Liangji, Tian Shangxuan, Dr.

Sunjun, Dr. Li Shimiao, Dr. Gong Tianxia, Dr. Wang Jie, Dr. Liu Ruizhe,

Dr. Mohtarami Mitra, Ding Yang, who help me a lot in my research work

or non-academic aspects, especially give me a very happy research environ-

ment. Furthermore, I wish to extend my warm thanks to all my friends who

came across my life during my four-year PhD study in Singapore, I would

not be able to overcome difficulties and have so many happy and memorable

moments without them. I am so sorry that I can only list some of them:

Xu Haifeng, Yu Xiaomeng, Li Hui, Dr. Shen Zhijie, Dr. Wang Guangsen,

Dr. Wang Chudong, Fang Shunkai, Dr. Li Xiaohui, Dr. Cheng Yuan, Dr.

Zheng Yuxin, and etc.

Last but not least, I would like to give my most sincere gratitude to my

parents, who love me endlessly and selflessly. They always provide their

support to anything I would like to do, and understand any my bad mood

unconditionally. I also wish to express my special appreciation to my hus-

band Dr. Su Bolan, who accompanies me every day, no matter happy or

sad hours and gives me a colourful life, full of love.

Contents

List of Figures vii

List of Tables xi

1 Introduction 3

1.1 Background and history . 3

1.2 Motivations . 5

1.3 Aims and Scope . 7

1.4 Chapter Overview . 8

2 Text Line Segmentation 9

2.1 Introduction and Related Works . 9

2.2 Seam carving . 12

2.3 Our proposed method . 13

2.3.1 Preprocessing . 13

2.3.2 Energy function . 15

2.3.3 Energy accumulation . 16

2.3.4 Seam extraction . 18

2.3.5 Postprocessing . 19

2.4 Experiments and Results . 20

2.4.1 Evaluation method . 20

2.4.2 Experimental setup . 21

2.4.3 Results . 21

2.5 Conclusion . 22

iii

CONTENTS

3 Handwritten Word Recognition 26

3.1 Introduction and Related Works . 26

3.2 Preprocessing . 28

3.3 Neural Network for Recognition . 30

3.4 Splitting of Randomly Selected Training Data 30

3.5 Modified CTC Token Passing Algorithm 34

3.5.1 CTC Token Passing Algorithm 34

3.5.2 Modification to spot trigrams . 35

3.6 Experiments and Results . 37

3.6.1 Experimental Setup . 37

3.6.2 Results on Randomly Selected Training and Testing Data 39

3.6.3 Results on Writer Independent Training and Testing Data 41

3.7 Conclusion . 42

4 Handwritten Word Image Matching 44

4.1 Introduction and Related Works . 44

4.2 Descriptor based on Heat Kernel Signature 46

4.2.1 Keypoints Detection and Selection 46

4.2.2 Heat Kernel Signature . 47

4.2.3 Discrete Version of Laplace-Beltrami Operator 48

4.2.4 Scale Invariant HKS . 50

4.2.5 Distance between two Descriptors 51

4.3 Word Image Matching . 52

4.3.1 Structure of Keypoints . 53

4.3.2 Score Matrix . 55

4.4 Experiments and Results . 58

4.4.1 Experimental Setup . 58

4.4.2 Results and Discussion . 60

4.4.2.1 Comparison with the methods based on DTW 60

4.4.2.2 Comparison with the methods based on keypoints . . . 61

4.5 Conclusion . 65

iv

CONTENTS

5 Segmentation-free Keyword Spotting 66

5.1 Introduction and Related Works . 66

5.2 Historical Manuscripts written in English 68

5.2.1 Keypoint Detection . 68

5.2.2 Keyword Spotting . 68

5.2.2.1 Candidate Keypoints 69

5.2.2.2 Matching Score of Local Zones 71

5.2.3 Experiments and Results . 73

5.2.3.1 Experimental Setup . 73

5.2.3.2 Results . 74

5.3 Handwritten Bangla Documents . 75

5.3.1 Descriptor Generation . 75

5.3.1.1 Localization of Keypoints 75

5.3.1.2 Size of Local Patch . 77

5.3.1.3 Patch Normalization . 77

5.3.2 Keyword Spotting . 79

5.3.2.1 Candidate Keypoints 79

5.3.2.2 Localization of Candidate Local Zones 80

5.3.2.3 Matching Score . 82

5.3.2.4 Removing Overlapping Returned Results 84

5.3.3 Experiments and Results . 84

5.3.3.1 Experimental Setup . 84

5.3.3.2 Results . 85

5.4 Conclusion . 87

6 Handwritten Document Image Retrieval based on Keyword Spotting 90

6.1 Introduction and Related Works . 90

6.2 Features . 92

6.2.1 Curvelet . 93

6.2.2 Contourlet . 94

6.3 Retrieval Model . 95

6.3.1 Writer identification . 95

6.3.2 Keyword spotting . 96

v

CONTENTS

6.3.3 Document representation . 98

6.4 Experiments . 99

6.4.1 IAM database . 99

6.4.2 Historical manuscripts . 102

6.5 Conclusion . 102

7 Conclusion and Future Work 104

7.1 Conclusion . 104

7.2 Future Work . 106

Publications arising from this work 107

References 108

vi

List of Figures

2.1 An example of a binary image and its SDT. In SDT, the darker one point

is, the lower value its SDT has. 13

2.2 A large components and its neighbouring strokes lying in the same text

lines. (a) is a large component detected. In (b) are the horizontal neigh-

bouring strokes. 14

2.3 The horizontal histogram projection of the image in Fig. 2.2(b) 14

2.4 A threshold in the smoothed histogram is chosen, which is indicated by

the red line. The foreground pixels lying in the rows with the values

smaller than the threshold are removed. 15

2.5 The energy accumulation matrix for Fig. 2.1(a). The energy values are

scaled to [0,1] for visualization. 17

2.6 Seams generated by M and M ′ in Fig. 2.5. The red lines indicate the

extracted seams. 18

2.7 The final seams detected by our proposed method. There are total five

seams, indicating the central axis positions of five text lines. 19

2.8 Split a large componnet into two parts, and the components belonging

to the same text line are marked as the same color. 20

2.9 The evaluation results (1) based on FM . Our method has the label ’NUS’. 22

2.10 Segmentation result of an English document. 23

2.11 Segmentation result of a Greek document. 24

2.12 Segmentation result of a Bangla document. 25

3.1 An example of the normalized result for an word image from IAM database. 29

vii

LIST OF FIGURES

3.2 Structure of Recurrent Neural Network from (2). (a) Unidirectional

Recurrent Neural Network with 2 time steps unfolded. (b) Bidirectional

Recurrent Neural Network with 3 time steps unfolded. 31

3.3 Structure of LSTM memory block with a single cell from (3). There are

three gates: input gate, output gate, and forget gate. They collect the

input from other parts of the network and control the information the

cell can accept. The input and output of the cell are controlled by the

input gate and output gate, while how the recurrent connection effects

the cell is controlled by the forget gate. 32

3.4 The output of a trained network for the input image ’report’. x − axis
indicates the time steps, with the size as same as the width of the word

image, and y − axis indicates the index of all lower-case characters, in

the lexicographical order. At the time step 180, ’t’ and ’n’ have similar

probabilities. Using a dictionary, we can easily exclude ’n’. 36

3.5 Character error rate on the validation data over first 100 iterations. . . 40

4.1 Keypoints selection. 47

4.2 Embed 2D image into 3D manifold. (a) illustrates the patch centered at

the 6th keypoints in Figure 4.1(b) (assuming all the keypoints are sorted

from left to right). The keypoint is marked as the red dot. (b) shows the

3D surfaces embedded from the 2D patch in (a). The intensity values

are in the range of [0, 255]. 47

4.3 DI descriptors for the patch in Figure 4.2(a) with different t. 49

4.4 (a) A 6×6 patch. (b) The black dots are the centres of the pixels in (a),

and the circles are intra-pixels. The lines between pixels represent the

triangular mesh in the (x, y) dimensions. (c) A portion of the triangular

mesh. 50

4.5 A word ’Labour’ written by two writers. 51

4.6 For each keypoint in Figure 4.5(a), we calculate the distances between

its descriptor and the descriptors of all the keypoints in Figure 4.5(b).

All the distances are sorted in the ascending order, and we only plot the

position on which the true matched keypoint is in the ranking list. We

plot the ranks for both the DaLI descriptors and SIFT features. 53

viii

LIST OF FIGURES

4.7 Procedure of our method for handwritten word image matching. 54

4.8 The triangular structure of keypoints. 54

4.9 Score Matrix Construction. (a) We only consider the neighbors of the

keypoint under consideration. (b) We only search the optimal matching

score in the right-bottom of SM. 57

4.10 (a)SMs of the candidate image, also containing the word ’Labour’. (b)

SMs of the candidate image, containing a very different word. 58

4.11 Examples of matching keypoints of two word images. (a) Matching key-

points by BBF. (b) Matching keypoints by our proposed method. 58

4.12 Examples of word images in our experiments. 59

4.13 Top 15 candidate images returned by different methods for the query

word image in Figure 4.8. 61

4.14 Top 10 candidate images returned by different methods for the query

word image in (a). 62

4.15 Top 15 candidate images returned by different methods for the query

word image Figure 4.8. 63

4.16 Top 10 candidate images returned by different methods for the query

word image in (a). 64

4.17 Keypoints detected by different methods. 65

5.1 An example of keypoints found in a query image. The numbers are the

indexes of keypoints according to their vertical locations in the image. . 69

5.2 The plot of the number of candidate keypoints for each keypoint in Fig.

5.1 for two documents. (a) The number of candidate keypoints for each

keypoint in Fig. 5.1 for the left document in Fig. 5.4. (b) The number of

candidate keypoints for each keypoint in Fig. 5.1 for the right document

in Fig. 5.4. 70

5.3 The left figure is an example of matrix Mark. Each component in the

dark grey is the position where a keypoint kpij on the document image

Di appears, and the numbers in 3×3 area are indexes of keypoints in the

query image each kpij is mapped to. The right figure is the corresponding

matrix C. Each column of C records different numbers at and around

the positions of every keypoint in Mark. 73

ix

LIST OF FIGURES

5.4 Two pages in the GW dataset. 74

5.5 Top 10 possitive mathching local zones for two query images. 74

5.6 Keypoints detected by different algorithms. 76

5.7 The final Keypoints we will use in the experiments. (a) Keypoints de-

tected by SIFT detector after removing keypoints in the background.

(b) Combining the keypoints in Fig. 5.7(a) with the ones in Fig. 5.6(d).

(c) Removing near keypoints. 76

5.8 Sizing the local patch . 78

5.9 Resizing patches with different r to the same size will lead the width of

stokes different. (e) Normalize the patch in 5.9(b). (f) Normalize the

patch in 5.9(d). 78

5.10 An example of the sorted distances of one keypoint in the query image

with respect to all the keypoints in one document. 80

5.11 Candidate local zones. 81

5.12 An example of MS. The indexes in the jth column is the indexes of the

keypoints in the query image, of which LZ[j] is the candiditate keypoints. 84

5.13 Plot of the scores of returning zones. The horizontal axis is the index

of the zones in the spotting list, and the vertical axis is the noramlzied

matching score. 85

5.14 Two examples of Bangla handwritten documents. 86

5.15 (c) the spotting results of (a). (d) the spotting results of (b). The

number marked around the spotted rectangle box is the position in the

spotting list, namely, the smaller the number is, the more similar to the

query image. 88

5.16 (c) the spotting results of (a). (d) the spotting results of (b). 89

6.1 For a 2D smooth contour, wavelet needs much more redundant square-

shapes to describe the contour, but curvelet can represent the contour

more efficiently by enlarged shapes,with different directions (4). 93

6.2 One level of decomposition by Laplacian pyramid (4). 94

6.3 Directional filter bank with l = 3 and 23 = 8 frequency bands. 95

6.4 (b) and (c) are CT and NSCT of the documents in (a). 101

x

List of Tables

2.1 Detailed Evaluation Results from (1) . 22

3.1 Meanings of different values of mark. 34

3.2 The number of distinct words and the corresponding word images in each

data set. 39

3.3 Character Error Rate (CER%) . 41

3.4 Word Error Rate (WER%) . 41

3.5 Writer Independent Dataset for Net . 41

3.6 Writer Independent Dataset for Net1 and Net2 42

3.7 Resutls on Large Writer Independent Dataset 42

4.1 Experimental Results with Comparison to DTW-based Methods 61

4.2 Experimental Results of Keypoint-based Methods 62

4.3 Experimental Results of Different Keypoint Detection Methods 64

5.1 Experimental Results . 86

6.1 Writer Identification Results . 100

6.2 Content relevance Retrieval Results . 101

6.3 Content relevance retrieval results . 102

xi

LIST OF TABLES

xii

Abstract

A vast amount of information is stored as text format in large databases or

digital libraries. Users can easily access them by traditional text retrieval

methods which many researchers have worked on for decades. However,

paper-less life is impossible nowadays and many important and valuable

documents are available only as imaged format. Therefore, it is now an im-

portant and urgent issue to let users access these imaged documents effec-

tively and efficiently, similar to retrieving text format documents produced

by computer software. Information retrieval for handwritten document im-

ages is more challenging due to the difficulties in complex layout analysis,

large variations of writing styles, and degradation or low quality of histori-

cal manuscripts. Optical Character Recognition (OCR) can convert word or

text line images directly to their transcriptions and traditional text retrieval

methods can be used to retrieve user specified information. However, OCR

needs large segmented and labelled training data, and recognizing the entire

documents is a waste of time if the objective is to just to retrieve an imaged

document without having the process the recognized text. Furthermore,

OCR may provide poor recognition results due to unconstrained writing

styles. In order to overcome the limitations of OCR, keyword spotting be-

comes an alternative way to retrieve handwritten documents. It only needs

the features extracted from the imaged documents, and has no use of the

ASCII content. In view of large variations in handwriting styles, this thesis

will first present a method for extracting text lines from multilingual hand-

written documents. Secondly, a combination of two well-trained networks is

used to increase the recognition performance for word images. Thirdly, Heat

Kernel Signature (HKS), which can better tolerate non-rigid deformations

than gradient information, is used to represent the key points detected on

the documents, and to achieve word image matching and segmentation-free

keyword spotting. Finally, we will present our proposed retrieval method

which can achieve writer identification and content relevance retrieval based

on the same set of extracted features.

Chapter 1

Introduction

1.1 Background and history

With the development of computer and network, a large amount of documents are

stored as text format, and users can easily access useful information by traditional text

retrieval techniques which many researchers are interested in and working on. However,

in recent years, people are devoting themselves to protect important and valuable doc-

uments, most of which are printed or written by single hand, such as historical books or

manuscripts, business contracts or letters, published books or magazines, bank cheques,

handwritten notes or records, and so on. In order to preserve and archive precious in-

formation in these documents, and also let more people access them conveniently, the

documents are always scanned into large digital databases as image format. How to deal

with these imaged documents, how to let users access and retrieve them efficiently and

effectively similar to the text format documents become an important issue. Firstly,

predominant document image retrieval is achieved by applying traditional informa-

tion retrieval methods to the OCR’ed (Optical Character Recognition) transcriptions

of document images. In other words, in order to retrieve imaged documents, docu-

ment images are converted into text format which is machine readable using OCR,

and then conventional text retrieval techniques are applied to achieve retrieval tasks,

such as the methods used in The Heinz Electronic Library Interactive On-Line System

(HELIOS) (5), Excalibur EFS and PageKeeper from Caere. OCR can do well with

machine printed documents in which character font and size can be predefined, and

text and background can be distinguished easily, but OCR cannot do a good job if the

3

1. INTRODUCTION

original documents are of low quality containing noise, the font and language are rare,

or the content is handwritten which includes different kinds of variations of characters

or words among different writers or even for the same writer. Consequently, we can-

not preserve the imaged documents as full-text format by applying OCR on the whole

documents, especially when containing non-text content that cannot be converted with

sufficient accuracy completely. Either, we cannot directly index converted documents

which may contain some kinds of errors because of the weakness of OCR discussed

above. Therefore, we cannot provide reliable retrieval systems for users. Motivated

by these observations, some efforts are concentrated on tolerating OCR errors or im-

proving OCR results by using OCR candidates (6) (7) (8) (9) (10) (11) (12) (13) (14)

(15) (16) (17) (18). Besides these methods, an alternative, another from a different

perspective way is available, namely keyword spotting with no need for correct and

complete character recognition, but directly characterizes imaged document features at

the character-level, word-level or even document-level, and manipulate retrieval tasks

efficiently even for imaged documents containing both text and non-text content, such

as graphs, forms or natural images. The essentially idea inside keyword spotting is rep-

resenting characters or words shape features extracted directly from imaged documents

instead of complete recognition by OCR. Spitz presented some research on keyword

spotting using character shape code (19) (20) (21) (22). In the proposed methods, de-

ciding the proper number of bits used for indexing is an important issue. These methods

are simple and efficient, but with drawback of ambiguity. Many other efforts are made

to avoid directly character recognition. However, in order to obtain the character codes,

character segmentation must be implemented correctly which cannot be applicable in

some cases, such as when the characters are interconnected or overlapped resulting in

segmentation errors, so that, word-level methods were proposed which treat a single

word as a basic unit for recognition in (23) (24) (25) (26) (27) (28). (29) introduces

many strategies for character level or word level recognition. But, similar to character

level methods, word level methods also suffer from word segmentation errors. In order

to overcome segmentation problems, segmentation free approaches were proposed in

(30) (31).

Nowadays, more research focus is on handwritten document retrieval because a large

amount of valuable historical manuscripts written by hand are scanned into databases as

digital format for public access, and there are also other kinds of important handwritten

4

1.2 Motivations

documents which need to be preserved for a long enough time and printed versions of

which are not available. Due to the characteristics of handwritten documents, more

efforts are needed. Besides, we can see that most of the methods did the experiments

on relative small size of data, but large scale collection of documents are becoming a

focus (32) (33), so that, how to index and retrieve imaged documents on large scale

such as millions of pages, with low computation cost and high speed, is an imperative

problem.

Always, small, but important aspects for document image retrieval may have much

effect on performance. For instance, different fonts have their distinguished, intrinsic

patterns, so features which are perfect for one kind of fonts may not be adequate for

another. (34) proposed a font adaptive word indexing method. However, font is one

of many characteristics the imaged document has, and many other features should

be considered carefully to adapt for different situations, such as different languages,

degraded documents with noise or handwritten documents with variant writing styles,

etc. (35) (36) (37) dealt with Chinese documents, (38) recognized Japanese documents,

and (39) dealt with Urdu database. (40) (30) (41) reported language independent

methods and (42) recognized documents containing two kinds of languages, Chinese and

English. What is more, researchers found out that traditional algorithms cannot solve

partial word problem. For example, ”develop” is the partial word for ”development”,

”developed”, ”develops”, etc. In order to retrieve the keyword ”develop”, the other

formats containing ”develop” will not be included in the result set. (43) tried to solve

this problem.

1.2 Motivations

A large amount of resources are created as structured content which are produced by

computer software and can be indexed and retrieve easily, but even larger amount

of documents are in paper format and should be scanned into digital databases as

image format some of which are quite precious and important for people to preserve

permanently as electronic format and widely spread around the world by internet,

such as published books and magazines to avoid potential unauthorized copying and

distribution, signed business contracts for legal reason, bank cheques or bills for pro-

tecting privacy, historical documents and manuscripts, etc. Imaged documents should

5

1. INTRODUCTION

be provided for users to access and retrieve including searching keywords though out

documents, finding similar documents which contain close subject, or checking whether

the document contains relevant content the user desires.

However, storing the scanned documents in the databases only as image format can-

not achieve the above tasks because these documents are just images, with no informa-

tion about the content. At the beginning, researchers try to convert imaged documents

into traditional text format documents by OCR, so that, users can easily deal with

these documents as text format documents by conventional information retrieval sys-

tems. But some problems are arising. Firstly, OCR needs good document quality, but

some documents are severely degraded because of environment, long preserved time,

low quality of scanning devices, etc. Secondly, OCR cannot recognition handwritten

documents correctly which contain variant writing styles between different writers or

even for the same writer. Thirdly, OCR can recognize separate characters quite well,

but cannot manage interconnected or overlapped characters. Fourthly, completely con-

verting imaged document by OCR to machine readable code is time consuming and

inefficiently which waste much time, labour and money, because of large size of digital

databases and algorithm complexity. Fifthly, OCR can manage several relative popu-

lar languages. For rare languages, OCR does not work. Therefore, nowadays, imaged

documents are stored as image format without complete recognition and conversion by

OCR, but with adequate index for access and retrieval.

To achieve document image retrieval, several steps are necessary, including noise re-

moval, feature extraction, choosing matching algorithm and indexing documents. For

each of these steps, many approaches are proposed to improve the recall and preci-

sion, in which many kinds of situations are taken into account during researches. For

example, different languages have different kinds of distinct features and we should

apply different methods respectively, so one method can get better performance for

English documents, but may obtain worse results for Chinese documents. Especially,

for a certain kind of language, if we can find the distinguished characteristics of it,

a particular simple algorithm may get even tremendously excellent performance. But

we also face some multi-language imaged documents which need language independent

algorithms. Besides, different kinds of degradation for the imaged documents should

be treated differently and properly, and with the size of digital databases increasing

rapidly, computational speed is becoming an important consideration.

6

1.3 Aims and Scope

We have considered text content in imaged documents as discussed above, but there

are other kinds of content on the handwritten documents, such as non-textual content,

like graphs, logos, signatures, etc. How to separate them from text content, how we

can retrieve text information in complex structured documents, and how to figure out

whether the results of keyword retrieval are from text content or non-text content are

the problems we should face. Furthermore, with the rapid development of computer

and information techniques, new problems and requirements we have never considered

will appear. In document image retrieval research area, variety of aspects about the

document inherent characteristics should be considered, and for different applications

about imaged documents should be treated and solved differently in order to achieve

various aspects and needs.

1.3 Aims and Scope

In this thesis, our aim is to propose methods which can improve the performance

for handwritten document image retrieval. The specific objectives are presented as

following:

1. Propose a text line segmentation method for multilingual handwritten documents

based on seam carving, but with the constraints to lead the energy to be passed

along the main body parts of text lines;

2. Combine two trained networks to improve the handwritten word recognition re-

sults, based on our proposed method to split the training data;

3. Apply Heat Kernel signature (HKS) to represent handwritten documents. HKS

has been proven to perform better than SIFT descriptor for non-rigid deforma-

tions which is always the case in handwriting scenarios. We propose different

methods for word image matching and segmentation-free keyword spotting based

on HKS.

4. Instead of applying Non-Sampled Contourlet Transform (NSCT) on the whole

documents, NSCT is only generated on the local patches centered at each detected

keypoint, so that NSCT can be used not only for writer identification, but also for

document retrieval according to content relevance based on our proposed keyword

spotting methods.

7

1. INTRODUCTION

There are many different kinds of handwritten documents, such as envelops, forms,

notes, etc. In this thesis, we focus on the documents only containing text, without

non-textual content, such as graph, logo, or table, because our study only focuses on

retrieving the textual content, including extracting text lines, matching or recognizing

word images, or spotting query words and retrieving relevant documents.

1.4 Chapter Overview

In the rest of this thesis, a text line segmentation method is presented in Chapter 2,

which applies constrained seam carving on the whole documents and extracts the text

lines by calculating the energy map only once. Based on the extracted text lines, word

recognition using Bidirectional Long Short-Term Memory (BLSTM) with Connectionist

Temporal Classification (CTC) on word images segmented from the text lines are de-

scribed in chapter 3, and instead of using one trained network, two well-trained networks

are combined to improve the recognition results. Due to the limitations of the super-

vised learning based methods, a word image matching method and a segmentation-free

keyword spotting method without training are presented in chapter 4 and 5 respec-

tively. In Chapter 6, we will present how to retrieve relevant documents based on both

writer information and content relevance. At last, chapter 6 summarizes the work done

so far and discusses the future work.

8

Chapter 2

Text Line Segmentation

In this chapter, we will present a language-independent method to extract text lines

from handwritten document images. Our proposed method is based on seam carving

algorithm, which has been already used for text line segmentation. However, in order

to tolerate multi-skewed text lines even in the same document image, we proposed a

constrained seam carving method, which can constrain the energy to be passed along

the connected components in the same text line as much as possible. Moreover, our

proposed method can extract all the text lines by computing the energy map only once.

2.1 Introduction and Related Works

Text line segmentation is a very crucial step for Optical Character Recognition (OCR)

(3) and keyword spotting (44) (45), both of which are used to provide reliable in-

formation retrieval throughout a large amount of document images. However, unlike

printed documents, which have a finite set of constrained layouts, finite types of fonts,

pre-defined sizes of characters and well-separated text lines, handwritten documents al-

ways contain unconstrained writing styles, such as long ascenders or descenders which

may connect different text lines together, multi-skewed text lines even in the same doc-

ument image, and small floating strokes. All these unpredictable situations can lead to

much difficulties in text line segmentation tasks.

There are two main broad categories of segmenting text lines, one is top-down ap-

proaches, and the other is bottom-up approaches. As the name suggests, top-down

methods try to estimate the locations of the candidate text lines first. Then the esti-

9

2. TEXT LINE SEGMENTATION

mation is refined by assigning components to the text lines which they belong to with

higher probabilities. Finally, large components, which touch multiple text lines are

split into pieces, and these pieces are assigned to different text lines separately. On the

other hand, bottom-up methods try to find local components first, which are always the

connected components (CCs), and then group the components together into separate

text lines based on different types of grouping algorithms.

For top-down methods, in (46), document images are first divided into separate

column chunks, the width of which is 5% of the width of the document. Horizontal

projection profiles of the foreground pixels are generated for each chunk. Based on

the smoothing projection profiles, the valleys in every chunk, where the number of

foreground pixels are minimum between two consecutive peaks, are located and used to

indicate the positions where two text lines should be separated. The initially estimated

text lines are extracted by connecting valleys in each profile with the closest ones in the

previous profile. Separate lines are drawn horizontally from left to right, and for unused

valleys, separate lines are drawn horizontally at the same position as in the previous

profile. When a separate line encounters a component, bi-variant Gaussian densities

are used to capture spatial features, and a decision is made to assign the component to

the optimal text line, above or below.

Besides, (47) applied a steerable directional filter to get an Adaptive Local Connec-

tivity Map (ALCM) of the original document. Using multiple directions of the filters,

the convolution results can reflect how likely one text line appears at each position. The

estimation is made using the maximum response of the convolutions. In ALCM, large

values always correspond to the pixels lying in the dense text regions. Therefore, after

applying a local adaptive binarization method, regions with dense text are retained,

presenting the entire text lines or partial ones. Finally, components crossing multiple

text lines are separated and other unassigned components are allocated to the spatially

closest text lines.

For bottom-up methods, a Hough Transform based method was proposed in (48).

Document images are binarized and enhanced first, and the connected components

(CCs) are extracted. Based on the average height and width of all CCs, CCs are

grouped into three exclusive subsets: large components, small CCs, such as accents,

and the remaining normal sized CCs, which constitute the main body parts of the

text lines. For each CC in the third subset, it is partitioned into equal-sized blocks.

10

2.1 Introduction and Related Works

The Hough transform is applied to the gravity center points of all blocks, and assign

a CC to one text line if half of the points are assigned to this text line, according to

the accumulator array. In the post processing step, the CCs in the second subset are

assigned to the closest text lines, and the CCs in the first subset are either assigned

to the text line they only lie on, or separated into different parts, and assigned to

individual parts separately.

In (49), the distances between CCs are measured based on a special designed metric

using supervised learning, which can enlarge the distance between two neighbouring

CCs in different text lines, and narrow the distance if they are lying in the same text

line. After removing small or large CCs, documents are represented by a graph, each

node of which is a normal sized CC, and with the trained distance metric on every pair

of neighbouring CCs, a Minimal Spanning Tree (MST) is built. By cutting the edges,

the end nodes of which belong to different text lines, CCs are grouped into different

text lines. Unassigned CCs are allocated applying similar post processing methods

mentioned above.

There are always debates between top-down and bottom-up methods. Top-down

methods may suffer from large curved documents, or multiple touching text lines, and

bottom-up methods focus on local features, and many complicated computation and

heuristics are needed. (50) presents a review of existing methods for extracting hand-

written text lines.

In this chapter, we propose a method based on seam carving to capture the global

characteristics of the documents, which was first used in (51) for language-independent

text line extraction. We can find seams from left to right, or from top to bottom, and the

seams with maximum accumulated energy indicate the possible locations of text lines.

The energy we will use is the intensity values on the documents. Therefore, a seam

passing through the main body part of a text line can accumulate much more energy.

In order to capture more information in local regions, we constrain the scope and

orientation of passing the energy, in order to transmit the energy of one point mainly

to the neighbours in the same text line, and also avoid making the points accept energy

passed from too far away or by the ones in the different text lines. Moreover, we extract

all the text lines by computing the energy map only once, instead of recomputing the

energy map after one text line is extracted, as in (51). We also smooth the generated

11

2. TEXT LINE SEGMENTATION

seams by polynomial fitting, in order to correct the sharp orientation changes along

seams.

2.2 Seam carving

Seam carving was first proposed for content-aware image resizing in (52). The seams

with minimum gradient information will be removed to keep the important content of

the image. For an image to be resized, an energy map is generated by the following

energy function (52):

e(I) =| ∂
∂x

I | + | ∂
∂y

I | (2.1)

where I is the image with the size of r × c, and ∂
∂xI and ∂

∂y I are the horizontal and

vertical gradients respectively.

Seams in the horizontal and vertical orientations are extracted based on the energy

map. Every seam is a connected path, all the pixels along which have lower energy

values in its horizontal or vertical neighbours. Therefore, these extracted seams can be

removed because they contain less information, if we need to shrink the image.

However, in order to extract text lines, we want to find the seams crossing more

strokes, and these seams can indicate the locations where one text line probably ap-

pears. In (51), the energy map is calculated using Signed Distance Transform (SDT). In

SDT, the pixels on the strokes have negative values, and the others in the background

have positive values. As a result, horizontal seams following local minima represent the

positions of the candidate text lines.

As shown in Fig. 2.1, the SDT of a binary image in Fig. 2.1(b) indicates that the

nearer the points to the center axis of the strokes, the lower the values are in SDT.

Therefore, in the intra-space of consecutive words or text lines, the values are very high.

Assuming E(I) is the energy map based on SDT, seams are generated using a

minimum energy accumulator M , which is constructed as following (51):

M(i, j) = 2× E(i, j) +min1l=−1[(M(i+ l, j − 1)] (2.2)

where i ∈ [1, r], j ∈ [1, c], and we only consider continuous connected seams.

12

2.3 Our proposed method

(a) The original binary image. (b) SDT of the image in (a).

Figure 2.1: An example of a binary image and its SDT. In SDT, the darker one point is,

the lower value its SDT has.

M can accumulate minimum energy for every seam, from left to right, and the

seam with minimum accumulated energy is generated in an inverse direction, from

right to left, by choosing the minimum value in the right-most column in M and

traversing backward. In (51), after each text line is extracted, the energy map need to

be recomputed, this may cause large computation effort. In the next section, we will

propose a method to detect all the text lines, by computing the energy map only once.

2.3 Our proposed method

2.3.1 Preprocessing

The average height AH and the average width AW of CCs are first calculated for each

document, and CCs are classified into three classes: small stokes, large components,

and ordinary CCs. Small strokes are mostly located relatively far from the central axis

of the text lines, and large components are the CCs with long ascenders or descenders,

either only belonging to one text line or connecting multiple text lines. These two types

of CCs may cause the seams jumping between different text lines. In order to avoid

unwanted disturbance, small strokes are removed, and for the large components, only

the parts with high density values in the horizontal histogram are kept. For example,

if a large component is detected, as shown in Fig. 2.2(a), we first include all the other

strokes in its 3 × AW forward and backward columns, as shown in Fig. 2.2(b). The

corresponding horizontal projection histogram is shown in the right part of Fig. 2.3.

As shown in Fig. 2.4, we smooth the histogram by convolving the histogram with a

13

2. TEXT LINE SEGMENTATION

Gaussian kernel with mean AH, and standard deviation AH/4, and remove the parts

of the large component with intensities lower than a threshold.

(a) (b)

Figure 2.2: A large components and its neighbouring strokes lying in the same text lines.

(a) is a large component detected. In (b) are the horizontal neighbouring strokes.

Figure 2.3: The horizontal histogram projection of the image in Fig. 2.2(b)

Unlike previous proposed methods, which always discard large components in the

text line extraction process, we keep their main body parts. Because large components

may be constructed by two long words in different text lines, due to their long ascen-

ders or descenders, if we just discard them, there will be a large gap between their

neighbouring CCs, so that the seams may easily jump to other text lines when they

encounter these large gaps. Therefore, we keep main body parts of large components,

not only avoiding large gaps, but also letting the main body parts contribute to the

energy passing, positively.

14

2.3 Our proposed method

Figure 2.4: A threshold in the smoothed histogram is chosen, which is indicated by the

red line. The foreground pixels lying in the rows with the values smaller than the threshold

are removed.

2.3.2 Energy function

Distance maps are calculated separately for the points inside the components and others

in the background. For the points inside the components, we first extract contours of

all components on the documents and calculate Euclidean distance transform, denoted

as C. Only the values on the components are kept. Therefore, the points along the

central axis of strokes have larger values. For the points in the background, we extract

skeleton of components, and calculate the Euclidean distance transform, denoted as S.

Only the values in the background are kept, so that, points far from the central axis of

strokes have larger values.

In order to enhance the energy along the writing orientation of the text lines, we

convolve C by an ellipse-shaped Gaussian kernel, with major and minor axes of 3×AH

and AH respectively. The Gaussian kernel is normalized by scaling all the values into

[0,1]. We use multiple Gaussian kernels with different rotation angles for each pixel,

and choose the one with the maximum energy value. By applying Gaussian kernels,

the intra-space between two words in the same text line can accept energy from the

components on the left and right. The energy can flow along the writing orientation

in the intra-space between components. Therefore, the seams can follow the writing

15

2. TEXT LINE SEGMENTATION

orientation, instead of jumping among different text lines.

Finally, we turn the sign of the positive values in C to negative and assign the other

zero values to the ones in S at the same positions. The final signed distance transform

is denoted as E′(I).

2.3.3 Energy accumulation

Energy is accumulated from left to right, and the energy can be passed to the points

in the following columns on the right. In some cases, the intra-space of two text lines

are very narrow, such that the components in one text line may accept the energy from

different text lines. If the energy accepted from the same text line is lower, the seam

along the text line with lower energy will jump to other text lines.

Moreover, we do not want the energy to be passed too far away. For example, if

two text lines in one document are with different lengths and they are all aligned to

the right. The longer one can always accumulate more energy than the shorter one in

every column, and the components in the shorter text line can be easily affected by the

larger energy in the longer text line, so that the seam will also can jump between these

two text lines.

In order to weaken the effect of the energy passed by a point from too far away, we

accumulate the energy by weighting based on the distances, indicating from how far

away the energy is passed. We also set a maximum distance, so that the energy from

the distance larger than the maximum distance will be discarded. Besides, for the new

energy accumulation matrix M ′, we generate Hist for all the points in the column on

the left of the column under consideration, recording all the energy accumulated so far

and the distances where each energy is from. The longest length of Hist is set to 1
2

of the width of the document, and the elements in Hist is first-in-first-out. If the size

exceeds the limitation, the first added element will be discarded and the new element

is added at the last position.

We initialize M ′(:, 1) to E′(:, 1), and Hist(:, 1) to E′(:, 1). M ′ is constructed as

following:

dist = length(Hist(i− 1, j − 1)) : −1 : 1 (2.3)

16

2.3 Our proposed method

e1 = Hist(i− 1, j − 1)./dist (2.4)

e2 = Hist(i, j − 1)./dist (2.5)

e3 = Hist(i+ 1, j − 1)./dist (2.6)

M ′(i, j) = 2× E′(i, j) +min(e1, e2, e3) (2.7)

where dist is used to denote the distance for each energy, which has been already

accumulated. For example, if the length of Hist(i−1, j−1) is l, the energy accumulated

from the farthest distance is l along the minimum energy accumulated path and dist =

[l, l−1, ..., 1]. The first element in Hist(i−1, j−1) is the farthest, and the last element

is the nearest, namely the newest added one. So that, the energy in Hist(i−1, j−1) is

normalized by dividing the corresponding distances, in order to weaken the effect of the

energy from far away, and enhance the influence of the neighbouring energy. When we

select the minimum one among e1, e2 and e3, for example e1 is selected, then Hist(i, j)

= [Hist(i− 1, j − 1), E′(i, j)]. After all the points in column j are updated, the values

stored in Hist(:, j − 1) can be discarded to save storage space.

(a) M using Eq. 2.2. (b) M ′ using Eq. 2.7.

Figure 2.5: The energy accumulation matrix for Fig. 2.1(a). The energy values are scaled

to [0,1] for visualization.

As shown in Fig. 2.5, both M and M ′ are calculated based on the same distance

map, however, in Fig. 2.5(a), we can see that from left, the energy is propagated with

17

2. TEXT LINE SEGMENTATION

a nearly 90 degree flare angle facing to the right horizontally. So that the energy can

be passed across different text lines. In Fig. 2.5(b), with our proposed method, the

energy is constrained to be passed along the same text lines, and interfering with the

neighbouring text lines above and below can be avoided.

2.3.4 Seam extraction

At the end of constructing M ′, from every cell in the last column, we generate all seams

from right to left and get a set of connected horizontal seams, denoted as Seams. If

the height of the document is H, there will be H seams in Seams. Fig. 2.6 shows the

seams we found using normal seam carving and our proposed method. We can see that,

in Fig. 2.6(a), the seams which are generated based on M , jump among different text

lines, if we group the components touching the same seams together, we cannot get

correct text lines, and many normal size components are not located on any extracted

seams. This situation is caused by large intra-space between two words in the same

text line. However, in Fig. 2.6(b), the seams with our proposed method are generated

correctly, all of which are along the central axis of the components, even though the

intra-space between some words are large.

(a) Apply the method presented in Section 2.2. (b) Our proposed method.

Figure 2.6: Seams generated by M and M ′ in Fig. 2.5. The red lines indicate the

extracted seams.

According to Fig. 2.6(b), the seams only have 5 different beginning locations in the

first column (the left most column) on the document, namely, the starting positions of

candidate text lines. Therefore, in Seams, we group the seams with the same value in

the first position into one set, denoted as Seamsi, i ∈ [1, n], where n is the number of

candidate text lines. We only keep one seam in each set, which consists mostly smooth

18

2.3 Our proposed method

and similar writing orientation in any local area. Therefore, we apply the polynomial

curve fitting to every seam in one set, and choose the one with minimum distance to the

fitted curve. The final seams we found are shown in Fig. 2.7, denoted as si, i ∈ [1, n].

Figure 2.7: The final seams detected by our proposed method. There are total five seams,

indicating the central axis positions of five text lines.

Due to the lengths of some text lines being too short, there may be no seams detected

for them. Therefore, we check the regions between two detected seams. If there are

many normal sized components that do not intersect with any seam, a missing text line

is detected. We use the corresponding portion in M ′, which can cover the missing text

line, and generate a new seam.

2.3.5 Postprocessing

After we generate all seams, for each si, we first put all the normal sized components,

which only intersect with one si, into a component set ci. For the remaining compo-

nents, we will handle them in the following four cases separately:

Case 1: If a large component only intersects with one seam, then we just put them

into the corresponding component set;

Case 2: If a large component does not intersect with any seams, we will assign them

to the seam which is closest to its main body part, ignoring the long ascenders or

descenders;

Case 3: If a large component intersects with multiple seams, we first thicken the inter-

sected seams with height AH as text regions, and check the percentage of foreground

19

2. TEXT LINE SEGMENTATION

pixels of the main body part in the large component lying in each text region. If only

one text region contains more than 70% of the foreground pixels, the large component

should belong to this text region. If more than one text regions contain similar per-

centage of the foreground pixels, the large component should be split and assigned to

the separate component sets. The split method we use was proposed in (48). Fig. 2.8

shows an example of splitting large components, which across two text lines;

Case 4: For small components, we assign them to the closest text lines.

Figure 2.8: Split a large componnet into two parts, and the components belonging to the

same text line are marked as the same color.

2.4 Experiments and Results

2.4.1 Evaluation method

Let I denote all the foreground pixels in one testing document, Gj the set of pixels

inside the j ground truth region, and Ri the set of pixels inside the i results region.

T (s) is a function counting the set of pixels in s, and the matrix MatchScore(i, j) is

used to describe how the result region is matched to the ground truth (1):

MatchScore(i, j) =
T (Gj ∩Ri ∩ I)

T ((Gj ∪Ri) ∩ I)
(2.8)

20

2.4 Experiments and Results

A result region is considered as a one-to-one match to the ground truth region, if

the matching score is equal or above 95%. Assume N is the number of ground truth

elements, M is the number of result elements, and o2o is the number of one-to-one

match pairs, then the detection rate (DR) and recognition accuracy (RA) are defined

as follows:

DR =
o2o

N
(2.9)

RA =
o2o

M
(2.10)

Combining the values of DR and RA, FM is a performance metric:

FM =
2×DR×RA
DR+RA

(2.11)

2.4.2 Experimental setup

We test our proposed method on ICDAR2013 Handwritten Segmentation Contest

dataset (1). In the testing dataset, there are 100 English and Greek (Latin language)

documents, and another 50 Indian (Bangla) documents, totally 2649 text lines. The

handwritten documents contain large writing styles, multi-skewed text lines and touch-

ing connected components. For comparison, there are in total 11 different algorithms,

and many techniques are used, including run-length analysis, Gaussian filtering, energy

minimization, histogram projection, connected components analysis, grouping method,

seam carving, and etc. For details of different algorithms, please refer to (1).

2.4.3 Results

Fig. 2.9 shows the evaluation results of 13 different algorithms based on FM , and

our result has the label ’NUS’ in the horizontal axis. The segmentation result of our

proposed method is FM = 98.41, only 0.25% less than the best result, putting us in

the second position. More results with details are shown in Table 2.1.

Most of our failure cases are mainly caused by small floating strokes and splitting

large components. In Indian documents, some characters have different parts located

vertically, so that the lower parts are sometimes misclassified to the lower text lines.

In Figure 2.10, 2.11 and 2.12, three examples of segmentation results are shown, where

each text line is marked as an unique color.

21

2. TEXT LINE SEGMENTATION

Figure 2.9: The evaluation results (1) based on FM . Our method has the label ’NUS’.

Table 2.1: Detailed Evaluation Results from (1)

Methods M o2o DR(%) RA(%) FM(%)

CUBS 2677 2595 97.96 96.64 97.45

GOLESTAN-a 2646 2602 98.23 98.34 98.28

INMC 2650 2614 98.68 98.64 98.66

LRDE 2632 2568 96.94 97.57 97.25

MSHK 2696 2428 91.66 90.06 90.85

NUS 2645 2605 98.34 98.49 98.41

QATAR-a 2626 2404 90.75 91.55 91.15

QATAR-b 2609 2430 91.73 93.14 92.43

NCSR(SoA) 2646 2477 92.37 92.48 92.43

ILSP(SOa) 2685 2546 96.11 94.82 95.46

TEI(SoA) 2675 2590 97.77 96.82 97.30

2.5 Conclusion

We proposed a text line segmentation method for handwritten documents based on

seam carving. Unlike the previous methods which first applied the idea of seam carving

to extract text lines, we make the energy from earlier columns become less and less

22

2.5 Conclusion

when accumulated to following columns. We also make a constraint that each energy

can be only accumulated up to half way of the document, so that we ensure that the

energy from too far way will not have great influence. Moreover, our method needs to

calculate the energy map only once, and extract all the text lines together, instead of

recomputing the energy map again after one text line is extracted.

In future work, we would like to improve our energy accumulation process to re-

duce the computation time. Moreover, we will improve the performance of splitting

large components which touch multiple text lines, and we will also work on gray level

documents, which have more challenges.

Figure 2.10: Segmentation result of an English document.

23

2. TEXT LINE SEGMENTATION

Figure 2.11: Segmentation result of a Greek document.

24

2.5 Conclusion

Figure 2.12: Segmentation result of a Bangla document.

25

Chapter 3

Handwritten Word Recognition

To get high recognition accuracy, we should train the recognizer with sufficient training

data to capture enough characteristics of various handwriting styles and all possible

occurring characters or words. However, in most of the cases, available training data

are not satisfactory and sufficient, especially for unseen data. In this chapter, we try to

improve the recognition accuracy for unseen data with randomly selected training data

which is always not sufficient enough. By splitting the training data into two subsets

based on trigrams, and training two recognizers separately, the recognizers can focus

on different sets of trigrams. Because, each recognizer is responsible for only half cases

of handwriting characteristics, the training data for each recognizer can be treated as

more sufficient than training one recognizer with whole training set. We also propose

a modified version of token passing algorithm, which makes use of the outputs of the

two recognizers to improve the recognition accuracy.

3.1 Introduction and Related Works

Document images can be segmented into text lines as we present in the previous chap-

ter. Then, we can extract word images from each text line, based on the distances of

the inter- and intra-space between connected components. In order to provide online

access, recognition of the content can allow the users to retrieve document images us-

ing traditional text retrieval methods according to their needs. However, recognition of

unconstrained handwritten documents is always a challenging task and the poor results

may cause unreliable and unsatisfactory retrieval service.

26

3.1 Introduction and Related Works

Handwriting recognition can be achieved at character level, or word level, even at

text line level nowadays. Because of its wide usage and popularity in speech processing

tasks, Hidden Markov Models (HMMs) are also applied for handwritten document

analysis. In (53), one isolated handwritten word is represented by one HMM, but

this word classification approach cannot be used for words which do not appear in the

training data and a considerable amount of training data for each word is required.

Moreover, it cannot be scaled to large vocabularies, because every distinct occurring

word needs an HMM. Therefore, in order to recognize arbitrary words, HMMs are used

to represent character models instead of the whole words, and one word or one text

line is represented by a sequence of character HMMs, which are linearly connected

(54). Based on the trained HMMs, for a given text line, we can obtain the most likely

character sequence and the beginning and end positions of each character in the text

line, using the Viterbi algorithm.

However, the methods based on HMMs suffer from several disadvantages. The

probability of every observation only depends on the current state, and it is difficult to

take the context information into account. Moreover, because handwritten document

recognition is always a discriminative task, HMMs, which are generative, may not

provide better performance than other discriminative models.

Combining HMMs and neural networks is a kind of hybrid method for handwriting

recognition. Many kinds of architectures of neural networks are applied, such as Mul-

tilayer Perceptron (MLP) (55), time delay neural network (56), and Recurrent Neural

Networks (57). Although the hybrid methods can capture context information, they

also suffer from some drawbacks of HMMs.

In the recent works, Recurrent Neural Network (RNN), with Connectionist Tem-

poral Classification (CTC) output layer is applied for unconstrained handwritten doc-

ument recognition (3). Traditional RNN needs presegmented input data, namely, we

should label each position of the input data. But, RNN with CTC output layer can

map the whole unsegmented sequence of the input data to the output labels directly.

Combined with a dictionary, the recognition results for both on-line and off-line data

outperform HMMs.

In order to get satisfactory recognition results, sufficient training data is always

important. However, in practice, unavailability of enough training data is always an

issue. What is more, words in the training data may be distributed unevenly, namely,

27

3. HANDWRITTEN WORD RECOGNITION

some words appear much more frequently than others. For unconstrained writing styles,

consecutive characters are always connected and how one character is connected with

other neighbouring characters are different for different writers or even the same writer.

Therefore, given a set of training data, we split it into two parts based on the occurring

trigrams (three consecutive characters), so that the two training sets contain exclusive

words with two sets of different trigrams. We aim at training two networks separately

on the two sets and make the trained networks capture reliable information about how

consecutive characters appear together in the corresponding training set. If we train

one network on the whole training data, the network needs to capture all the possible

characteristics in the whole training set, and may be biased to the features which appear

more frequently. Due to the insufficiency of the training data, the network may not

be able to capture all the features very well and may not be able to tolerate unseen

features in the testing set. However, if we train two networks, each of which is only

responsible to capture subset of the characteristics, so that the training data for either

of them can be treated more sufficient and the trained networks can be more reliable.

Based on the two trained networks, in the decoding period, instead of calculating the

probability of each whole word in a dictionary, we generate the weighted probabilities

for all trigrams in each possible word, and combine them together to get the final

probability. The word with the highest probability will be returned as the recognition

result for the input word image.

3.2 Preprocessing

The database we use in the experiments is IAM offline handwritten database (58),

consisting of 657 writers. All documents are segmented into isolated and labeled word

images. In order to reduce variations due to different writing styles, the word images

are binarized, with skew and slant correction (59), and the heights of the ascenders,

the main body parts and the descender parts are normalized to 20, 40, and 20 pixels

respectively, as shown in Fig. 3.1.

Nine geometrical features are extracted from a sliding window, with the width of

1 pixel, moving from left to right along each word image. The features are shown as

follows (60) (3):

1. the number of black pixels

28

3.2 Preprocessing

2. the center of gravity of the group of pixels

3. the second order moment of the window

4. the location of the upper-most pixel

5. the location of the lower-most pixel

6. the orientation of the upper-most pixel

7. the orientation of the lower-most pixel

8. the number of black-white transitions

9. the number of black pixels divided by the number of all pixels between the upper-

and lower-most pixel

(a) The original word image.

(b) The normalized word image.

Figure 3.1: An example of the normalized result for an word image from IAM database.

Each dimension of the nine features in one word image is normalized by subtracting

the mean and dividing by the standard deviation respectively. The mean and standard

deviation are calculated on all the word images in the training set.

29

3. HANDWRITTEN WORD RECOGNITION

3.3 Neural Network for Recognition

The recognizer we use for off-line handwritten word images is a Recurrent Neural Net-

work (RNN). Each hidden node of RNN is self-connected and also connected to the

hidden node in the later time step, so that RNN can capture a certain range of previous

input information, as shown in Fig. 3.2(a). However, only history information can be

used by RNN. In order to make full use of all input data, whether in the past or in

the future, an additional backward hidden layer is added, which is not connected to

the original forward hidden layer, as shown in Fig. 3.2(b). The forward states are

trying to capture the past information, and the backward states are making use of the

future information. This structure is named as Bidirectional Recurrent Neural Network

(BRNN), which allows each time step to be evaluated based on both the past and future

information.

However, the authors in (61) present one drawback of the traditional RNN, named as

vanishing gradient problem. There is a limitation in the range of contextual information

that we can use to train RNN, because the influence of each input will be reduced

exponentially over time. In order to overcome this limitation, a specially designed

architecture is used instead of the traditional one, named as Long Short-Term Memory

(LSTM) (62). The hidden nodes of the traditional RNN in Fig. 3.2 are replaced by

the LSTM memory blocks, shown in Fig. 3.3. One LSTM memory block with a single

cell has three gates, which can control the cell to access information over a long time

period.

3.4 Splitting of Randomly Selected Training Data

In practice, we may have insufficient training data on hand, and the recognizer cannot

recognize the words very well which do not or rarely appear in the training data.

Especially, if the words in the training data are not distributed evenly, namely, some

words appear hundreds of times, but others may rarely appear. As a result, the trained

network fits very well the characteristics which occur much more frequently in the

training data, but fail for rarely appearing features. In this section, we try to improve

the recognition results, especially for the words which do not appear in the training

data. Moreover, the training data is randomly selected from a collection of word images,

namely, any word and any number of word images for each word can be included in

30

3.4 Splitting of Randomly Selected Training Data

(a)

(b)

Figure 3.2: Structure of Recurrent Neural Network from (2). (a) Unidirectional Recurrent

Neural Network with 2 time steps unfolded. (b) Bidirectional Recurrent Neural Network

with 3 time steps unfolded.

the training data, which is always the case in the real world. We also test our method

on the writer-independence dataset, the test set of which is also a kind of unseen data

with respect to the training data.

Given a set of training data, we try to split it into two subsets and train them sepa-

rately. Assume train data is a set of randomly selected training data, and train data1,

train data2 are two exclusive training data from train data. From the ground truth of

the training data, we can generate a set, train dict, which contains all distinct occur-

ring words in the training data. We randomly select two words from train dict, which

do not have the same trigrams, and assign their prefix trigrams to tri1 and tri2, respec-

tively, as the initialization. For example, if ’company’ and ’special’ are selected, then

tri1 and tri2 are initialized to [′com′] and [′spe′], respectively. Then, we will generate

31

3. HANDWRITTEN WORD RECOGNITION

Figure 3.3: Structure of LSTM memory block with a single cell from (3). There are three

gates: input gate, output gate, and forget gate. They collect the input from other parts of

the network and control the information the cell can accept. The input and output of the

cell are controlled by the input gate and output gate, while how the recurrent connection

effects the cell is controlled by the forget gate.

two subsets set1 and set2 from train dict as describe in Algorithm 1.

For each word in train dict, we first extract all its trigrams and store them into tri.

Then we check whether tri1 or tri2 contains one of the trigrams in tri. If a trigram in

tri is included in tri1, mark1 is assigned to 1, otherwise 0; if a trigram in tri is included

in tri2, mark2 is assigned to 1, otherwise 0. Then, mark is equal to mark1×10+mark2,

and Table 3.1 shows the meanings of its different values. If both tri1 and tri2 contain

none of the trigrams in tri (mark = 0), we will randomly add tri and the word to

either tri1 and set1 or tri2 and set2, with equal probability. If only one of tri1 and tri2

contains at least one trigram in tri (mark = 1 or 10), we will add tri to it, and add

the word to the corresponding set.

32

3.4 Splitting of Randomly Selected Training Data

Algorithm 1 Splitting the training data into two subsets

1: Random() ∈ (0, 1]

2: for i = 1→ size(train dict) do

3: tri← all trigrams in train dict[i]

4: mark1 = 0, mark2 = 0

5: if ∃t : t ∈ tri and t ∈ tri1 then

6: mark1 = 1

7: end if

8: if ∃t : t ∈ tri and t ∈ tri2 then

9: mark2 = 1

10: end if

11: mark = mark1 ∗ 10 +mark2

12: switch (mark)

13: case 0:

14: if Random() > 0.5 then

15: Add tri to tri1, and train dict[i] to set1

16: else

17: Add tri to tri2, and train dict[i] to set2

18: end if

19: case 10:

20: Add tri to tri1, and train dict[i] to set1

21: case 1:

22: Add tri to tri2, and train dict[i] to set2

23: end switch

24: end for

25:

26: W = train dict− (set1 ∪ set2)
27: for i = 1→ size(W) do

28: tri← all trigrams in W [i]

29: if size(tri ∩ tri1) > size(tri ∩ tri2) then

30: Add tri to tri1, and W [i] to set1

31: else

32: Add tri to tri2, and W [i] to set2

33: end if

34: end for

33

3. HANDWRITTEN WORD RECOGNITION

Table 3.1: Meanings of different values of mark.

mark 0 1 10 11

tri1 × × X X

tri2 × X × X

’X’ means containing at least one trigram in tri, and ’×’ means containing none of

the trigrams in tri.

When we finish checking all the words in train dict, tri1 and tri2 are two sets of

trigrams, and set1 and set2 are two exclusive subsets of train dict. However, there are

some words, some of whose trigrams are both included in tri1 and tri2. For such cases,

if tri1 contains more trigrams of the words than tri2, we will add the trigrams and the

words to tri1 and set1 respectively, otherwise, put them into tri2 and set2.

Because of the randomness when mark = 0, we repeat Algorithm 1 for several

times, and choose the results, in which the sizes of tri1 and tri2 are nearly the same

and they have least common trigrams. At last, based on set1 and set2, we put the word

images containing the words in set1 to train data1, and others to train data2.

Consequently, we split the training data into two subsets, and make them contain

two sets of different trigrams. For training, we construct two RNNs with LSTM hidden

layers (BLSTM) (3) Net1 and Net2, trained on train data1 and train data2 respec-

tively, in order to make the networks capture information of tri1 and tri2 separately.

In theory, we can split the training data into three or more subsets. However, because

of insufficient training data, the more sets we split into, the fewer word images each

set can contain, and the more likely we cannot get well enough trained networks as

we expect. Moreover, the computation time cost for combining outputs from multiple

networks highly depends on the number of split training sets, therefore for the current

work we split the training data into two subsets instead of three or more.

3.5 Modified CTC Token Passing Algorithm

3.5.1 CTC Token Passing Algorithm

Based on the token passing method for HMMs (63), CTC token passing algorithm is

proposed in (3) for text line recognition and also used for keyword spotting in (45).

34

3.5 Modified CTC Token Passing Algorithm

For single word recognition, we expect the probability of each possible word with a

sequence of ASCII characters based on the output of the trained network. Assume we

have N different characters and the input has t time steps, then the network will output

the probability of each character appearing at each time step, constructing an N × t
matrix. Using dynamic programming, the best path through character probabilities is

calculated for each input word, and the final accumulated probability value is treated

as the appearing probability. The word with the highest probability is returned as the

recognition result.

As shown in Fig. 3.4, the image on the top shows the output of a trained network

with the input image at the bottom, containing the word ’report’. The total number

of time steps is the same as the width of the input image, and we assume that the

network is trained for the 26 lower-case characters. The darker the block is, the higher

the probability of the corresponding character appears with. For example, at time step

25, the 18th character ’r’ has the highest probability, assuming characters are indexed

in lexicographical order. However, in some cases, the trained network cannot recognize

every character perfectly, such as the character ’r’, which has similar probability with

’n’ at time step 180. Therefore, a dictionary is used to filter out impossible character

sequences.

3.5.2 Modification to spot trigrams

Because we try to spot all possible trigrams in the input image, other than the whole

word, based on the word spotting algorithm proposed in (45), we propose a modified

version in order to get the weighted probability for each trigram of one input word and

combine them together to get the final score.

When we finish training Net1 and Net2, which are trained on train data1 and

train data2 separately, we apply a modified token passing algorithm described in Al-

gorithm 2 to calculate the probability of each word in a closed dictionary Dict. When

the trained Neti (i = 1, 2) accepts a sequence of column features extracted from a

word image, it will return Probi(c, t) with two parameters: c indicates the character

(lower-case and capital characters, blank symbol ′#′, and any-character symbol ′∗′)
and t indicates the time step or position, so the value of Probi(c, t) is the probability

of the character c appearing at time t. We assume ′∗′ can appear at any time step, so

Probi(∗, t) = 1 for all t.

35

3. HANDWRITTEN WORD RECOGNITION

Figure 3.4: The output of a trained network for the input image ’report’. x − axis

indicates the time steps, with the size as same as the width of the word image, and y−axis
indicates the index of all lower-case characters, in the lexicographical order. At the time

step 180, ’t’ and ’n’ have similar probabilities. Using a dictionary, we can easily exclude

’n’.

For each word w = c1c2...cn in Dict, we first generate all its trigrams {c1c2c3, c2c3c4,
· · · , cn−2cn−1cn}. We aim at obtaining the probability of each trigram appearing in the

input image instead of the whole character sequence as in (45), and we also should take

the order of how the trigrams appear one by one into account. So, for each trigram,

we define a set w′ based on the set of trigrams, by first adding ′#′ at the beginning

and end of each character, and add ′∗′ to the beginning except for the first trigram,

and at the end except for the last trigram. For example, the trigrams of the word

’limit’ is { ′lim′,′ imi′,′mit′ }, and w′ is { ′#l#i#m#∗′,′ ∗#i#m#i#∗′,′ ∗#m#i#t#′

}. For each entry in w′, w′[j], j ∈ [1, size(w′)], instead of using all time steps, we

only consider the part where the corresponding trigram probably appears. Assume the

width of the input image is L, the estimated width of one character in w is L/len(w)

(len() calculates the number of characters in the given string), denoted as len c, so the

36

3.6 Experiments and Results

width of one trigram is estimated as 3 × len c. We divide the whole time steps into

len(w)−2 parts, each of which corresponds to one entry in w′. For w′[j], the time steps

we consider are {(j− 1)× len c+ 1, · · · ,min(L, (j+ 2)× len c)}. Because the width of

all characters may not be the same, such that the width of two consecutive characters is

less than 2× len c or the width of one character is larger than len c, so we expand each

part by len c at the beginning and the end, and the time steps under consideration are

changed to {max(j− 2, 0)× len c+ 1, · · · ,min(L, (j+ 3)× len c)}, where the minimal

and maximal value are denoted as s p and e p, respectively. For example, if the width

of the input word image is 200, and we want to generate the probability for word ’limit’,

then len c = 40 and the divided parts of time steps is {1 : 160, 1 : 200, 41 : 200}. Due

to the expansion, the time steps for w′[j] may include other parts of characters, so we

allow any-character symbol ′∗′ appearing at the beginning or the end of the trigram as

shown in Line 3,4 of Algorithm 2.

Given w′[j], s p, and e p, we construct a matrix Vi (i = 1, 2), with the size of

len(w′[j]) × (e p − s p + 1), which is initialized to −Inf for all elements. V (·, t) is

updated based on the values in V (·, t−1) to get the optimal character sequence at each

time step. Scorei is obtained based on the output of Neti, however, when the length of

w′[j] is bigger, we will accumulate more probabilities in Vi, so scorei is normalized by

the length of w′[j]. Assume ni is the number of w′[j] appearing in train datai dividing

by the total number of trigrams in train datai, then ωi = (ni + 1)/(ni + n1−i + 2), so

that we give more trust to the network which is trained on the data set containing more

occurrences of the trigram. We add the sum of the weighted scores to P . However,

the probability of word w also depends on its length. At last, P is normalized by the

size of w′, as the returning probability. Therefore, we calculate the probabilities of all

words in the dictionary, and return the one with the highest probability.

3.6 Experiments and Results

3.6.1 Experimental Setup

The experiment data consists of word images segmented correctly and containing En-

glish words with more than 4 characters, totally 21332 word images and 1601 distinct

words. For words containing less than 4 characters, most of them are stop words, so

we do not test them in our experiments.

37

3. HANDWRITTEN WORD RECOGNITION

Algorithm 2 Modified CTC Token Passing Algorithm Combining Outputs of Two

Trained Networks

1: P = 0

2: Input word w = c1c2...cn, w ∈ Dict
3: w′ = {′#c1#c2#c3#∗′,′ ∗#c2#c3#c4#∗′, · · · ,
4: ′ ∗#cn−2#cn−1#cn#′}
5: for i = 1→ size(w′) do

6: tri = w′[i]

7: l t = len(tri)

8: s p = max(i− 2, 0)× len c+ 1

9: e p = min(L, (i+ 3)× len c)
10: l = ep − sp + 1

11: V1(r, c) = 0 for all r ∈ [1, l t] and c ∈ [1, l]

12: V1(1, 1) = Prob1(tri[1], s p)

13: V1(2, 1) = Prob1(tri[2], s p)

14: for t = s p+ 1→ e p do

15: for p = 1→ l tri do

16: Best = V1(p, t− 1)

17: if p > 1 then

18: Best = Best
⋃
V1(p− 1, t− 1)

19: if p > 2 and tri[p] /∈ { #, tri[p− 2]} then

20: Best = Best
⋃
V1(p− 2, t− 1)

21: end if

22: end if

23: V1(p, t) = max(Best) ∗ Prob1(tri[p], t)
24: end for

25: end for

26: V2 is constructed by the same manner based on Prob2

27: Score1 = log(max{V1(l t, l), V1(l t− 1, l)})/l t
28: Score2 = log(max{V2(l t, l), V2(l t− 1, l)})/l t
29: P = P + (Score1 ∗ ω1 + Score2 ∗ ω2)

30: end for

31: return Score = P/size(w′)

The recognition network is BLSTM, which has 9 input nodes and 53 output nodes,

containing 52 lower-case and capital characters and one more node for ’blank’, the

38

3.6 Experiments and Results

symbol ′#′ in Algorithm 2. The forward and backward hidden layers both have 100

LSTM memory blocks, and the number of total weights is 99253, which are initialized

with a Gaussian distribution of mean zero and standard deviation 0.1. Gradient descent

is used for training the network, with learning rate 0.0001 and momentum 0.9. In the

decoding, we only use a closed dictionary, without any language model.

The performance is measured on the character error rate (CER):

CER = 100× (
insertions + substitutions + deletions

total number of characters in the testing data
) (3.1)

where all the counts are summed over the whole test set.

Word error rate (WER) is also recorded, which is defined as the number of words

recognized wrongly divided by the total number of words in the test set.

3.6.2 Results on Randomly Selected Training and Testing Data

First, we randomly select 20% of the 1601 distinct words and make the corresponding

word images as testing data. Moreover, we try to avoid adding words, which have the

same relatively long prefix into the test set simultaneously, such as ’writes’ and ’write’.

In the all remaining word images, we randomly select 70% for training, and 30% for

validating. We repeat the above procedure and do the experiment for five times, and

record the average results. The number of distinct words and the corresponding word

images for 5 experiments, Expi, i = 1, 2, ..., 5, are shown in Table 3.2.

Table 3.2: The number of distinct words and the corresponding word images in each data

set.

Exp1 Exp2 Exp3 Exp4 Exp5

Train 1288/12479 1275/12403 1292/11949 1253/11529 1272/11904

Validate 1201/5348 1199/5315 1191/5121 1172/4941 1189/5101

Test 310/3505 325/3614 308/4262 347/4862 328/4327

In each entry, the value at the left of ’/’ is the number of distinct words in the

corresponding data set, and the right value is the total number of word images.

In Fig. 3.5, the character error rates for validation dataset of one experiment during

the first 100 training iterations are shown, where Net is trained on train data, and Neti

is trained on train datai, i = 1, 2. The error rates of Net1 and Net2 drop faster than

39

3. HANDWRITTEN WORD RECOGNITION

Net in the first 10 iterations and Net2 is converged much faster than Net and Net1.

We can see that Net1 and Net2 have higher character error rates than Net in the

following iterations, because they are trained on only half of the whole training word

images. We choose the networks with the best character error rates on validation data

for decoding in our experiments, for example, the best networks for Net, net1 and Net2

are in the 60, 61, 31 iterations in the figure 3.5, respectively.

Figure 3.5: Character error rate on the validation data over first 100 iterations.

We do the experiments for 5 times on 5 different sets of training and testing data,

as described in Table 3.2. The results for Net are based on the CTC token passing

algorithm in (45) for single words and the results for Net1 + Net2 are based on our

method. As shown in Table 3.3 and Table 3.4, our methods have better results according

to both CER and WER. For our method, the two trained networks are trained on

different sets of distinct words, in order to capture characteristics of different sets of

trigrams separately, in contrast to training one network on the whole training data,

containing large variations. In the decoding, for each possible trigram, we give more

trust to the network which is trained on more word images containing the trigram, i.e.

the trigram appears much more times in the corresponding training data. Therefore,

we get the probability for each word in the dictionary by the outputs of two networks,

both of which give their results with more confidence.

40

3.6 Experiments and Results

Table 3.3: Character Error Rate (CER%)

Test Set Exp1 Exp2 Exp3 Exp4 Exp5 Average

Net 13.82 11.21 12.46 13.51 11.28 12.46

Net1 +Net2 9.14 8.37 8.69 9.38 8.62 8.84

Table 3.4: Word Error Rate (WER%)

Test Set Exp1 Exp2 Exp3 Exp4 Exp5 Average

Net 16.46 14.17 13.76 14.83 15.79 15.04

Net1 +Net2 13.35 11.27 10.94 11.57 13.29 12.08

3.6.3 Results on Writer Independent Training and Testing Data

Besides using randomly selected training and testing data, we also test our algorithm

on the public dataset used for Large Writer Independent Text Line Recognition Task

(58). We put 21332 word images into the corresponding sets, and totally 16500 words

are used. The separation of the dataset is shown in Table 6.1, on which Net will be

trained:

Table 3.5: Writer Independent Dataset for Net

Set Name Number of Word Images Number of Writers

Train 11642 283

Validation 1 1269 46

Validation 2 1389 43

Test 2200 128

For our algorithm, we split the training data using Algorithm 1, and based on set1

and set2 we get, each validation dataset is also split into two sets, each of which only

contains the words in set1 or set2. Table 3.6 shows the dataset we use for our method.

In set1, there are 1214 distinct trigrams, and in set2, there are 1231 distinct trigrams.

The number of common trigrams in the two sets are 371.

We train Net1 and Net2 on two sets of validation dataset, and test on the same

test dataset in Table 6.1. The results are shown in Table 3.7, which are the average

41

3. HANDWRITTEN WORD RECOGNITION

Table 3.6: Writer Independent Dataset for Net1 and Net2

Set Name for Net1 No. of Word Images No. of Distinct Words

Train 5856 751

Validation 1 643 279

Validation 2 606 273

Set Name for Net2 No. of Word Images No. of Distinct Words

Train 5786 737

Validation 1 626 278

Validation 2 783 326

results after doing experiments for 5 times, i.e. different weight initializations for the

networks. Because of writer independence in the training and testing dataset and large

writing variations among different writers, the CER and WER for Net, Net1 and Net2

are all higher than our experiments in Section 3.6.2. However, our method, combining

two trained networks, also has better recognition results. We also split the training

set randomly, i.e. put each training word image into either train data1 or train data2

with equal probability, and use the same value 0.5 for both ω1 and ω2 in Algorithm 2.

As shown in the last row in Table 3.7, the results are worst. Because of splitting the

training data randomly, in each set, the variations are large, but the training data is

half, so that, the trained networks cannot fit to the large variations very well.

Table 3.7: Resutls on Large Writer Independent Dataset

Validation 1 validation 2

CER(%) WER(%) CER(%) WER(%)

Net 14.2 20.5 13.6 18.5

Net1 +Net2 11.7 16.8 10.1 14.3

Net1 +Net2 (Randomly) 16.2 23.6 15.3 22.8

3.7 Conclusion

We proposed a new method combining the outputs of two networks, which are trained

on the subset of the training data separately. The splitting of the training data into

42

3.7 Conclusion

two subsets satisfies the condition that different words in the two sets are exclusive

and the two word sets have as few common trigrams as possible. Our method for

decoding is a modified version of the Token Passing Algorithm and we only focus on

spotting trigrams instead of the whole character sequence for a word in a Dictionary.

In the experiments, we select the training and testing data from a collection of word

images randomly and also test on the Writer Independence Recognition Task dataset.

Our method has better results both on the character error rate and word error rate.

Moreover, our modified CTC token passing algorithm can also be used to get better

recognition results by combining two trained networks, which are trained on different

sets of training data, than using each network individually.

In the future, we try to apply our method directly on text line images, and also

try to reduce the time cost for decoding. What is more, we would like to test on other

databases, especially for other languages.

43

Chapter 4

Handwritten Word Image

Matching

In this chapter, a novel method for word image matching will be presented, which

is based on Heat Kernel Signature (HKS) and Triangular Mesh Structure. HKS can

tolerate large variations in handwritten word images and can also capture local features

of important points based on their near neighbours. Moreover, the triangular mesh

structure of the detected keypoints is used to represent global characteristics. The

proposed method does not need pre-processing steps, including binarization, skew and

slant correction.

4.1 Introduction and Related Works

In the previous chapter, word recognition method is used to convert the handwritten

document images into text format, which can be used for future retrieval tasks. How-

ever, degradation, noise and various unconstrained writing styles always hinder OCR

in providing satisfactory recognition results. In (64), an alternative way to OCR was

proposed to retrieve useful information for users, especially when it can be used for

spotting query text or word images. Furthermore, only features extracted from the

query images are needed, without knowledge of ASCII content.

A method which is commonly used to achieve handwritten word image matching is

extracting geometrical features in each column of the word images from left to right (65)

and applying Dynamic Time Warping (DTW) (66) to calculate the distance between

44

4.1 Introduction and Related Works

two sequences of feature vectors. However, pre-processing steps are always needed

and very crucial, including binarization, skew or slant correction, and normalization,

therefore the accuracy highly depends on the reliable pre-processing results. Moreover,

column features only take the current column into account and ignore the context

information. Consequently, DTW based on column feature sequences may not deal with

word images with large variations, which is always the case in handwritten documents.

In order to consider context information of the consecutive strokes in handwritten

words, (67) extracted features from a sliding window instead of only one column.

Some other widely used methods are based on Scale Invariant Feature Transform

(SIFT) (68), which has been successfully used in computer vision and object recogni-

tion, and also shows its robustness and reliability to be invariant to multi-scaling and

-rotation of objects in different images. Some variations of SIFT feature are gradually

used for document analysis. In (69), a new feature sequence is proposed using the local

gradient histograms based on the idea of SIFT. Each histogram is extracted from each

cell of a sliding window. However, this method also requires pre-processing steps.

In handwritten documents, infinite writing styles may occur, so that different writ-

ers, or even the same writer, may write the same word in large variant styles, just like

the same word image is deformed by non-rigid deformations in any part of the strokes.

(70) shows that SIFT can deal with affine-invariant situations quite well, but cannot

handle non-rigid deformations. On the other hand, Heat Kernel Signature (HKS) (71)

is proved to be invariant to non-rigid deformations and illumination changes. Motivated

by this observation, we propose a new method for handwritten word image matching

based on HKS. We also propose a new similarity measurement approach to calculate

the distance between two sets of keypoint descriptors, based on triangular mesh struc-

ture, which can capture global spatial relations of keypoints. Moreover, our method do

not need pre-processing steps, such as binarization, normalization, and skew or slant

correction.

In this chapter, we will first introduce the localization of keypoints and how the

HKS descriptor is extracted from each keypoint in a word image, which will construct

the descriptors for the word image. Then, we will present our new method for com-

puting the distance between two sets of descriptors for two word images, based on the

triangular mesh structure and score matrix. Finally, we will test our method on large

variant handwritten word images.

45

4. HANDWRITTEN WORD IMAGE MATCHING

4.2 Descriptor based on Heat Kernel Signature

Heat kernel Signature (HKS) was first proposed for 3D shape recognition or classifica-

tion (72). Based on the 3D coordinates of all the points on a shape surface and their

triangular mesh structure, heat kernel can capture the characteristics of the surface

with the Laplace-Beltrami operator. The heat kernel is isometric invariant, due to

the invariance property of the Laplace-Beltrami operator. Therefore, the heat kernel

can even match the same human or animal with different poses. Moreover, due to its

multi-scale property, we can capture the features in its near neighbourhoods in small

time scales or on the global shape as time progresses, so that for two points, which have

similar features in their small neighbourhoods, they may have very different features

on the whole shape. Therefore, we can match two points by the features from their

small neighbourhoods and extend to a larger domain. In the rest of this section, we

will introduce how to calculate HKS descriptors.

4.2.1 Keypoints Detection and Selection

When HKS is used for shape segmentation or recognition, all the points on the surfaces

are used to measure the distances between two shapes. However, for handwritten

documents, generating descriptors for all the points in the word images (73) and finding

the optimal matching between two sets of descriptors are very time consuming and

unnecessary (74). In order to localize informative keypoints in the word image, we

apply the keypoint detector for SIFT proposed by D. G. Lowe (68).

In handwritten documents, we focus on the keypoints located on the strokes, namely,

we remove the keypoints in the background or near the contour of strokes according

to their intensity values. Therefore, word images are first smoothed by a Gaussian

kernel, and then a set of keypoints in each word image are located, such as the red

points shown in Figure 4.1(a). Finally, the keypoints with the intensity values smaller

than a threshold are removed, which are always located in the background or along the

boundaries of strokes. Figure 4.1(b) shows the final selected keypoints, the descriptors

of which will be generated, as described in the next section.

46

4.2 Descriptor based on Heat Kernel Signature

(a) Keypoints detected by SIFT detector. (b) Removing uninteresting keypoints.

Figure 4.1: Keypoints selection.

4.2.2 Heat Kernel Signature

After the keypoints are detected in the word images, a HKS descriptor will be extracted

from a local patch centered at each keypoint. Heat Kernel Signature can capture

local geometry of 3D shapes with short time scales and gradually represent global

characteristics as time becoming larger (70). The heat kernel has the properties of

invariant to isomeric, and stable to non-rigid deformations. Moreover, it can capture

both local and global characteristics.

(a) (b)

Figure 4.2: Embed 2D image into 3D manifold. (a) illustrates the patch centered at the

6th keypoints in Figure 4.1(b) (assuming all the keypoints are sorted from left to right).

The keypoint is marked as the red dot. (b) shows the 3D surfaces embedded from the 2D

patch in (a). The intensity values are in the range of [0, 255].

In order to apply HKS to word images, we should first embed a patch in a 2D

word image into a 3D surface. We assume that P is a patch, with the size of N ×N ,

extracted from a word image I and centered at a keypoint, as shown in Figure 4.2(a).

47

4. HANDWRITTEN WORD IMAGE MATCHING

The 3D Riemannian manifold M is the 2D surface embedded into 3D space from P ,

satisfying the condition that if (x, y) is a point in P , then there is a point (x, y, z) on

M , where z is the intensity value of (x, y) in P (70), as shown in Figure 4.2(b). The

heat diffusion geometry of patch P is obtained by using the Laplace-Beltrami operator

over the manifold M (75):

(∆M +
∂

∂t
)u(x, t) = 0, (4.1)

where x is a point on M , ∆M is the Laplace-Beltrami operator, and the solution

k(x,x′, t) is named as the heat kernel, presenting how the heat between two points x

and x′ on the same surface diffusing from one to the other at time t, if we assume

that the unit heat source is from the position of x at time t = 0. When M is a

compact manifold, k(x,x′, t) can be expressed compactly by the eigenvalues {λi} and

eigenvectors {φi} of ∆M (75):

k(x,x′, t) =
∞∑
i=0

e−λitφi(x)φi(x
′). (4.2)

Based on Eq. 4.2, HKS is proposed in (72) to present local and global characteristics

around a point p on M as follows:

HKS(p, t) = k(p,p, t) =
∞∑
i=0

e−λitφ2i (p). (4.3)

In order to tolerate 2D noise around keypoints (70), the descriptor of p is constructed

from all the points in P , weighted by a Gaussian kernel considering their distances to

the center. This descriptor is called Deformation Invariant (DI) descriptor (70):

DI(p, t) = [HKS(x, t). ∗G(x; p, σ)]∀x∈P, (4.4)

where G is a 2D Gaussian filter centered at p with standard deviation σ. Figure 4.3

shows the DI descriptors of the patch in Figure 4.2(a) at different t values, where the

number of eigenvalues and eigenvectors we use in Eq. 4.3 is 100.

4.2.3 Discrete Version of Laplace-Beltrami Operator

Because we have finite number of points in a patch, we apply the discrete version of

the Laplace-Beltrami operator based on cotangent scheme (76), in order to obtain {λi}
and {φi} in Eq. 4.3.

48

4.2 Descriptor based on Heat Kernel Signature

Figure 4.3: DI descriptors for the patch in Figure 4.2(a) with different t.

We assume that P = {p1, p2, ..., pv} includes all the pixels in a patch, and the intra-

pixels as shown in Figure 4.4. We construct the triangular mesh based on P . The

discrete version of the Laplacian matrix L is a v × v matrix, and computed as the

following equations (71):

mij =

{
cotαij+cotβij

2 , if i and j are adjacent

0, otherwise
(4.5)

Lij =


∑

k
mik
si
, if i = j

−mij

si
, if i and j are adjacent

0, otherwise

(4.6)

where αij and βij are the angles depicted in Figure 4.4 (c), si is the area of all the

triangles having the same vertex pi. In order to compute the eigenvalues and eigenvec-

tors of the non-symmetric matrix L, let S be a diagonal matrix with Sii = si, and M

with Mij = mij , so that L = S−1M . The generalized eigenvalue problem of L can be

written as:

M~v = λS~v (4.7)

where λ and ~v correspond to {λi} and {φi} in Eq. 4.3. The computational time cost

for HKS is always very high, especially the larger the patch size is, the longer the time

is needed to get eigenvalues and eigenvectors in Eq. 7. Therefore, we can apply the

fast computation for heat kernel presented in (77).

49

4. HANDWRITTEN WORD IMAGE MATCHING

Figure 4.4: (a) A 6× 6 patch. (b) The black dots are the centres of the pixels in (a), and

the circles are intra-pixels. The lines between pixels represent the triangular mesh in the

(x, y) dimensions. (c) A portion of the triangular mesh.

4.2.4 Scale Invariant HKS

Because we extract features directly from word images, without any pre-processing

steps, word images may have different intensity values along strokes, namely, the man-

ifold M maybe scaled along the intensity axis. Moreover, one disadvantage of HKS is

its sensitivity to scale changes. Therefore, in order to remove the dependence to scale,

(78) proposed a scale invariant version of HKS, named SI-HKS. SI-HKS is transformed

by HKS in the following steps. First, instead of sampling heat kernel in time t, we

sample logarithmically, with respect to logα(t). Second, take the logarithm of HKS

and make derivative with respect to logα(t). At last, the discrete-time Fourier trans-

formation of the descriptors generated in the second step finally removes the effect of

scaling changes successfully. (70) shows that SI-HKS not only can tolerate isotropic

scalings, but also can remove the dependence of HKS to scaling only in the intensity

dimension. Therefore, we apply SI-HKS to achieve handwritten word image matching

instead of HKS. Therefore, replacing HKS by SI-HKS in Eq. 4.4, the final descriptor

of each point p is named as Deformation and Light Invariant (DaLI) descriptor and

defined as below (70):

DaLI(p, ω) = [SI-HKS(x, ω). ∗G(x; p, σ)]∀x∈P (4.8)

where DaLI(p, ω) will be denoted as DaLI(p) for short in the rest of this chapter. The

Gaussian kernel is only applied after the computation for DaLI descriptors, and is used

50

4.2 Descriptor based on Heat Kernel Signature

to weaken the effects of the points far away from the center keypoint in the patch.

Therefore, applying Gaussian kernel will not destroy the invariance property of HKS.

4.2.5 Distance between two Descriptors

Note that we consider all the points within one patch. Moreover, word images are not

normalized and also not corrected for skew and slant. Therefore, in order to tolerate

in-plane rotation of points in the patches due to skew and scaling of illuminations

along strokes, we generate differently rotated and scaled copies of the original DaLI

descriptors to obtain the minimal distances between two DaLIs. Therefore, the distance

d between DaLI(p) and DaLI(q) is (70):

d(p,q) = min{θi,sj}‖Tθi,sj (DaLI(p))−DaLI(q)‖ (4.9)

where θi and sj are selected in discrete sets, the descriptor is rotated by angle θi and

scaled by sj by the operation Tθi,sj , and ‖·‖ is the L2-norm.

(a) (b)

Figure 4.5: A word ’Labour’ written by two writers.

In order to match two word images without any preprocessing steps, the descriptors

of the keypoints must be robust enough to tolerate the variations of different writing

styles. The reason why we apply HKS descriptors is the fact that it gives the best per-

formances for both the synthetic deformations and real deformations with illumination

changes in the real scene images as presented (70). In handwriting scenarios, the same

letter may have quite different appearances if written by two writers, and this situation

can be considered as a case when the letter written by the second writer is the deformed

version of the letter written by the first writer. Figure 4.5 shows two images containing

51

4. HANDWRITTEN WORD IMAGE MATCHING

the same word ’Labour’ written by two writers, and we choose all the detected key-

points to show how HKS descriptors can tolerate different writing styles. There are

20 keypoints in Figure 4.5(a) and 30 keypoints in Figure 4.5(b), and we match the

keypoints in Figure 4.5(a) to the ones in Figure 4.5(b) based on the distances between

their DaLI descriptors. For example, if the first keypoint in Figure 4.5(a) is to be

matched, we will compute the distances between its DaLI descriptors and the DaLI

descriptors of all the keypoints in Figure 4.5(b). The distances will be sorted in the

ascending order, and the rank of the true matched keypoint, i.e. the third keypoint

in Figure 4.5(b), will be recorded. All the ranks are plotted in Figure 4.6. We can

see than although the variations of the two words are very large, DaLI descriptors can

tolerate the variations much better than SIFT features. Most of the true matched key-

points are ranked on the top positions in the ranking list if we apply DaLI descriptors,

however, SIFT features cannot be robust enough to match two keypoints which have

large variant writing styles. The matching method presented in (79) depends on the

robustness of SIFT features on scales and rotations. However, in handwriting scenarios,

two matched keypoints cannot be treated as a matching pair based on the Euclidean

distance between their SIFT features as shown in Figure 4.6, because SIFT cannot be

invariant to the non-rigid deformations, i.e. different writing styles.

Although DaLI descriptors cannot guarantee that all the true matched keypoints can

be ranked on the top first, the triangular mesh structure of the keypoints will constrain

the region where the true matched keypoints could appear, so that we can get the

correct matching pairs by our proposed matching method, which will be described in

the next section.

4.3 Word Image Matching

Keypoints are extracted from all the query and candidate images, and DaLI descriptors

are calculated on the patches centered at each keypoint. Then Triangular Mesh struc-

ture is generated based on the spatial relations of all the keypoints in each word image.

All DaLI descriptors and the Triangular Mesh structure are stored in a database for

further usage. Given a query image, we calculate the distances between two sets of

DaLI descriptors, using the method we will introduce in Section 4.3.2 and all candidate

52

4.3 Word Image Matching

Figure 4.6: For each keypoint in Figure 4.5(a), we calculate the distances between its

descriptor and the descriptors of all the keypoints in Figure 4.5(b). All the distances are

sorted in the ascending order, and we only plot the position on which the true matched

keypoint is in the ranking list. We plot the ranks for both the DaLI descriptors and SIFT

features.

images are sorted with respect to their scores in the ascending order. Only images on

the top of the ranking list are returned. The whole procedure is shown in Figure 4.7.

4.3.1 Structure of Keypoints

Keypoints may appear in any part of the word images and two keypoints may be located

in the same column. As a result, we cannot simply concatenate all descriptors, sorted

by their vertical locations from left to right to compare two sets of descriptors. This

means that DTW or other methods measuring distance between two feature sequences

will not be applicable.

As illustrated in Figure 4.1, the selected keypoints are mostly located at the start

or end of strokes, intersection of two strokes or the locations strokes tending to change

orientations. The local patches around these points can capture local characteristics

of word images very well, and the spatial relations of all the keypoints can be used

to represent the global structure of word images. Due to cursive handwritten styles,

some keypoints belonging to different characters may have similar descriptors, but

they may have different spatial relations with respect to their neighbouring keypoints.

We apply the triangular mesh structure based on Delaunay triangulation algorithm, to

connect spatial related keypoints together, as shown in Figure 4.8, where two keypoints

53

4. HANDWRITTEN WORD IMAGE MATCHING

Figure 4.7: Procedure of our method for handwritten word image matching.

Figure 4.8: The triangular structure of keypoints.

connected by a blue line are treated as neighbours. It should be noted that some

long connections between keypoints are not shown in Figure 4.8 because they will be

partially overlapped with other short connections. If we include all the connections,

the triangular mesh will not be shown very clearly.

Assume that we find n unique keypoints {kpi} in I, each of which with a coordinate

(xi, yi), i ∈ [1, n], sorting by yi in ascending order, presenting the location of each

keypoint. By applying Delaunay Triangulation algorithm to coordinates of all {kpi},
we can get a triangular mesh for all keypoints, aiming at connecting neighbouring

keypoints together, and constructing a triangular mesh structure (TMS) to represent

I. From TMS, we generate two functions. One is neighors(kpi) which returns a list

containing the indexes of all the neighbours of kpi. The other is Adj(kpi, kpj) which

returns 1 if kpi and kpj are neighbours or 0 otherwise.

54

4.3 Word Image Matching

4.3.2 Score Matrix

After we obtain the DaLI descriptors and the triangular mesh structure of all the

keypoints we detect for the query image and a candidate image, Score Matrix (SM)

is used to calculate the distance between two sets of descriptors, namely measure the

similarity between the two word images.

Algorithm 3 Construct SM and find the optimal matching score

1: D(i, j) = ‖DaLI(kp′i)−DaLI(kpj)‖, for all i ∈ [1, nc], j ∈ [1, nq], ‖·‖ is the L2-norm

2: Initialize SMs to Inf and SMh to NULL for all components

3: for i = 1→ nc do

4: SMs(i, 1)← D(i, 1)

5: SMh(i, 1)← i

6: end for

7: for j = 2→ nq do

8: for i = 1→ nc do

9: Adj ← {z|z ∈ neighbors′(kp′i) and i /∈ SMh(z, j − 1) and

10: SMs(z, j − 1) 6= Inf}
11: z∗ ← argminz∈AdjSMs(z, j − 1)

12: if Adj is not an empty set then

13: SMs(i, j)← SMs(z
∗, j − 1) +D(i, j)

14: SMh(i, j)← [SMh(z∗, j − 1), kp′i]

15: %comment: kp′i is appended at the tail

16: end if

17: end for

18: end for

We assume that Q is a query image having nq keypoints, denoted by kpj , with

coordinates (xj , yj), j ∈ [1, nq], and C is a candidate image in the collection, having

nc keypoints, denoted by kp′i, with coordinates (x′i, y
′
i), i ∈ [1, nc]. Our task is that

given a sequence of keypoints in Q, we should find the optimal matching sequence of

keypoints in C and calculate the matching score. In order to present the triangular

mesh structure of the query image, we first reorder all kpi in a new sequence. From the

first keypoint kp1, we choose one of its neighbours and check if the neighbour has been

already in the new sequence. If not, we append it into the new sequence, otherwise,

another neighbour is chosen and checked. When a new keypoint is added into the

55

4. HANDWRITTEN WORD IMAGE MATCHING

new sequence, we will continue to check its neighbours and add one neighbour into the

new sequence, until all the keypoints are in the sequence and no one is duplicated. If

not all the keypoints are included in the new sequence, but all the neighbours under

consideration cannot be included, we will back trace to the previous step. For example,

if the two latest added keypoints are kps, kpt, and all the neighbours of kpt cannot be

added into the new sequence, we will remove kpt and check another neighbour of kps,

which has never been checked. Because a keypoint may have more than one neighbours,

we always consider the one with smallest Euclidean distance first. Consequently every

two consecutive keypoints kpi and kpi+1 are neighbours in the new sequence. Therefore,

in the corresponding sequence of keypoints we will find in the candidate image, two

consecutive keypoints should be also neighbours.

SM is a score matrix with the size of nc × nq, each component of which contains

two types of information: one is the optimal matching score SMs(i, j), and the other

one is the optimal matching history SMh(i, j) from kp1 to kpj−1, if kp′i is matched to

kpj . SM is constructed as described in Algorithm 3, and the aim is to find a matching

sequence including the keypoints in C, each component of which can be matched to the

corresponding keypoint in the query image optimally. In a local area of the query image,

matched keypoints in the candidate image should have similar spatial relations to those

in the query image, because at each matching step, we only consider the neighbours

according to the triangular mesh structure, as stated in Line 9 in the Algorithm 3 and

shown in Figure 4.9(a). One advantage of our algorithm is that it can remove dissimilar

images more effectively, because in such situations, similar triangular mesh structure

cannot be found, most of the entries of SMs will be Inf , especially the right half of

columns. We can discard these images quickly by only finding the matching score in

the right-bottom part of SMs, controlled by the thresholds Tc and Tr, as shown in

Figure 4.9(b).

After constructing SM , from the last column nq of SMs to column Tc, we find the

first column of SM , which at least has one entry, with score unequal to Inf , and row

number bigger than Tr, where Tc and Tr are used to discard images which do not have

enough matching points. Assume that the index of the entry with the minimum score

in the selected column is (i, j), the final score of the candidate image is SM(i, j)/j. If

no such entry exists, the candidate image is also discarded.

56

4.3 Word Image Matching

(a) (b)

Figure 4.9: Score Matrix Construction. (a) We only consider the neighbors of the key-

point under consideration. (b) We only search the optimal matching score in the right-

bottom of SM.

For each keypoint in the query image, we enforce every candidate image to have a

matching keypoint which satisfies some constrains in our algorithm. Therefore, if a can-

didate image containing a different word in it either has Inf score, when we cannot find

enough matching keypoints, or a very high score compared with other similar images,

when the sequence of matching keypoints are quite different from the corresponding

keypoints in the query image. As shown in Figure 4.10, for the candidate image in

4.10(a) at the bottom, we can get an optimal matching score at the right-bottom part

of SMs, so that we can also obtain an optimal matching sequence. However, for the

candidate image in 4.10(b), most of the elements in the right half of SMs have Inf

values, so that we discard the candidate image as the irrelevant image.

Furthermore, as shown in Figure 4.11, another advantage of our algorithm is that

matching pairs for two similar images can be found more correctly than Best-Bin-First

(BBF) algorithm used in (68) which discards many correct matching pairs for word

images with large variations.

57

4. HANDWRITTEN WORD IMAGE MATCHING

(a) (b)

Figure 4.10: (a)SMs of the candidate image, also containing the word ’Labour’. (b) SMs

of the candidate image, containing a very different word.

(a) (b)

Figure 4.11: Examples of matching keypoints of two word images. (a) Matching keypoints

by BBF. (b) Matching keypoints by our proposed method.

4.4 Experiments and Results

4.4.1 Experimental Setup

The dataset we use is IAM public handwritten database (58), with very large variations,

and we choose 4000 commonly used handwritten word images written by different

writers as a collection of candidate images and another 69 word images as queries, each

of which appears more than 10 times in the collection. For comparison, we also carry

out the experiments by the following methods: DTW with column features and local

gradient histogram features (69), keypoints matching based on SIFT descriptor with

BBF, and SIFT descriptor with SM. Assuming the width of one query image is w, in

58

4.4 Experiments and Results

the pruning step, all the methods will discard the images with the width smaller than

0.5 ∗ w, or larger than 2w.

Figure 4.12: Examples of word images in our experiments.

Before we extract a sequence of 9 geometric features from each column of the word

images used in (80), all the word images are binarized, slant and skew correction. Each

word image is represented by a sequence of 9-dimensional vectors, which is denoted

as column features (CF). For local gradient histogram features (LGH), after applying

the same pre-processing steps, the sliding window is with height H and width ω = 32,

where H is the height of the word image. At each position, the sliding window is divided

into 4× 4 cells, and for each possible gradient orientation, one of the 8 orientation bins

is assigned (69). The similarity measurement with both the features are calculated by

DTW.

After preprocessing steps, column features (CF) and local gradient histogram fea-

tures (LGH) are extracted based on the methods in (80) and (69) respectively, and

the similarity measurement is calculated by DTW. SIFT features are extracted by the

codes provided by D. G. Lowe online (68). Keypoints are matched by BBF, and word

images in which the query image cannot find matches for more than 30% of its key-

points are discarded. The matching score for each candidate image is the sum of all

the distances between matching keypoints.

Preprocessing steps are only needed for CF and LGH, but not needed for DaLI

descriptors. The parameters needed for DaLI descriptors are set according to the

experimental results shown in (70). In all the experiments, we set the size of the patch

is S × S = 51 × 51, α = 2, t is logarithmically sampled from 1 to 25 with increments

of 1/16, σ = S
4 , φ = {−20,−10, 0, 10, 20}, s = {0.8, 1, 1.2}. Only the first 20 lowest

59

4. HANDWRITTEN WORD IMAGE MATCHING

frequencies of SI-HKS are used as the descriptors. If the number of keypoints in the

query image and one candidate image is nc and nq respectively, Tc = 0.8 ∗ nq and

Tr = 0.8 ∗ nc.

4.4.2 Results and Discussion

Given a query image, all the distances or matching scores are sorted in the ascending

order, and top n candidate images are returned, where n is the number of the match-

ing images in the ground truth. The percentage of the number of correct matching

candidate images in the final ranking list is used to compare different methods, named

as Matching Rate (MR). For each query image, when we only keep top n returning

word images, precision and recall are equal, and MR is also equal to the precision and

recall. For example, there are 34 occurrences for the word ’Labour’, so that from the

returning list, we only keep the top 34 returned candidate word images to compare

different methods.

4.4.2.1 Comparison with the methods based on DTW

We first do the experiments to compare our proposed method with the methods based

on DTW. As shown in Table 4.1, our proposed method outperforms the others. In

Figure 4.13, the top 15 candidate images returned by different methods for the query

word image in Figure 4.8 are shown. We can see that our method can return correct

matching candidate word images much better, even for the images with large variations

and different illumination changes along strokes. However, column features and local

gradient histogram features with DTW can only match very similar word images as

shown in Figure 4.13(a) and Figure 4.13(b), and fail when some word images cannot

be de-skewed or de-slanted correctly. The matching results for another query image in

Figure 4.14(a) are shown in Figure 4.14.

Moreover, binarization is always needed for column features. In our testing dataset,

due to the different levels of illuminations along strokes, some words will lose their

important parts after binarization. Consequently, some true matching word images

with much degradation will not be returned in the top of the returning list.

60

4.4 Experiments and Results

Table 4.1: Experimental Results with Comparison to DTW-based Methods

Methods CF + DTW LGH + DTW Our Method

MR(%) 28.598 22.996 37.827

(a) Column features with DTW.

(b) Local Gradient Histogram features with DTW.

(c) Our proposed method.

Figure 4.13: Top 15 candidate images returned by different methods for the query word

image in Figure 4.8.

4.4.2.2 Comparison with the methods based on keypoints

We also compare our proposed method with the methods based on keypoints. In Figure

4.15, the top 15 candidate images returned by different methods for the query word

image in Figure 4.8 are shown. The same set of keypoints for each word image are

used, but with different keypoint descriptors and different matching algorithms. Our

proposed method also can return more correct matches on the top positions in the

returned ranking list. However, for two word images containing large variations, if

we only apply BBF to find matching keypoints based on their SIFT features, many

correct matching pairs are discarded or keypoints are matched incorrectly. As shown in

Figure 4.15(a), some very dissimilar word images are returned. If combining SIFT with

SM, instead of finding matching pairs throughout the whole word image, which always

brings in errors, the searching range is limited to a local area, and global consistency

is also taken into account. Therefore, the matching results are improved. As shown in

61

4. HANDWRITTEN WORD IMAGE MATCHING

(a) A query word image ’answer’.

(b) Column features with DTW.

(c) Local Gradient Histogram features with DTW.

(d) Our proposed method.

Figure 4.14: Top 10 candidate images returned by different methods for the query word

image in (a).

Table 4.2, both methods with SIFT cannot provide more satisfactory results than our

method, which shows that DaLI descriptor can be more robust to tolerate variations

of writing styles.

In figure 4.16, we can see that for the query word image in Figure 4.16(a), SIFT

features with BBF cannot even return one correct matching word image in the top

10 of the returning list. If we apply our proposed matching algorithm, the matching

results are improved obviously. However, the results of our proposed method shown in

Figure 4.16(d) still indicates our best matching performance.

Table 4.2: Experimental Results of Keypoint-based Methods

Methods SIFT+BBF SIFT+SM Our Method

MR(%) 8.126 21.584 37.827

Based on our proposed matching methods, we also do the experiments to compare

different keypoint detection algorithms. There are four widely used keypoint detection

62

4.4 Experiments and Results

(a) SIFT features with BBF.

(b) SIFT features with SM.

(c) Our proposed method.

Figure 4.15: Top 15 candidate images returned by different methods for the query word

image Figure 4.8.

algorithms: Harris algorithm (81), LoG (Laplacian of Gaussian) algorithm (82), Gilles

algorithm (83) with radius 4, and SIFT (Scale Invariant Feature Transform) keypoint

detector (68) we use in previous experiments. The keypoints detected by different

algorithms are shown In Fig. 4.17.

For one set of keypoints detected in a word image by one of the four keypoint

detection algorithms, we extract DaLI descriptors for each keypoint, and apply our

proposed matching algorithm to find matching candidate word images. We do the

same word matching experiments based on the four keypoint detection algorithms, and

compare their results based on MR, shown in Table 4.2. The numbers of the keypoints

detected by Harris and LoG are much more than the numbers of keypoints detected by

SIFT and Gilles. However, as shown in Table 4.3, more keypoints do not give us better

matching results, but even much worse performance.

For the keypoints detected by Harris, most of the keypoints are on the boundaries

of strokes, so that most of the keypoints can only be connected with the ones on the

same strokes, but on the other side of the boundaries. Consequently, the triangular

mesh structure of the keypoints cannot represent the global geometric structure of the

keypoints in the whole word image. On the other hand, some of the keypoints detected

by LoG are located very close to each other, only one of which is needed to construct

the triangular mesh structure. More keypoints may lead to bad effects to the matching

63

4. HANDWRITTEN WORD IMAGE MATCHING

(a) A query word image ’answer’.

(b) SIFT features with BBF.

(c) SIFT features with SM.

(d) Our proposed method.

Figure 4.16: Top 10 candidate images returned by different methods for the query word

image in (a).

performance. Gilles can detect a similar set of keypoints as SIFT, but the keypoints

are not located along the center axis of the strokes. The keypoints detected by SIFT

are always located along stokes, and can contain the ones which are very important

for matching performance, such as the ends of strokes, or the intersections of strokes.

SIFT can detect enough keypoints and do not contain unnecessary keypoits which may

have bad effects on the triangular mesh structure, so that in our experiments, using

the keypoints detected by SIFT provides the best performance.

Table 4.3: Experimental Results of Different Keypoint Detection Methods

Methods SIFT Harris LoG Gilles

MR(%) 37.827 13.419 11.989 34.770

64

4.5 Conclusion

(a) SIFT (b) Harris

(c) LoG (d) Gilles

Figure 4.17: Keypoints detected by different methods.

4.5 Conclusion

Instead of extracting column features from binarized word images, or calculating gra-

dient based features from the detected keypoints, we extract HKS descriptors from

the local patches centered at every keypoint in the query and candidate images. HKS

is isometric invariant and robust to non-rigid deformations, which is very suitable for

handwriting scenarios, but is rarely used in handwritten document analysis. Moreover,

instead of applying DTW to compare two sequences of features, we propose a new

similarity measurement method based on the triangular mesh structure of all the key-

points in the word images. HKS descriptors are used to capture the local features, and

triangular mesh structure is used to keep the global consistency, so that our proposed

method not only can find the optimal matching pairs of keypoints, but also can quickly

discard dissimilar candidate images due to different global structure. As shown in our

experiments, our proposed new method can capture more robust and reliable features

for word images and outperforms other commonly used methods. Besides, we also test

different kinds of keypoint detection algorithms, and SIFT keypoint detector can work

the best with HKS descriptors for our proposed method.

In future, efforts should be put on how to find stable keypoints, so that HKS

and triangular mesh structure can be made full use of. Moreover, more sophisticated

method should be proposed to find optimal alignment of two sets of DaLI descriptors

for rotated images. We also would like to work on how to tolerate missing keypoints.

65

Chapter 5

Segmentation-free Keyword

Spotting

In this chapter, we will present a new segmentation-free method for keyword spotting in

handwritten document images based on Heat Kernel Signature (HKS), which has been

already described in Chapter 4. After all the keypoints are located on the document

pages and the query image, HKS descriptors are extracted from a local patch centered

at each keypoint. In order to locate the positions where the query image appears in

document pages, we propose a searching method which tries to locate a local zone

which contains enough matching keypoints corresponding to the query image.

5.1 Introduction and Related Works

Due to the limitations of OCR-based methods, Keyword Spotting becomes an alter-

native method to spot query words in a large collection of document images. Unlike

Optical Character Recognition (OCR), which tries to translate the whole documents

into ASCII text, keyword spotting always returns a ranking list containing similar

word images corresponding to the query image, along with bounding boxes on the doc-

uments, but with no need of knowing the ASCII content. Because of large variations

in handwritten documents, degradation of historical manuscripts, or real scene images

containing both text and non-text content with complex layout, OCR always gives us

poor recognition results. Thus, word spotting can be used as an alternative way to

retrieve our interesting information in these situations.

66

5.1 Introduction and Related Works

Keyword spotting in handwriting was first introduced in (84) and treated as an

alternative way to index handwritten documents. Because of unconstrained writing

styles, consecutive characters may be connected together or long ascenders and de-

scenders belonging to different text lines are touched, segmenting characters correctly

is always difficult and impossible. (85) indexed historical documents based on word

image matching, without character segmentation.

Because intra-space within words and inter-space between different words are also

difficult to differentiate, some methods try to apply keyword spotting directly to text

lines, avoiding word segmentation errors. In (80), the trained HMMs can return the

possibility of how likely one text line containing the query image, and text lines with

possibility higher than a threshold are returned as positive matches. Besides, in (45),

BLSTM is used for keyword spotting, with a modified CTC token passing algorithm,

and outperforms the methods based on DTW and HMM models. However, HMM and

BLSTM both depend on a large number of training samples, in some cases, training

data and corresponding transcripts cannot be available.

Moreover, features used in the methods described above should be extracted from

normalized word or text line images, namely, all images should be cleaned or binarized,

with skew or slant correction, in order to eliminate variations of different writing styles,

and especially, some features are language specific. Further more, word segmentation

or text line segmentation errors cannot be avoided. (86) indexed ancient manuscripts

without any segmentation and is language independent. The query images and docu-

ments are described as a collection of zones of interest (ZOI) points or guides, which

denote the vertical strokes of text. The beginning ZOI point of the query image is

matched to every guide on the document images, and other ZOIs are matched to best

local positions with small displacements. The score of the guide is the sum of the dis-

tances between every pair of matched ZOIs and guides based on their gradient angles.

Finally, guides with scores smaller than a threshold are returned as positive hits.

In (73), segmentation-free word spotting is based on bags of features of Scale-

Invariant Feature Transform (SIFT) (68) descriptors extracted from densely sampled

patches, so that every word can be covered by at least one patch. Each patch is

presented by a SIFT feature vector, and Latent Semantic Indexing (LSI) is used to

refine feature descriptors in document images, by transforming the feature descriptor

space to a topic space. For a given query image, the feature descriptor is projected

67

5. SEGMENTATION-FREE KEYWORD SPOTTING

onto the topic space of every document. Patches with enough evidences that the query

word most likely appears are the final retrieved zones.

In this chapter, we propose a segmentation-free keyword spotting method based

on HKS, which can tolerate large variations in handwriting scenarios as presented in

Chapter 4. Instead of extracting features for each pixel on the documents, we only

extract HKS descriptors from local patches centered at keypoints, which locates along

text strokes. In the spotting phase, we only focus on the local zones where the query

word appears most likely, based on the similarity between keypoints on the document

pages and the ones in the query image, instead of measuring densely sampled patches.

We also propose a new method to find the optimal matching path of keypoints in each

local zone, in order to obtain the matching score and further discard irrelevant local

zones which does not have enough matching keypoints along the optimal path.

5.2 Historical Manuscripts written in English

5.2.1 Keypoint Detection

We detect a set of keypoints on the candidate documents and the query word using

the keypoint detector for SIFT in (68). We only focus on text strokes, therefore we

remove the keypoints with lower intensity values than a threshold, which most likely

lie in the background. Moreover, some strokes may be blurred and unclear because

of degradation. By fixing an appropriate set of parameters for the detector, we try to

find enough keypoints for all the query word images and candidate documents, which

are sampled along text strokes. Fig. 5.1 shows the keypoints found in a query image

containing the word ”Company”.

5.2.2 Keyword Spotting

For a given query image, after the keypoints are detected, they are sorted by their

vertical locations from left to right, and DaLI descriptors are calculated for all the

keypoints. DaLI descriptors are calculated in the same way as described in Chapter 4.

Assume that, there are m keypoints in the query image Q, denoted by qk, and their

corresponding DaLI descriptors are presented by DaLI(qk), k ∈ {1, 2, ...,m}. For the

document pages, the jth keypoint in the ith document Di is denoted as kpij , and its

DaLI descriptor is DaLI(kpij).

68

5.2 Historical Manuscripts written in English

Figure 5.1: An example of keypoints found in a query image. The numbers are the

indexes of keypoints according to their vertical locations in the image.

5.2.2.1 Candidate Keypoints

In order to find locations on the document that may match with the query image, we

should search through all keypoints in each document and check whether there is one

or more local zones containing enough similar keypoints compared with the ones in

the query image. For a given document Di with n keypoints, we first calculate the

distances between all its keypoints and every keypoint in Q. The distance is defined

as:

di,jk = d(qk, kp
i
j) =‖ DaLI(qk)−DaLI(kpij) ‖ (5.1)

where k ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}, and ‖ · ‖ is the L2 norm. For each qk, after

sorting all distances di,jk in the ascending order, we should decide how many keypoints in

Di we should consider as the candidate keypoints for qk. The local patch centered at qk

always contains the important part of a character or parts of neighbouring characters,

which may appear many times in one page. For different patches, the number of

appearances may be different in one document page, and for the same patch, it may

appear different times in different pages. Thus, we cannot just keep top n candidate

keypoints for all qk, where n has a predefined value. For example, if character ’m’

appears 50 times in one document page, and character ’p’ appears only 10 times, we

choose the top 20 keypoints on the document as the candidates for both ’m’ and ’p’,

we will miss many locations where ’m’ actually appears and bring in many irrelevant

keypoints of ’p’. Therefore, we decide the threshold used to discard irrelevant keypoints

based on the distribution of all distances di,jk in Di, j ∈ {1, 2, ..., n}, for qk. We first

calculate the minimum distance value min and the maximum distance value max of

69

5. SEGMENTATION-FREE KEYWORD SPOTTING

(a) (b)

Figure 5.2: The plot of the number of candidate keypoints for each keypoint in Fig. 5.1

for two documents. (a) The number of candidate keypoints for each keypoint in Fig. 5.1

for the left document in Fig. 5.4. (b) The number of candidate keypoints for each keypoint

in Fig. 5.1 for the right document in Fig. 5.4.

di,jk , and the threshold is chosen as min+ 0.2× (max−min), which is experimentally

tested. In Fig. 5.2, we can see that in different document pages, the same keypoint in

the query image has different candidate keypoints, and different keypoints have different

number of candidate keypoints in the same document page. We try not to bring in too

many irrelevant keypoints and keep all of the relevant keypoints as candidates.

Thus, all the keypoints with distances larger than the threshold are discarded, and

the rest is treated as candidate keypoints for qk. In order to record the positions

containing the candidate keypoints, we use a matrix Mark, initialized to 0 for all

its elements, and with the same size as the document image. For each qk, we mark

the positions of its candidate keypoints as k in Mark, and record the corresponding

distances into another matrix Dist. In some cases, one kpj can be the candidate

keypoints for more than one keypoints in the query image, for example, in the word

’manual’, ’a’ appears twice, keypoints which locate at the strokes of ’a’ on the document

pages will be the candidate keypoints for both ’a’ in ’manual’. In such situations, the

same component of Mark will be marked several times. In order to avoid replacing the

value of one element by a later assignment, before we mark one component, we first

check if its value is equal to 0, namely, it has not be marked yet. If not, we will mark

one of its 8 neighbours as the new value, instead of replacing its previous value, based

on the fact that two keypoints will not locate next to each other, i.e. the 8 neighbours

are always free for assignment.

70

5.2 Historical Manuscripts written in English

5.2.2.2 Matching Score of Local Zones

A local zone for kpij is defined as an area around kpij , and treated as a positive matching

against the query image, only if it contains enough matching candidate keypoints. In

other words, for each position of the keypoints in Mark, we check whether its local

zone contains at least 0.7 ∗ m different numbers. If so, the local zone is returned

and its matching score against Q is the sum of the distances of the corresponding

components in Dist. In order to narrow the scope of the search, we only check the

local zones centered at (r, c)T = (xj , yj)
T + (t1, t2)

T , where (xj , yj)
T is the coordinate

of a candidate keypoint on the document for a keypoint in Q, which locates near to the

center pixel, such as the 16th keypoint in Fig. 5.1, and (t1, t2)
T is the position shift

from the selected keypoint in Q to the center pixel of Q. According to our experiments,

which keypoint is chosen near to the center pixel will not affect the results greatly,

because the size of the local zone is determined by font, so that all word instances can

be covered, and a little position shift due to different selected keypoints in Q is always

not significant. We can freely choose any keypoint near to the center, which always

locates along the strokes of the same character. In our experiment, we only choose the

one which is nearest to the center.

There is another issue in that given a local zone, how to decide the actual number

of matching keypoints. We cannot just count the amount of different numbers in the

corresponding area in Mark, because the order in which these numbers appear from

left to right is also an important aspect in deciding whether the local zone under

consideration is a positive matching or not. Thus, we propose a new method based

on dynamic programming to find the actual matching path of the candidate keypoints.

Here, local zones with the matching paths larger than 0.7 ∗m are treated as positive

matchings. Assume that in a local zone, there are n′ keypoints, sorted by their vertical

locations in the ascending order, and for each position of the keypoints, it has at most

8 different numbers in Mark at its surroundings, namely, we assume each keypoint on

the document can be mapped to at most 9 different keypoints in the query image. We

construct a matrix C, with the size of 9× n′, and the ith column contains the indexes

of keypoints in the query image, which the ith keypoint in the local zone is mapped

to. Based on C, we apply the following algorithm in Algorithm 4 to construct another

71

5. SEGMENTATION-FREE KEYWORD SPOTTING

matrix H, with the same size as C, and each component stores the optimal longest

path of different ascending numbers from the beginning to the current position:

Algorithm 4 Construct the matrix H, and find the optimal matching path and score

1: H(1, :) = C(1, :), H(2 : n, :) = 0

2: for j = 2→ n do

3: for i = 1→ 9 do

4: for each C(i′, j′), i′ ∈ [1, 9], j′ ∈ [max(1, j − 5),max(1, k − 1)] do

5: if C(i′, j′) = C(i, j) and | H(i′, j′) |>| H(i, j) | then

6: H(i, j) = H(i′, j′)

7: end if

8: if C(i′, j′) < C(i, j) and | H(i′, j′) | +1 >| H(i, j) | then

9: H(i, j) = [H(i′, j′), C(i, j)]

10: % C(i, j) is added to the last position in H(i, j)

11: end if

12: end for

13: end for

14: end for

The keypoints in the query image are sorted by the vertical positions in the ascend-

ing order from left to right, therefore, in our algorithm we try to find a longest path

with the values of all components also in the ascending order, each of which is chosen

from 3 × 3 area in Mark centered at a position of one keypoint in the local zone, in

order to take the geometry of the keypoints into account. Furthermore, because all

the matching keypoints may not appear one by one exactly the same as the ones in

the query image, some noise keypoints may appear in the local zone, and parts of long

ascenders or descenders in different text lines may also appear in the local zones, we

enlarge the searching range to the previous 5 keypoints, avoiding missing any possible

optimal matching sequence. An example of our algorithm is shown in Fig. 5.3, the

optimal path is [1, 2, 3, 5, 6].

After we finish constructing H, we find the longest path stored in H as the ac-

tual matching sequence, and the length of the path is used to represent the amount

of matching keypoints for the local zone. The matching score is the sum of the cor-

responding distances in Dist of each component in the path, divided by the length of

72

5.2 Historical Manuscripts written in English

Figure 5.3: The left figure is an example of matrix Mark. Each component in the dark

grey is the position where a keypoint kpij on the document image Di appears, and the

numbers in 3 × 3 area are indexes of keypoints in the query image each kpij is mapped

to. The right figure is the corresponding matrix C. Each column of C records different

numbers at and around the positions of every keypoint in Mark.

the path. If there are more than one path with the same largest length, we choose the

one with smallest matching score. After all positive matching zones in all document

pages are located, we sort them by their matching scores in the ascending order. The

top ones are most similar with respect to the query image.

5.2.3 Experiments and Results

5.2.3.1 Experimental Setup

We test our method on the George Washington (GW) dataset, containing 20 pages

and 4860 words (87). Fig. 5.4 shows two pages in the GW dataset. The transcript

and bounding box for each word is provided in the ground truth. Because words with

smaller lengths are always stop words, we only consider words larger than 5 characters

in our experiments, and compare our results with the performance in (73).

First, we generate query word images from pages based on the bounding boxes in

the ground truth, and remove strokes belonging to other words manually. Then, DaLI

descriptors are extracted from all pages and query word images. The size of each patch

P is S × S = 50 × 50, the standard deviation of Gaussian function is S
4 , and we take

the first T = 15 lowest frequencies for DaLI. In order to make the comparison, we spot

all words with length larger than 5 in all pages, and the performance is evaluated by

the average precision and recall. All the thresholds and parameters are tested based

on experiments to provide the best results.

73

5. SEGMENTATION-FREE KEYWORD SPOTTING

Figure 5.4: Two pages in the GW dataset.

5.2.3.2 Results

All the words in the dataset with lengths larger than 5 are used as the query images.

Our proposed method has the mean precision 62.47% and the mean recall 92.38%. As

shown in Fig. 5.5, most of the positive matching instances are returned. Moreover,

only based on the length of the matching path, most of the irrelevant local zones are

discarded, and others can be further discarded due to their large matching scores.

Figure 5.5: Top 10 possitive mathching local zones for two query images.

Our method is based on the descriptors of keypoints, and their geometric locations.

Without extracting features from densely sampled small regions in a local zone, our

74

5.3 Handwritten Bangla Documents

method can save much computation time. Furthermore, because we only check local

zones for the candidate keypoints of a small set of selected keypoints in the query image,

there is a substantial reduction in the search space.

From the results, we notice than in some cases, an instance of the query word

cannot be spotted because we do not detect enough keypoints by SIFT detector, due

to low resolution, even though, all the detected keypoints are matched correctly. Thus,

compared with (73), which got the average precision 53.76% and the average recall

93.39%, our average recall is a little lower, however, we have much higher average

precision.

5.3 Handwritten Bangla Documents

Besides English handwritten documents, we would like to apply our keyword spotting

method to the documents written in different languages. In this section, we will present

how to make our proposed method spot query word images on Bangla documents with

satisfactory results.

5.3.1 Descriptor Generation

5.3.1.1 Localization of Keypoints

In document images, regardless of printed or handwritten documents, the important

information we can use to retrieve useful information is the characteristics of the ap-

pearing characters or words. Densely extracting features from all points on the strokes

is very time consuming, not only for extracting and storing the large features, but also

for similarity matching. Therefore, how to localize the important keypoints, which

can capture the maximum information the documents can provide, is one of the most

crucial works we should consider.

There are four normally used keypoint detecting algorithms: Harris algorithm (81),

SIFT (Scale Invariant Feature Transform) keypoint detector (68), LoG (Laplacian of

Gaussian) algorithm (82), and Morphological operation (MO) on binary images (88).

In Fig. 5.6, the keypoints detected by these four algorithms are shown. We can see that

in Fig. 5.6(a), Harris always find keypoints along the boundary of strokes, and SIFT

in Fig. 5.6(b) detect some keypoints in the background, which are not useful. In Fig.

5.6(c), all the keypoints are along the strokes, but some keypoints are located very near

75

5. SEGMENTATION-FREE KEYWORD SPOTTING

to each other, the features of which may be very similar, leading to duplication. The

most important characteristics the strokes contain are always located at the start or

end of strokes, intersections of strokes, or the positions where the strokes try to change

its orientation, so the end points and intersect points by morphological operations in

Fig. 5.6(d) are always the desirable points we want. However, in some cases, some

keypoints may be missed. Therefore, in order to include all the keypoints we want, we

combine the results of SIFT and MO.

(a) Harris (81) (b) SIFT (68) (c) LoG (82) (d) MO (88)

Figure 5.6: Keypoints detected by different algorithms.

For the keypoints detected by SIFT detector, we remove the keypoints in the back-

ground, by checking the intensity values. If the images are binary (1 is the foreground,

0 is the background), we can easily remove the keypoints with the intensity value of

0, as shown in Fig. 5.7(a). After combining the keypoints with MO, as shown in Fig.

5.7(b), we can find out that some keypoints are located in the very near positions.

Therefore, we group keypoints with small Euclidean distances to each other together,

and only keep one of them, which is located nearest to their center. The final keypoints

we use in our experiments are shown in Fig. 5.7(c).

(a) (b) (c)

Figure 5.7: The final Keypoints we will use in the experiments. (a) Keypoints detected by

SIFT detector after removing keypoints in the background. (b) Combining the keypoints

in Fig. 5.7(a) with the ones in Fig. 5.6(d). (c) Removing near keypoints.

76

5.3 Handwritten Bangla Documents

5.3.1.2 Size of Local Patch

The descriptors are extracted from the local patch centered at each keypoint we detect,

because in handwritten documents, the same word may be written in variant writing

styles, fixing the size of all patches may bring in unwanted parts of strokes, so that the

descriptors of the similar keypoints in different occurring same words may have large

difference.

In order to automatically decide the size of patch centered at one keypoint, we use

the Entropy values in different sizes of patches centered at the same keypoint to find the

optimal one. (86) also used the entropy to compute the size of ZOI (zones of interest).

Centered at a keypoint kp, we calculate HKS descriptor HKS(kp), from a patch P with

the size of (2 ∗ r+ 1)× (2 ∗ r+ 1), where r ∈ [5, 50]. For each r, we get the Entropy as

following equations:

Energy = HKS(kp, t = 0) (5.2)

Entropyr = − 1

E
×

∑
pi∈S

Energy(pi) ∗ ln
Energy(pi)

E
(5.3)

where S is the set of all points on the strokes in P , Energy(pi) is the Energy value of

pi, and E =
∑

pi∈S Energy(pi).

While r is increasing, more points are included in S, so that the energy becomes

large, so does the entropy value. However, the increase of entropy values is large at the

beginning, but slows down when enough information is included. Fig. 5.8(a) shows the

entropy values of the patches centered at the left most keypoint in Fig. 5.7(c), when r

is increasing from 5 to 50. We can see that at the beginning, the entropy value increases

very fast, but slow down when r is bigger than 20. In order to track when the entropy

starts slowing down, namely, the patch has already include enough information, we

calculate the gradient values shown in Fig. 5.8(b), and choose the position when the

gradient begins smaller than ε. If we choose ε = 0.02, the optimal size of the patch is

23, as indicated as the red dot lines in Fig.5.8.

5.3.1.3 Patch Normalization

The similarity measure of the distance between two HKS descriptors requires that the

descriptors have the same dimension, however the size of patches may be different, so

77

5. SEGMENTATION-FREE KEYWORD SPOTTING

(a) Entropy values. (b) Gradient of Entropy values.

Figure 5.8: Sizing the local patch

we should normalize all the extracted patches to be the same size and then calculate

the HKS descriptors. If we directly resize all the patches to a predefined size, the width

of strokes will vary differently based on the size of original patches. As shown in Fig.

5.9, Fig. 5.9(a) and Fig. 5.9(c) are the two patches centered at the same keypoint, but

with different r, if we resize these two patches to the same size 91× 91, in Fig. 5.9(b)

and Fig. 5.9(d) respectively, the width of strokes are different, obviously the stroke in

Fig. 5.9(b) is thicker.

(a) r = 30 (b) 91 × 91 (c) r = 40 (d) 91 × 91 (e) (f)

Figure 5.9: Resizing patches with different r to the same size will lead the width of stokes

different. (e) Normalize the patch in 5.9(b). (f) Normalize the patch in 5.9(d).

In order to keep the width of strokes unchanged, we first apply the thinning method

(89) on the strokes in the resized patch, so that the width of strokes is 1, and then

remove the spurious pixels to smoothen the strokes. We then apply dilation twice, and

at last only keep the foreground pixels in a circle with the same radius as the side

78

5.3 Handwritten Bangla Documents

length of the patch, in order to be invariant to the rotations. The normalized patches

of Fig. 5.9(b) and Fig. 5.9(d) are shown in Fig. 5.9(e) and 5.9(f) respectively, and the

widths of the strokes are the same.

Therefore, for every keypoint, we get the local patch with the size determined

by the method in Section 5.3.1.2, and normalize all the patches to the same size, so

that, descriptors are all in the same dimension. Based on the descriptors, in the next

Section, we will introduce how to spot the locations where the query word appears on

the document.

5.3.2 Keyword Spotting

5.3.2.1 Candidate Keypoints

Given a query image and a document, we should first search throughout the whole

document, and find the possible matching areas. In order to relieve the effort of checking

all the parts of the document, such as densely moving a sliding window, we only consider

the areas containing similar keypoints, with respect to the ones in the query image.

Therefore, if we assume that the query image has nq keypoints, denoted as kpi, i ∈
[1, nq], and the document has nd keypoints, denoted as kp′j , j ∈ [1, nd], we first calculate

the distance between every pair of kpi and kp′j by the following equation:

dji = d(kpi, kp
′
j) =‖ HKS(kpi),HKS(kp′j) ‖ (5.4)

where ‖ · ‖ is the L2-norm.

For every kpi, we can get a list of distances dji , j ∈ [1, nd], and then all the dis-

tances are normalized by scaling to [0, 1]. Fig. 5.10 shows an example of the sorted

distances between the descriptor of one keypoint in query image and the descriptors of

all the keypoints in one document. We can see that the distances increase very fast at

the beginning, and then slow down for most of the keypoints. At last, the distances

increase dramatically. Therefore, we can divide the change of the sorted distances into

three parts: the first part contains most of the similar keypoints with respect to the

one in the query image, the second part contains the keypoints with few small similar

parts, and the third part contains most of the dissimilar keypoints. In order to get the

candidate keypoints, we only consider the first part, so that the keypoints in the first

parts and with the distances in the top 20% smallest are considered as the candidate

79

5. SEGMENTATION-FREE KEYWORD SPOTTING

keypoints. Using this threshold method, different keypoints in the query image may

have different numbers of candidate keypoints on a document, because the patch cen-

tered at a keypoint always contains a part of a character, which can also be a part of

other different characters. Moreover, the number of occurrences of different characters

is different due to specific language or different content on the document. Some patches

may appear much fewer times than the others. Our threshold method tries to capture

all the similar patches, but brings in the dissimilar patches as few as possible.

Figure 5.10: An example of the sorted distances of one keypoint in the query image with

respect to all the keypoints in one document.

Candidate keypoints for one keypoint kpi in the query image is denoted as Candi(kpi),

and we also record the coordinates of the candidate keypoints, which will be used in the

next section to locate the candidate matching zones. M(kp′j) stores the keypoints in

the query image, to which kp′j is similar, namely, kp′j is the candidate keypoint of every

keypoint in M(kp′j). In addition, a matrix Mark, with the same size of the document

is used to record the positions where the candidate keypoints appear, by setting the

values to 1, and others to 0.

5.3.2.2 Localization of Candidate Local Zones

Instead of densely moving a sliding window throughout the whole document, we try to

reduce the searching effort, and focus on the areas with candidate keypoints.

80

5.3 Handwritten Bangla Documents

Assume the size of the query image is m× n, and the coordinates of the keypoints

kpi in the query image is denoted as (xi, yi). For each kpi, the candidate local zones are

defined as the windows with the bounding box of ((x′j−xi, y′j−yi),m, n), which denotes

the coordinate of the left-bottom position, the height, and the width, and (x′j , y
′
j) are

the coordinates of kp′j ∈ Candi(kpi). In order to avoid missing any candidate local

zones, we extract windows for all kpi, because we cannot guarantee that all the similar

keypoints can be included in the candidate keypoints, if we only consider the candidate

keypoints of subset of kpi, some positive matching zones may be missed, as shown in

Fig. 5.11. Fig. 5.11(a) shows the candidate local zones for the first keypoint in Fig.

5.7(c), and some positive matching area are not included. However, in Fig.5.11(b),

which shows the candidate local zones of the second keypoint, some missing areas are

spotted. Therefore, using the candidate local zones for all the keypoints in the query

image can spot as many positive matching areas as possible.

(a) Candidate local zones of the first keypoint

in 5.7(c).

(b) Candidate local zones of the second keypoint

in 5.7(c).

Figure 5.11: Candidate local zones.

81

5. SEGMENTATION-FREE KEYWORD SPOTTING

5.3.2.3 Matching Score

Given a candidate local zone, the matching score is calculated based on the candidate

keypoints inside. Based on the bounding box of the candidate local zone, and the

matrix Mark, we can get a set of keypoints on the documents, denoted as LZ, each

of which is at least a candidate keypoint of one keypoint in the query image, and all

of which are sorted by their vertical position values. Our aim is to get a matching

path in the candidate local zone from left to right, so we use two variables to record

the matching process: Hist storing the matching path, and Score storing the optimal

matching score. Our proposed method for calculating the matching score is shown in

Algorithm 5.

For each kp′j in LZ, we first store M(kp′j) in one column of MS, and then initialize

the first column Hist to MS(LZ[1]), storing the corresponding matching distances to

the first column of Score. Fig. 5.12 shows an example of MS, each column of which

are the indexes of the keypoints in M(kp′j), such as in the second column, LZ[2] is the

candidate keypoint of the 3rd, 8th, and 16th keypoint in the query image. Hist and

Score always have the same size of MS. For each cell of MS, we check all the cells in

the several previous columns, for example, if the first cell in the forth column of MS in

Fig. 5.12 is marked as light gray, we check all three previous columns in the dark gray.

Because some keypoints may not be detected or included in the candidate keypoints,

or some noise keypoints are located in the candidate local zone, in order to get optimal

matching path and to tolerate missing or noisy keypoints, we look backward more than

one column in MS, namely, we consider more than one previous keypoint, which is

already marked as a positive matching.

For a cell (c, j) in MS under consideration, only in two conditions we will update

the values in Hist(c, j) and Score(c, j), based on Hist(c′, j′) and Score(c′, j′) under

checking: one is the length of the matching path is longer, the other one is the matching

score is smaller. Therefore, when the Algorithm 5 terminates, we find the longest

matching path in Hist, and choose the one with the minimum score in Score. So

that we get a pair of (score, path). In order to enhance the effect of the length of the

matching path, the final matching score for a candidate local zone is score
size(path)2

.

82

5.3 Handwritten Bangla Documents

Algorithm 5 Calculate matching score

1: w = max(size(M(kp′j))), kp
′
j ∈ LZ

2: MS = zeros(w, size(LZ))

3: for j = 1→ size(LZ) do

4: for c = 1→ size(M(LZ[j])) do

5: MS(c, j) = M(LZ[j])[c]

6: end for

7: end for

8: % Initialization

9: for c = 1→ size(M(LZ[1])) do

10: Hist(c, 1) = [MS(c, 1)]

11: Score(c, 1) = d(MS(c, j), LZ[1])

12: end for

13:

14: for j = 2→ size(LZ) do

15: for c = 1→ size(M(LZ[j])) do

16: for each MS(c′, j′), j′ ∈ [max(1, j − 5), j − 1] do

17: if MS(c′, j′) > MS(c, j) or | Hist(c′, j′) |<| Hist(c, j) | then

18: Continue

19: end if

20: if MS(c′, j′) == MS(c, j) and | Hist(c′, j′) |>| Hist(c, j) | then

21: Hist(c, j) = Hist(c′, j′)

22: Score(c, j) = Score(c′, j′)

23: else

24: if | Hist(i′, j′) | +1 >| Hist(i, j) | or Score(c′, j′) +

d(MS(c, j), LZ[j]) < Score(c, j) then

25: H(i, j) = [H(i′, j′),MS(i, j)]

26: Score(c, j) = Score(c′, j′) + d(MS(c, j), LZ[j])

27: end if

28: end if

29: end for

30: end for

31: end for

83

5. SEGMENTATION-FREE KEYWORD SPOTTING

Figure 5.12: An example of MS. The indexes in the jth column is the indexes of the

keypoints in the query image, of which LZ[j] is the candiditate keypoints.

5.3.2.4 Removing Overlapping Returned Results

Because we consider the candidate local zones for all the keypoints in the query image,

many local zones are overlapped with each other. In order to remove the overlapping

zones, all the local zones are first sorted by the length of the optimal matching path in

the descending order and then sorted by their matching score in the ascending order.

From the top one, we remove all the other zones with more than 50% overlapping areas,

until we only have zones with no overlapping areas in the spotting list.

Furthermore, we remove the ones with lengths of matching paths smaller that 0.5 ∗
nq. For the remaining zones, we normalize their matching scores by scaling to [0,1],

and discard the ones with larger matching scores. For example, as shown in Fig. 5.13,

we can see that after the 8th returned zone, the matching score increases dramatically,

therefore, we only keep the first 8 zones.

5.3.3 Experiments and Results

5.3.3.1 Experimental Setup

We test our proposed method on Bangla handwritten documents, with two examples

shown in Fig. 5.14. We select one document of each writer and segment it into word

images, which will be used as query images to be spotted on all the other documents

for the same writer in the experiments. The word spotting results are evaluated by the

average precision and recall.

For comparison, first we densely move a sliding window throughout the whole doc-

ument, which has the same size as the query image. The sampling step in horizontal

84

5.3 Handwritten Bangla Documents

Figure 5.13: Plot of the scores of returning zones. The horizontal axis is the index of the

zones in the spotting list, and the vertical axis is the noramlzied matching score.

and vertical directions are set to be half of the height of the query image. At each posi-

tion, we extract Histogram of Gradients (HoG) features, as described in (90). We also

extract same features from the query image, and the similarity between one candidate

local zone and the query image is measured by the L2 norm distance between HoG

features. Secondly, we use SIFT features for the keypoints and apply our proposed

matching method on the same set of query word images and documents.

5.3.3.2 Results

The experimental results are shown in Table 5.1. Our method has both highest preci-

sion and recall than using sliding windows combined with HoG features and applying

SIFT features with our spotting method.Because usually HoG features require the word

images are normalized, such as skew or slant correction. But for our segmentation-free

keyword spotting tasks, we try to avoid the pre-processing steps. Even though the

sliding window is densely moving throughout the whole documents and any location

the query image appears can be checked, HoG cannot be robust enough to find true

85

5. SEGMENTATION-FREE KEYWORD SPOTTING

(a) (b)

Figure 5.14: Two examples of Bangla handwritten documents.

matched local zones due to large writing styles. HKS can tolerate variations better

than HoG and SIFT, even the locations of the corresponding keypoints in the same

occurring words are slightly different. Moreover, our method for deciding the size of

the local patches can avoid bringing in noise into the patches, and includes as much

information as possible. For SIFT, some keypoints have very large scales, so that the

SIFT features are extracted from a large local region and always contain the parts

of the surrounding characters. In this situation, these keypoints will not be matched

correctly.

Table 5.1: Experimental Results

Methods Average Precision Average Recall

Sliding window with HoG features 37.8 55.4

SIFT with our proposed matching method 70.9 84.8

Our proposed method 77.2 94.8

86

5.4 Conclusion

In Fig. 5.15(c) and 5.15(d), there are two spotting results for the query images in

Fig. 5.15(a) and 5.15(b). We can see that all the instances of the query images are

spotted based on our method, but in Fig. 5.15(c), 10 local zones are returned, two

of which contain only one character in the query image, and in Fig. 5.15(d), much

more local zones are returned, because most of the parts in the query image appear in

different words, even though only 8 instances are exactly the same to the query image,

but all the other returned zones have no more than one character different. For other

longer query word images, with few common parts in the other words, the spotted

zones in the spotting list are exactly the instances of the query images, as shown in

Fig. 5.16.

For the documents in GW dataset, all the documents were written by President

George Washington, and the size of the same words is very consistent. However, in

Bangla documents, the variations of the same words written by the same writer are

much larger, so that we need more important keypoints and we cannot extract features

from the fixed-size patches. Moreover, the width of stokes is another important aspect

which may affect the extracted DaLI descriptors, therefore, we also normalize the the

width of all strokes.

Due to the much larger variations in Bangla documents, some true positive matching

candidate keypoints may not be ranked in the top, so that we cannot only check the

candidate keypoints of one keypoint in the query image to locate candidate local zones,

as what we do for GW documents. We need to take into account the candidate keypoints

for all the keypoints in the query image, in order to find all possible true positive

matching zones.

5.4 Conclusion

We proposed a segmentation-free keyword spotting method for handwritten documents.

Document images are presented by HKS descriptors of all detected keypoints. In the

spotting process, in order to narrow down the searching scope, we only consider the

local zones containing similar keypoints with respect to the ones in the query image, and

the local zones with enough matching keypoints are returned, sorted by the matching

scores in the ascending order. According to our experimental results, HKS can tolerate

87

5. SEGMENTATION-FREE KEYWORD SPOTTING

(a) (b)

(c) (d)

Figure 5.15: (c) the spotting results of (a). (d) the spotting results of (b). The number

marked around the spotted rectangle box is the position in the spotting list, namely, the

smaller the number is, the more similar to the query image.

the variations much better, and our proposed method has higher average precision and

recall.

In future, we will research on reducing the dimension of HKS descriptors, and speed

up the searching process. Then, we would like to use heuristics to discard irrelevant

keypoints quickly, to avoid calculating all distances between two keypoints. At last, we

would like to work on rotated or curved document pages based on HKS.

88

5.4 Conclusion

(a) (b)

(c) (d)

Figure 5.16: (c) the spotting results of (a). (d) the spotting results of (b).

89

Chapter 6

Handwritten Document Image

Retrieval based on Keyword

Spotting

In this chapter, we will present a method to retrieve relevant handwritten documents

based on our proposed keyword spotting in the previous chapter. Document retrieval

can be achieved by the traditional text retrieval methods based on ASCII content.

The frequencies of every unique word can indicate how the relevant one document is

according to the query document. However, in some cases, the ASCII content is not

available, moreover, due to the degradation and unconstrained cursive handwriting

styles, the recognized ASCII content may contain errors, which can affect the retrieval

results. Therefore, if we first segment the query document into connected components,

which do not need to be whole words, then we can just spot how many times each

component appears on the candidate documents. Based on the spotting results, we can

also get the frequencies of every component on the candidate documents, which can be

used to measure the relevance.

6.1 Introduction and Related Works

Nowadays, a large amount of imaged documents are stored in digital databases and

libraries, and many organizations have developed different systems to index and re-

trieve these document image repositories. Textual content based on Optical Character

90

6.1 Introduction and Related Works

Recognition (OCR) can be used to achieve the indexing and analysis. However, large

variations in cursive writing styles and degradation of historical documents always have

poor OCR results, which lead to bad retrieval performance. Content-based document

Image Retrieval (CBIR), on the other hand, can retrieve the relevant documents with-

out the textual content, only with the features extracted directly from the document

images. Therefore, CBIR can be used to retrieve multilingual handwritten documents,

and complex document collections. All the non-textual contents lead to the limitations

of OCR-based retrieval methods.

One of the most useful applications of CBIR is retrieving the documents written

by the same writer, or having similar patterns, such as the documents from the same

historical period. (91) indexed and retrieved handwritten documents based on two

kinds of features. One is the Micro features, including gradient, structural, and con-

cavity features. The other is the Macro features, which are extracted directly from the

entire document, or on a line-by-line basis. Combining these two kinds of features, the

retrieval based on writing styles can be achieved at document level, partial image level,

and word level.

Besides, instead of using the individual sets of different features, (92) extracted a

global feature from the entire documents, named as Curvelets. The curvelet transform

is applied to all the documents, then the curvature and orientation are generated for

each pixel. Every document is represented by a signature, defined as a matrix of all

occurring (curvature, orientation) pairs. Therefore, the relevance between signatures is

calculated based on the normalized correlation similarity.

But Curvelets were originally developed for the signals in the continuous domain,

so that in the discrete domain, such as our document images with pixelization, there

are challenges for the implementation of Curvelets due to the discrete sampling. There-

fore, (4) developed a new directional multiresolution transform, named as Contourlets,

which are directly constructed from the discrete domain. Because the directionality

and anisotropy of contourlets, which are powerful for capturing writing styles, (93)

proposed an content-based document image retrieval based on writers, using the con-

tourlet transform. Four levels of Laplacian Pyramid (LP) are used, and the descriptor

for each document is constructed by the energy and standard deviation on each sub-

band. The matching between two descriptors of document images are achieved by the

Canberra distance. As the results shown, contourlets have better performance than

91

6. HANDWRITTEN DOCUMENT IMAGE RETRIEVAL BASED ON
KEYWORD SPOTTING

curvelets, according to both the precision and recall. In addition, the representation

of the document images based on contourlets are more compact than that based on

curvelets (92).

However, as presented in (94), the contourlet transform is not shift-invariant due

to the downsamplers and upsamplers, and how to design good filters for the contourlet

transform is a challenging task. In (94), the authors proposed a overcomplete transform,

named as Nonsubsampled Contourlet Transform (NSCT), which is fully shift-invariant,

multiscale and multidirection expansion. Besides, the authors solved the filter design

problems. Therefore, we use NSCT in our proposed method, instead of the contourlet

transfrom (CT).

Moreover, the relevance between two documents is only measured based on writing

styles, but the actual content, namely, the appearing words, should be also considered

for measuring the relevance. In this chapter, we propose a retrieval method to retrieve

the handwritten documents not only based on writers, but also on the content relevance.

Therefore, the returned documents on the top of the ranking list should contain more

similar words with respect to the query document, without use of textual content, but

with the spotting results of the appearing words in the query document. In addition,

our spotting method is independent of segmentation, because we cannot get correct

segmentation results for all kinds of documents. Because we make no assumption

about the language, our method is also language-independent. In the experiments, we

will test our methods on four databases of handwritten documents written in different

languages.

6.2 Features

In order to measure how relevant a document is according to the query document, we

need to extract important features from the documents, which can be invariant for

the documents written by the same writer, but have large variations among different

writers. In this section, we will introduce two kinds of features which can be used for

writer identification, and can also be used to spot segmented components.

92

6.2 Features

6.2.1 Curvelet

In order to overcome the failure cases for smooth edges and contours based on wavelet,

curvelet (95) can exploit the smoothness of the contours more effectively, using different

elongated shapes, as shown in Figure 6.1. Assume in R2, W (r) and V (t) are the radial

window and angular window respectively, where r and t are both polar coordinates in

the frequency domain. These two windows satisfy the following conditions (92):

∞∑
j=−∞

W 2(2jr) = 1, r ∈ (3/4, 3/2) (6.1)

∞∑
l=−∞

V 2(2jt− l) = 1, t ∈ (−1/2, 1/2) (6.2)

Then, Uj , which is a frequency window with j ≥ j0, is defined as:

Uj(r, θ) = 2−3j/4W (2−jr)V (
2bj/2c

2π
) (6.3)

(a) Wavelet (b) Curvelet

Figure 6.1: For a 2D smooth contour, wavelet needs much more redundant square-shapes

to describe the contour, but curvelet can represent the contour more efficiently by enlarged

shapes,with different directions (4).

All the curvelets at scale 2−j are obtained from the ”mother” curvelets, using differ-

ent rotations and translations. Based on the computed curvelet transform, each pixel

93

6. HANDWRITTEN DOCUMENT IMAGE RETRIEVAL BASED ON
KEYWORD SPOTTING

on the document is represented by the most significant curvature and orientation in its

corresponding curvelet coefficients.

6.2.2 Contourlet

The contourlet transform was proposed in (4). It is defined directly on discrete domain,

and can capture the directionality and anisotropy of the images, unlike wavelet or

curvelet, which were initially developed in the continuous domain. Laplacian pyramid

(LP) is first applied to obtain a multi-scale decompositions of the original image, and

then a 2D directional filter band (DFB) is implemented for each subband to capture

the smooth contours and directional edges, which have higher frequencies. Combining

LP and DFB, the original image is decomposed into directional subbands, with multi-

scales. Assume I is the original document, and H and G are the low pass analysis and

synthesis filters respectively. With a sampling matrix M , Figure 6.2 shows one level of

decomposition by LP, in which a is the coarse approximation of I, and b is the difference

between I and the prediction. In each level l(l > 1) of LP, the low pass filtered version

of Il−1 is denoted as Ll and the prediction is denoted as Pl, so that the different between

Ll−1 and the prediction is El = Pl−Ll, where l = 0, L0 = I. Then, DFBs with multiple

directions are implemented for each El to get a set of directional subbands. In Figure

6.3, for 3-levels DFB, the frequency domain is divided into 23 = 8 frequency bands,

which can be used to represent multidirectional features for each l-level decomposed

image Ll.

Figure 6.2: One level of decomposition by Laplacian pyramid (4).

The energy and standard deviation in each subband is used to construct the feature

vector of one document. If Ek and σk are the energy and standard deviation in the kth

94

6.3 Retrieval Model

Figure 6.3: Directional filter bank with l = 3 and 23 = 8 frequency bands.

subband, fE = [E1, E2, · · · , En], and fσ = [σ1, σ2, · · · , σn]. After normalizing fE and

fσ to mean 0 and standard deviation 1, the final feature vector is [fE , fσ] (93).

6.3 Retrieval Model

In addition to retrieving the documents based on writing styles, more relevant docu-

ments based on content on different documents written by the same writer should be

ranked higher in the ranking list. Only the visual features are used with no use of recog-

nition, therefore, in order to optimal approximate the content of the documents, we

apply our proposed word spotting method in the previous chapter to spot the appearing

connected components in the query document. The document images are represented

by a bag of visual features, extracted from a local patch centered at each detected

significant keypoint, instead of extracting the global features on the entire document.

With no use of OCR, the frequencies of the appearing words in the query document on

the documents in the database can be used to measure the content relevance.

6.3.1 Writer identification

The important keypoints on all the documents are detected by the SIFT keypoint

detector. Based on the average height AH of all the connected components (CC) on

each document, NSCT is applied to a local patch with the size of (2 ∗ AH + 1) × (2 ∗

95

6. HANDWRITTEN DOCUMENT IMAGE RETRIEVAL BASED ON
KEYWORD SPOTTING

AH + 1) centered at each keypoint. The whole document image is presented by the

energy and the standard deviation in each subband as proposed in (93). If there are

n keypoints on one document, and Subik denotes the kth subband of the ith keypoint,

then the energy of the kth subband is:

fEk
=

∑
i

∑
s,t |Subik(s, t)|

n ∗ (2 ∗AH + 1)2
(6.4)

and the stardard deviation of each kth subband is:

fSigmak =

√∑
i

∑
s,t(Sub

i
k(s, t)−meank)2

n ∗ (2 ∗AH + 1)2
(6.5)

meank =

∑
i

∑
s,t Sub

i
k(s, t)

n ∗ (2 ∗AH + 1)2
(6.6)

Therefore, the document is represented by following for writer identification:

[fE1 , fE2 , · · · , fEs , fSigma1 , fSigma2 , · · · , fSigmas ,] (6.7)

where s is the total number of subbands and the representation is then normalize by

the method in (93).

6.3.2 Keyword spotting

The query document is first convolved by a Gaussian kernel to connect the horizontal

consecutive characters together, and segmented into individual CCs after binarization.

Very large and very small CCs are discarded, because they are always the background

noise, which can be determined by checking their width or height. Each remaining

CC is treated as a keyword to be spotted on all the other documents. We do not

assume each CC contains exactly one word, which may contain several words or only a

portion of one word. Our method can spot multiple words in a CC together, and can

also spot each individual word separately on the document. Moreover, we make some

modifications on our proposed method in the previous chapter to be more flexible with

no assumption about the size of the candidate local zones. The aim of the spotting is

to spot any possible appearing similar sequence of characters according to the query

connected components, and the length of the matching sequence and the corresponding

similarity are used as the measure for content relevance.

96

6.3 Retrieval Model

We assume that {kpi = (xi, yi)} is a set of keypoints detected inside the bounding

box of a keyword K on the query document, where i ∈ [1, n]. All {kpi} are sorted by

the vertical positions, and their corresponding features are denoted as F (kpi). On the

other hand, the keypoints on the documents in the database are denoted as {kp′j =

(x′j , y
′
j)}, j ∈ [1,m], and the corresponding features are F ′(kp′j). After generating the

features of all the keypoints, we calculate the distances dji between each pair of kpi and

kp′j . The distances are calculated based on all the values in each subband.

Based on the distances, we set a threshold ti for each kpi, so that kp′j with distances

smaller than ti are considered as the candidate keypoints of kpi, denoted as C(kpi),

which we will use to spot the positions where the query keyword probably appears.

In our experiments, we set all ti to 50. In order to store the locations of each set of

candidate keypoints, we use a set of matrix {Mi}, i ∈ [1, n], each of which has the

same size of the document, and initialized to 0 for all the elements, then if kp′j is the

candidate keypoint of kpi, Mi(x
′
j , y
′
j) is set to 1. Besides, Hi is used to record the

optimal matching path for each element with the value of 1 in Mi. Each Hi(x
′
j , y
′
j) is

a list and initialized to have one element, kp′j , where kp′j ∈ C(kpi).

For each candidate keypoint kp′j in C(kp2), we check its N nearest neighbouring

keypoints on the document. If at least one of its neighbours has 1 value in M1, we will

add the elements in H1 of its neighbours to H2(x
′
j , y
′
j). There are two constrains we

are considering when generating the optimal matching path:

1. Geometrical structure: In order to capture the geometrical structure of keypoints,

we constrain the consecutive matching keypoints on the documents to have similar

relative positions with respect to the corresponding keypoints in K. For example,

if we assume kp′1, kp
′
2 and kp′3 are going to match the keypoints kp1, kp2 and

kp3 respectively,then we calculate the angle between the two vectors
−−−−→
kp′2kp

′
1 and

−−−−→
kp′2kp

′
3, and the angle between

−−−−→
kp2kp1 and

−−−−→
kp2kp3. If the difference between these

two angles is smaller than ε, we will treat this matching as a positive matching,

otherwise, this matching is discarded.

2. Missing keypoints: The correct candidate keypoints may be missed, either in the

detection step or the threshold ti is not chosen properly. Therefore, in order to

tolerate missing candidate keypoints, for each kp′j in C(kpi), we check all its N

nearest neighbours in Mi−l, where l ∈ [1, 2]. Each candidate keypoint may have

97

6. HANDWRITTEN DOCUMENT IMAGE RETRIEVAL BASED ON
KEYWORD SPOTTING

various matching paths, but we always keep the matching path with the longest

length and the minimum matching distance as the optimal one.

After checking M2, the above matching procedure is implemented for M3 to Mn.

After we finish checking Mn, each element of Hi records the optimal matching path of

the corresponding candidate keypoint, and the matching score, which can be easily cal-

culated by summing over all the distances between each pair of the matching keypoints

and dividing by the square of the length of the matching path.

6.3.3 Document representation

For each keyword on the query document image, we obtain Hi, i ∈ [1, n] by the methods

in the previous section, and we only keep the elements in Hi, which has the length longer

than n/2, namely, at least half of the number of keypoints in the keyword are matched

to some keypoints on the document. We denote the set of matching paths of the ith

keyword Ki as M path(Ki), and the corresponding scores as S path(Ki). We will use

ni to denote the number of keypoints in Ki.

Each element in M path(Ki) is an evidence, which indicates the whole or partial

parts of Ki appearing somewhere on the document. Therefore, the length of each

matching path diving by n is treated as the appearing count of Ki, and the total

number of appearing times of Ki on the document is the sum of all the counts. The

count for each appearance may be less than 1, because the keypoints in Ki may not be

totally matched, so that the longer the matching path is, the more convincing evidence

the matching path provides. The count of the appearances of Ki on the jth document

Dj is defined as:

tf
Dj

Ki
= sump∈M path(Ki)

length(p)

ni
(6.8)

and the normalized count is defined as:

ntf
Dj

Ki
=

tf
Dj

Ki∑
k tf

Dj

Kk

(6.9)

Assume M is the total number of the documents in the database, and noi is the

number of documents having at least one matching path for Ki, so that

tf × idfDj

Ki
=

ntf
Dj

Ki
× log(Mnoi)√∑

k ntf
Dj

Kk
× M

nok

(6.10)

98

6.4 Experiments

Finally, the feature vector of Dj with respect to the query document image is

constructed as following:

f(Dj) = [tf × idfDj

K1
, tf × idfDj

K2
, · · · , tf × idfDj

KQ
]′ (6.11)

where Q is the total number of keyword on the query document.

6.4 Experiments

In order to evaluate our proposed method, we first do the experiment on the IAM offline

handwriting database (58), which contains various large writing styles. Then, we also

test our method on three sets of historical manuscripts, written in different languages.

6.4.1 IAM database

In IAM offline handwriting database, we choose 13 writers who wrote 5 forms in the

database, totally 65 forms. We compare our method with the one proposed in (93),

where CT is applied to all the forms and each form is then represented by a feature

vector. We take every form as a query and rank other forms based on the Canberra

distance:

Canb(X,Y) =
d∑
i=1

|xi − yi|
|xi|+ |yi|

(6.12)

where X = [x1, x2, · · · , xd]′, and Y = [y1, y2, · · · , yd]′, if X and Y are the feature vectors

of two documents.

For comparison, we also extract the NSCT features from the entire document im-

ages, and the relevance between two documents is also measured by Eq. 6.12.

In our method, we extract the NSCT features from a local patch of each detected

keypoint on all the forms. Then, for the query document, the keywords are generated,

and spotted in all the forms, including the query document, so that we can get the doc-

ument feature vector as shown in Eq. 5, counting the weighted number of appearances

of each keyword. The distance between two document feature vectors are measured by

L2-norm.

Table 6.1 shows the writer identification results based on three methods, where

CT denotes the contourlet transform, NSCT denotes the nonsubsampled contourlet

transform, and P,R are the average precision and recall respectively. In table 6.1, we

99

6. HANDWRITTEN DOCUMENT IMAGE RETRIEVAL BASED ON
KEYWORD SPOTTING

record the average precision and recall for Top1 to Top5 individually, as denoted in the

left most column. We can see that NSCT has much better results than CT. As shown

in Fig. 6.4(a), the four documents contain exactly the same content, except that the

positions of the content are different. The CT of these four documents are different, as

shown in Fig. 6.4(b), which is not what we want. On the other hand, the NSCT are

exactly the same, which is invariant to the position changes, as shown in 6.4(c). For

our method, because we get the feature vector for one document, based on the NSCT

features from each keypoint, we only consider the features around strokes, discarding

those in the background. The NSCT features around the strokes are enough to capture

the writing styles, so that our method has exactly the same results as applying NSCT

to the entire document.

Table 6.1: Writer Identification Results

CT NSCT Our method

Top P(%) R(%) P(%) R(%) P(%) R(%)

1 100.00 20.00 100.00 20.00 100.00 20.00

2 63.85 25.54 100.00 40.00 100.00 40.00

3 48.72 29.23 99.49 59.69 99.49 59.69

4 41.54 33.23 99.23 79.38 99.23 79.38

5 36.00 36.00 98.46 98.46 98.46 98.46

In order to compare how the different methods rank all the documents written by

the same writer according to the content relevance, we apply Ranked-biased Overlap

(RBO) (96) to compare different rankings with respect to the ground-truth. In the

returned ranking list, there are only 4 ranked documents. The ground-truth is obtained

by applying tf−idf scheme with lemmatization on the transcriptions of the documents,

and the returned documents are ranked according to the L2-norm distances between

their feature vectors and the one of the query document, sorted in the ascending order.

On the documents written by the same write, each one is treated as a query, and average

results are recorded.

As shown in Table 6.2, NSCT performs a litter better than CT according to the

content relevance of different documents, but our method have an obvious better results.

Because NSCT and CT can only capture the global features, but cannot capture the

100

6.4 Experiments

(a) The same content appears at the different positions in the four document images, with the

same size.

(b) CT (c) NSCT

Figure 6.4: (b) and (c) are CT and NSCT of the documents in (a).

local features, which can indicate the appearing different words. On the other hand,

our method is based on the keyword spotting, and can obtain the estimated appearing

times for each keyword, just like the tf−idf scheme on the ASCII content, even though

we spot all the keywords without recognition.

Table 6.2: Content relevance Retrieval Results

Methods CT NSCT Our method

RBO 0.970 0.974 0.991

101

6. HANDWRITTEN DOCUMENT IMAGE RETRIEVAL BASED ON
KEYWORD SPOTTING

6.4.2 Historical manuscripts

We also test our method on the historical manuscripts, including George Washington

Database, Parzival Database, and Saint Gall Database, written in English, German,

and Latin respectively. We choose the first 20 pages in each database for our ex-

periments, and every document is used as a query. These three databases have very

different appearances, so that CT, NSCT, and our method has the same perfect results

for retrieving other documents from the same database to which the query document

belongs. So that, if we return top n, n ∈ [1, 19] documents, the average precision and

recall for the three methods are 100%, and n/19.

Besides, we also test different methods on how the retrieval based on content rele-

vance can be achieved in each database individually. The results are also evaluated by

comparing the ranking lists based on RBO, and average results are recorded if every

document in one database is used as a query. Table 6.3 shows the retrieval results for

the three databases based on the content relevance, and there are 19 ranked documents

in the returned list. We can see that NSCT has a little better performances than CT for

George Washington and Saint Gall database, but worse than CT for Parzival database.

On the other hand, our method has better results for all the three databases.

Table 6.3: Content relevance retrieval results

Database CT NSCT Our method

George Washington 0.793 0.814 0.877

Parzival 0.758 0.727 0.812

Saint Gall 0.757 0.759 0.828

6.5 Conclusion

NSCT can be applied to the local patches centered at each detected keypoint, instead

of applying NSCT on the entire documents, so that we can achieve both writer iden-

tification and content relevance retrieval. NSCT has much better results than CT for

writer identification, but if applying NSCT on the entire document, the retrieval results

for content relevance are similar to CT. On the other hand, our keyword spotting based

102

6.5 Conclusion

retrieval method has much better results, because we estimate the appearing times of

each keyword on the query document, instead of only considering the global features.

In future, we would like to work on the documents containing complex content and

layout, and also on proposing an efficient indexing method to speed up the retrieval

process.

103

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Handwritten documents are always stored as whole images, and in order to achieve

retrieval tasks, pre-processing steps are need at first. A text line segmentation method

for handwritten documents based on seam carving was presented in this thesis. How-

ever, unlike the previously proposed method which first used seam carving to extract

text lines, we constrain the energy flowing directions, so that the energy can be mainly

passed to neighbouring points in the same text lines, and jumping across different text

lines can also be avoided. Moreover, by only calculating the energy map once, we can

extract all the text lines, instead of recomputing after each text line is extracted.

After obtaining segmented text lines, word images can be extracted based on the

distances of the inter- and intra-spaces between connected components. Using the word

images, we proposed a novel word recognition method combining the outputs of two

networks, which are well trained on the subset of the training data. The splitting of

the training data into two subsets satisfies the condition that the different words in the

two sets are exclusive and the two word sets have as few common trigrams as possible.

Our method for decoding is a modified version of the Token Passing Algorithm and we

only focus on spotting trigrams instead of the whole character sequence for an input

word. In the experiments, we select the training data and testing data from a collection

of word images randomly and also test on the Writer Independence Recognition Task

dataset. Our method has better results both on the character error rate and word error

rate. What is more, our modified CTC token passing algorithm can also be used to

104

7.2 Future Work

get better recognition results by combining two trained networks, which are trained on

different sets of training data, than using each network individually.

Besides, in order to avoid the limitations of the methods based on supervised learn-

ing, we extracted HKS descriptor for every keypoint in the query and candidate images

and proposed a new similarity measurement method based on a triangular mesh struc-

ture, in order to keep global structure consistency. As shown in our experiments, our

new method can capture local and global features more robustly and reliably and out-

performs other commonly used methods. The proposed method can be directly applied

to any given word images, without having a specific recognizer in advance.

However, in some cases, segmentation of text lines and word images are difficult due

to degradation, noise or complex structure of content, we also proposed a segmentation-

free keyword spotting method for handwritten historical manuscripts and Bangla docu-

ments. Document images are represented by HKS descriptors of all detected keypoints.

After comparing the keypoints in the query image with the ones in document pages, we

search throughout every given document to locate local zones. The local zones which

contain enough matching keypoints, most likely contain the query word. Shown as the

experiment results, HKS shows its power of tolerating non-rigid invariant and illumi-

nation changes, and our searching method can obvious reduce the searching scope for

spotting.

Based on our keyword spotting methods, we can also achieve writer identification

and content relevance retrieval based on the same set of features, in which the query can

be a whole document image. The feature we apply on the documents is NSCT, which is

extracted from the local patches centered at each detected keypoint. Previously, NSCT

can be used to retrieve the documents written by the same writer or having similar

patterns, when NSCT is extracted from the whole documents. But if we extract NSCT

from local patches, we not only can achieve writer identification, but also can retrieve

relevant documents according to the query document based on content relevance by

our proposed keyword spotting method.

7.2 Future Work

In future work, we would like to improve our energy accumulation process to reduce

the computation time for text line segmentation. Moreover, we will improve the perfor-

105

7. CONCLUSION AND FUTURE WORK

mance of splitting large components which touch multiple text lines, and we will also

work on gray level documents, which have more challenges.

For word recognition, we will try to apply our method directly on text line images,

and also try to reduce the time cost for decoding. What is more, other databases,

especially containing different languages, will be tested on.

Besides, more efforts should be put on how to find stable keypoints, so that HKS and

triangular mesh structure can be made full use of for word image matching. Moreover,

more sophisticated method should be proposed to find optimal alignment of two sets of

DaLI descriptors for rotated or scaled images, in which, missing keypoints may occur.

So that how to tolerate missing keypoints is also an important issue we should work

on.

In practice, efficiency is a much more important aspect for retrieval, therefore we

will research on presenting the document and query images more compactly, so that

the computation time of searching throughout the documents can be reduced. In

addition, we would like to use heuristics to discard irrelevant keypoints quickly, to

avoid calculating all the distances between two keypoints. Moreover, we also would

like to work on the documents containing complex content and layout, and propose an

efficient indexing method to speed up the retrieval process.

106

Publications arising from this

work

1. Xi Zhang, Chew Lim Tan, ”Handwritten Word Image Matching based on Heat

Kernel Signature”, The 15th International Conference on Computer Analysis of

Images and Patterns (CAIP), 2013. (Oral)

2. Xi Zhang, Chew Lim Tan, ”Segmentation-free Keyword Spotting for Hand-

written Documents based on Heat Kernel Signature”, The 12th International

Conference on Document Analysis and Recognition (ICDAR), 2013.

3. Xi Zhang, Chew Lim Tan, ”Unconstrained Handwritten Word Recognition

based on Trigrams Using BLSTM”, The 22nd International Conference on Pat-

tern Recognition (ICPR), 2014.

4. Xi Zhang, Chew Lim Tan, ”Text Line Segmentation for Handwritten Docu-

ments Using Constrained Seam Carving”, The 14th International Conference on

Frontiers in Handwriting Recognition (ICFHR), 2014.

5. Xi Zhang, Umapada Pal, Chew Lim Tan, ”Segmentation-free Keyword Spot-

ting for Bangla Handwritten Documents”, The 14th International Conference on

Frontiers in Handwriting Recognition (ICFHR), 2014.

6. Chew Lim Tan, Xi Zhang, Linlin Li, ”Chapter 24 Image Based Retrieval and

Keyword Spotting in Documents” in ”Handbook of Document Image Processing

and Recognition”, 2014.

7. Xi Zhang, Chew Lim Tan, ”Handwritten Word Image Matching based on Heat

Kernel Signature”, Pattern Recognition, 2014.

107

References

[1] Nikolaos Stamatopoulos, Basilis Gatos, Georgios Louloudis, Umapada Pal, and

Alireza Alaei, “Icdar 2013 handwriting segmentation contest,” in Document Anal-

ysis and Recognition (ICDAR), 2013 12th International Conference on. IEEE,

2013, pp. 1402–1406.

[2] Mike Schuster and Kuldip K Paliwal, “Bidirectional recurrent neural networks,”

Signal Processing, IEEE Transactions on, vol. 45, no. 11, pp. 2673–2681, 1997.

[3] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst

Bunke, and Jürgen Schmidhuber, “A novel connectionist system for uncon-

strained handwriting recognition,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 31, no. 5, pp. 855–868, 2009.

[4] Minh N Do and Martin Vetterli, “The contourlet transform: an efficient directional

multiresolution image representation,” Image Processing, IEEE Transactions on,

vol. 14, no. 12, pp. 2091–2106, 2005.

[5] EA Galloway and VM Gabrielle, “The heinz electronic library interactive on-line

system: An update,” The Public-Access Computer Systems Review, vol. 9, no. 1,

1998.

[6] M. Ohta, A. Takasu, and J. Adachi, “Retrieval methods for english-text with

misrecognized ocr characters, proc. of icdar’97,” Ulm, Germany, pp. 950–956.

[7] Y. Ishitani, “Model-based information extraction method tolerant of ocr errors

for document images,” in Document Analysis and Recognition, 2001. Proceedings.

Sixth International Conference on. IEEE, 2001, pp. 908–915.

108

REFERENCES

[8] S. M. Harding, W. B. Croft, and C. Weir, “Probabilistic retrieval of ocr degraded

text using n-grams,” The 1st European Conference Research and Advanced Tech-

nologies for Digital Libraries, pp. 345–359, 1997.

[9] D. Lopresti and J. Zhou, “Retrieval strategies for noisy text,” in Proceedings of

the Fifth Annual Symposium on Document Analysis and Information Retrieval.

Las Vegas, 1996, vol. 269.

[10] Kazem Taghva, Julie Borsack, and Allen Condit, “Expert system for automat-

ically correcting ocr output,” in IS&T/SPIE 1994 International Symposium on

Electronic Imaging: Science and Technology. International Society for Optics and

Photonics, 1994, pp. 270–278.

[11] A. Takasu, “An approximate string match for garbled text with various accuracy,”

the Fourth International Conference on Document Analysis and Recognition, vol.

2, pp. 957–961, 1997.

[12] D. Doermann and S. Yao, “Generating synthetic data for text analysis systems,” In

Symposium on Document Analysis and Information Retrieval, pp. 449–467, 1995.

[13] K. Tsuda, S. Senda, M. Minoh, and K. Ikeda, “Clustering ocr-ed texts for brows-

ing document image database,” in Document Analysis and Recognition, 1995.,

Proceedings of the Third International Conference on. IEEE, 1995, vol. 1, pp. 171–

174.

[14] T. Kameshiro, T. Hirano, Y. Okada, and F. Yoda, “A document image retrieval

method tolerating recognition and segmentation errors of ocr using shape-feature

and multiple candidates,” in Document Analysis and Recognition, 1999. IC-

DAR’99. Proceedings of the Fifth International Conference on. IEEE, 1999, pp.

681–684.

[15] H. Fujisawa and K. Marukawa, “Full text search and document recognition of

japanese text,” in Symposium on Document Analysis and Information Retrieval,

1995, pp. 55–80.

[16] Katsumi Marukawa, Tao Hu, Hiromichi Fujisawa, and Yoshihiro Shima, “Docu-

ment retrieval tolerating character recognition errorsevaluation and application,”

Pattern Recognition, vol. 30, no. 8, pp. 1361–1371, 1997.

109

REFERENCES

[17] K. Katsuyama, H. Takebe, K. Kurokawa, et al., “Highly accurate retrieval of

japanese document images through a combination of morphological analysis and

ocr,” in Proc. SPIE, Document Recognition and Retrieval, 2002, vol. 4670, pp.

57–67.

[18] T. Kameshiro, T. Hirano, Y. Okada, and F. Yoda, “A document retrieval method

from handwritten characters based on ocr and character shape information,” in

Document Analysis and Recognition, 2001. Proceedings. Sixth International Con-

ference on. IEEE, 2001, pp. 597–601.

[19] Larry Spitz, “Duplicate document detection,” in Electronic Imaging’97. Interna-

tional Society for Optics and Photonics, 1997, pp. 88–94.

[20] A.F. Smeaton and A.L. Spitz, “Using character shape coding for information

retrieval,” in Proceeding of the 4th International Conference Document Analysis

and Recognition, 1997, pp. 974–978.

[21] A.L. Spitz, “Shape-based word recognition,” International Journal on Document

Analysis and Recognition, vol. 1, no. 4, pp. 178–190, 1999.

[22] A.L. Spitz, “Progress in document reconstruction,” in Pattern Recognition, 2002.

Proceedings. 16th International Conference on. IEEE, 2002, vol. 1, pp. 464–467.

[23] F.R. Chen and D.S. Bloomberg, “Summarization of imaged documents without

ocr,” vol. 70, no. 3, pp. 307 – 320, 1998.

[24] J.M. Trenkle and R.C. Vogt, “Word recognition for information retrieval in the

image domain,” in Symposium on Document Analysis and Information Retrieval,

1993, pp. 105–122.

[25] Y. Lu, L. Zhang, and C.L. Tan, “Retrieving imaged documents in digital libraries

based on word image coding,” 2004.

[26] T. Konidaris, B. Gatos, K. Ntzios, I. Pratikakis, and S. Theodoridis and,

“Keyword-guided word spotting in historical printed documents using synthetic

data and user feedback,” International Journal on Document Analysis and Recog-

nition, vol. 9, no. 2, pp. 167 – 177, 2007.

110

REFERENCES

[27] S. Lu, L. Li, and C.L. Tan, “Document image retrieval through word shape

coding,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

130, no. 11, pp. 1913–1918, 2008.

[28] S. Lu and C.L. Tan, “Retrieval of machine-printed latin documents through word

shape coding,” Pattern Recognition, vol. 41, no. 5, pp. 1799–1809, 2008.

[29] A. Murugappan, B. Ramachandran, and P. Dhavachelvan, “A survey of keyword

spotting techniques for printed document images,” Artificial Intelligence Review,

pp. 1–18, 2011.

[30] R.F. Moghaddam and M. Cheriet, “Application of multi-level classifiers and clus-

tering for automatic word spotting in historical document images,” in 2009 10th

International Conference on Document Analysis and Recognition. IEEE, 2009, pp.

511–515.

[31] B. Gatos and I. Pratikakis, “Segmentation-free word spotting in historical printed

documents,” in 2009 10th International Conference on Document Analysis and

Recognition. IEEE, 2009, pp. 271–275.

[32] Luc Vincent, “Google book search: Document understanding on a massive scale,”

in 2013 12th International Conference on Document Analysis and Recognition.

IEEE Computer Society, 2007, vol. 2, pp. 819–823.

[33] G. Agam, S. Argamon, O. Frieder, D. Grossman, and D. Lewis, “Content-based

document image retrieval in complex document collections,” in Proc. SPIE. Cite-

seer, 2007, vol. 6500.

[34] S. Marinai, E. Marino, and G. Soda, “Font adaptive word indexing of modern

printed documents,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 28, no. 8, pp. 1187 – 1199, 2006.

[35] J. Li, Z.G. Fan, Y. Wu, and N. Le, “Document image retrieval with local feature

sequences,” in 2009 10th International Conference on Document Analysis and

Recognition. IEEE, 2009, pp. 346–350.

[36] Y.H. Tseng and D.W. Oard, “Document image retrieval techniques for chinese,”

in Symposium on Document Image Understanding Technology, 2001, pp. 151–158.

111

REFERENCES

[37] Y. Lu and C.L. Tan, “Chinese word searching in imaged documents,” International

Journal of Pattern Recognition and Artificial Intelligence, vol. 18, no. 2, pp. 229–

246, 2004.

[38] S. Senda, M. Minoh, and K. Ikeda, “Document image retrieval system using char-

acter candidates generated by character recognition process,” in Document Anal-

ysis and Recognition, 1993., Proceedings of the Second International Conference

on. IEEE, 1993, pp. 541–546.

[39] M.W. Sagheer, N. Nobile, C.L. He, and C.Y. Suen, “A novel handwritten urdu

word spotting based on connected components analysis,” in 2010 International

Conference on Pattern Recognition. IEEE, 2010, pp. 2013–2016.

[40] W. Magdy, K. Darwish, and M. El-Saban, “Efficient language-independent re-

trieval of printed documents without ocr,” in String Processing and Information

Retrieval. Springer, 2009, pp. 334–343.

[41] Y. Leydier, F. Le Bourgeois, and H. Emptoz, “Omnilingual segmentation-free

word spotting for ancient manuscripts indexation,” in Document Analysis and

Recognition, 2005. Proceedings. Eighth International Conference on. IEEE, 2005,

pp. 533–537.

[42] Y. Xia, B.H. Xiao, C.H. Wang, and R.W. Dai, “Integrated segmentation and recog-

nition of mixed chinese/english document,” in Document Analysis and Recognition,

2007. ICDAR 2007. Ninth International Conference on. IEEE, 2007, vol. 2, pp.

704–708.

[43] Y. Lu and C.L. Tan, “Information retrieval in document image databases,” IEEE

Transactions on Knowledge and Data Engineering, vol. 16, no. 11, pp. 1398–1410,

2004.

[44] Toni M Rath and Raghavan Manmatha, “Word image matching using dynamic

time warping,” in Computer Vision and Pattern Recognition, 2003. Proceedings.

2003 IEEE Computer Society Conference on. IEEE, 2003, vol. 2, pp. II–521.

[45] Volkmar Frinken, Andreas Fischer, R Manmatha, and Horst Bunke, “A novel

word spotting method based on recurrent neural networks,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 34, no. 2, pp. 211–224, 2012.

112

REFERENCES

[46] Manivannan Arivazhagan, Harish Srinivasan, and Sargur Srihari, “A statistical

approach to line segmentation in handwritten documents,” in Electronic Imaging

2007. International Society for Optics and Photonics, 2007, pp. 65000T–65000T.

[47] Zhixin Shi, Srirangaraj Setlur, and Venu Govindaraju, “A steerable directional

local profile technique for extraction of handwritten arabic text lines,” in Document

Analysis and Recognition, 2009. ICDAR’09. 10th International Conference on.

IEEE, 2009, pp. 176–180.

[48] Georgios Louloudis, Basilios Gatos, and Constantin Halatsis, “Text line detection

in unconstrained handwritten documents using a block-based hough transform

approach,” in Document Analysis and Recognition, 2007. ICDAR 2007. Ninth

International Conference on. IEEE, 2007, vol. 2, pp. 599–603.

[49] Fei Yin and Cheng-Lin Liu, “Handwritten chinese text line segmentation by clus-

tering with distance metric learning,” Pattern Recognition, vol. 42, no. 12, pp.

3146–3157, 2009.

[50] Zaidi Razak, Khansa Zulkiflee, Mohd Yamani Idna Idris, Emran Mohd Tamil,

Mohd Noorzaily Mohamed Noor, Rosli Salleh, Mohd Yaakob, Zulkifli Mohd Yusof,

and Mashkuri Yaacob, “Off-line handwriting text line segmentation: A review,”

International journal of computer science and network security, vol. 8, no. 7, pp.

12–20, 2008.

[51] Raid Saabni and Jihad El-Sana, “Language-independent text lines extraction using

seam carving,” in Document Analysis and Recognition (ICDAR), 2011 Interna-

tional Conference on. IEEE, 2011, pp. 563–568.

[52] Shai Avidan and Ariel Shamir, “Seam carving for content-aware image resizing,”

in ACM Transactions on graphics (TOG). ACM, 2007, vol. 26, p. 10.

[53] Gordon Wilfong, Frank Sinden, and Laurence Ruedisueli, “On-line recognition of

handwritten symbols,” Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, vol. 18, no. 9, pp. 935–940, 1996.

113

REFERENCES

[54] U-V Marti and Horst Bunke, “Using a statistical language model to improve the

performance of an hmm-based cursive handwriting recognition system,” Interna-

tional Journal of Pattern Recognition and Artificial Intelligence, vol. 15, no. 01,

pp. 65–90, 2001.

[55] Sanparith Marukatat, Thierry Artières, R Gallinari, and Bernadette Dorizzi, “Sen-

tence recognition through hybrid neuro-markovian modeling,” in Document Anal-

ysis and Recognition, 2001. Proceedings. Sixth International Conference on. IEEE,

2001, pp. 731–735.

[56] Émilie Caillault, Christian Viard-Gaudin, and Abdul Rahim Ahmad, “Ms-tdnn

with global discriminant trainings,” in Document Analysis and Recognition, 2005.

Proceedings. Eighth International Conference on. IEEE, 2005, pp. 856–860.

[57] Joachim Schenk, Gerhard Rigoll, et al., “Novel hybrid nn/hmm modelling tech-

niques for on-line handwriting recognition,” in Tenth International Workshop on

Frontiers in Handwriting Recognition, 2006.

[58] U.V. Marti and H. Bunke, “The iam-database: an english sentence database for

offline handwriting recognition,” International Journal on Document Analysis and

Recognition, vol. 5, no. 1, pp. 39–46, 2002.

[59] Alessandro Vinciarelli and Juergen Luettin, “A new normalization technique for

cursive handwritten words,” Pattern Recognition Letters, vol. 22, no. 9, pp. 1043–

1050, 2001.

[60] U.V. Marti and H. Bunke, “Using a statistical language model to improve the

performance of an hmm-based cursive handwriting recognition system,” IJPRAI,

vol. 15, no. 1, pp. 65–90, 2001.

[61] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber, “Gra-

dient flow in recurrent nets: the difficulty of learning long-term dependencies,”

2001.

[62] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

114

REFERENCES

[63] Stephen John Young, NH Russell, and JHS Thornton, Token passing: a simple

conceptual model for connected speech recognition systems, Citeseer, 1989.

[64] R. Manmatha, Chengfeng Han, and E. M. Riseman, “Word spotting: A new

approach to indexing handwriting,” in Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 1996, pp. 31 – 637.

[65] T.M. Rath and R. Manmatha, “Features for word spotting in historical

manuscripts,” in Document Analysis and Recognition, 2003. Proceedings. Seventh

International Conference on. IEEE, 2003, pp. 218–222.

[66] T.M. Rath and R. Manmatha, “Word spotting for historical documents,” Interna-

tional Journal on Document Analysis and Recognition, vol. 9, no. 2, pp. 139–152,

2007.

[67] H. Bunke, S. Bengio, and A. Vinciarelli, “Offline recognition of unconstrained

handwritten texts using hmms and statistical language models,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 26, no. 6, pp. 709–720, 2004.

[68] D.G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[69] J.A. Rodrıguez and F. Perronnin, “Local gradient histogram features for word

spotting in unconstrained handwritten documents,” in Int. Conf. on Frontiers in

Handwriting Recognition, 2008.

[70] F. Moreno-Noguer, “Deformation and illumination invariant feature point descrip-

tor,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-

ence on. IEEE, 2011, pp. 1593–1600.

[71] R.M. Rustamov, “Laplace-beltrami eigenfunctions for deformation invariant shape

representation,” in Proceedings of the fifth Eurographics symposium on Geometry

processing. Eurographics Association, 2007, pp. 225–233.

[72] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informative multi-

scale signature based on heat diffusion,” in Computer Graphics Forum. Wiley

Online Library, 2009, vol. 28, pp. 1383–1392.

115

REFERENCES

[73] M. Rusinol, D. Aldavert, R. Toledo, and J. Lladós, “Browsing heterogeneous doc-

ument collections by a segmentation-free word spotting method,” in Document

Analysis and Recognition (ICDAR), 2011 International Conference on. IEEE,

2011, pp. 63–67.

[74] Xi Zhang and Chew Lim Tan, “Segmentation-free keyword spotting for hand-

written documents based on heat kernel signature,” in Document Analysis and

Recognition (ICDAR), 2013 International Conference on. IEEE, 2013.

[75] M. Reuter, F.E. Wolter, and N. Peinecke, “Laplace–beltrami spectra as shape-

dnaof surfaces and solids,” Computer-Aided Design, vol. 38, no. 4, pp. 342–366,

2006.

[76] U. Pinkall and K. Polthier, “Computing discrete minimal surfaces and their con-

jugates,” Experimental mathematics, vol. 2, no. 1, pp. 15–36, 1993.

[77] Giuseppe Patané, “wfem heat kernel: Discretization and applications to shape

analysis and retrieval,” Computer Aided Geometric Design, vol. 30, no. 3, pp.

276–295, 2013.

[78] M.M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel signatures for non-

rigid shape recognition,” in Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conference on. IEEE, 2010, pp. 1704–1711.

[79] Duk-Ryong Lee, Wonju Hong, and Il-Seok Oh, “Segmentation-free word spotting

using sift,” in Image Analysis and Interpretation (SSIAI), 2012 IEEE Southwest

Symposium on. IEEE, 2012, pp. 65–68.

[80] A. Fischer, A. Keller, V. Frinken, and H. Bunke, “Hmm-based word spotting in

handwritten documents using subword models,” in Pattern Recognition (ICPR),

2010 20th International Conference on. IEEE, 2010, pp. 3416–3419.

[81] Chris Harris and Mike Stephens, “A combined corner and edge detector.,” in

Alvey vision conference. Manchester, UK, 1988, vol. 15, p. 50.

[82] Tony Lindeberg, “Feature detection with automatic scale selection,” International

journal of computer vision, vol. 30, no. 2, pp. 79–116, 1998.

116

REFERENCES

[83] Dr Sébastian Gilles, Robust description and matching of images, Ph.D. thesis,

University of Oxford, 1999.

[84] R. Manmatha, C. Han, and E.M. Riseman, “Word spotting: A new approach to

indexing handwriting,” pp. 631–637, 1996.

[85] T.M. Rath and R. Manmatha, “Word spotting for historical documents,” Interna-

tional Journal on Document Analysis and Recognition, vol. 9, no. 2, pp. 139–152,

2007.

[86] Y. Leydier, A. Ouji, F. LeBourgeois, and H. Emptoz, “Towards an omnilingual

word retrieval system for ancient manuscripts,” Pattern Recognition, vol. 42, no.

9, pp. 2089–2105, 2009.

[87] V. Lavrenko, T.M. Rath, and R. Manmatha, “Holistic word recognition for hand-

written historical documents,” in Document Image Analysis for Libraries, 2004.

Proceedings. First International Workshop on. IEEE, 2004, pp. 278–287.

[88] T Yung Kong and Azriel Rosenfeld, Topological algorithms for digital image pro-

cessing, Access Online via Elsevier, 1996.

[89] Louisa Lam, Seong-Whan Lee, and Ching Y Suen, “Thinning methodologies-

a comprehensive survey,” IEEE Transactions on pattern analysis and machine

intelligence, vol. 14, no. 9, pp. 869–885, 1992.

[90] Oswaldo Ludwig Junior, David Delgado, Valter Gonçalves, and Urbano Nunes,

“Trainable classifier-fusion schemes: an application to pedestrian detection,” in

Intelligent Transportation Systems, 2009 12th International IEEE Conference on.

IEEE, 2009, pp. 1–6.

[91] Sargur Srihari, Chen Huang, and Harish Srinivasan, “Content-based information

retrieval from handwritten documents,” in 1st International Workshop on Docu-

ment Image Analysis for Libraries (DIAL2004), 2004, pp. 188–194.

[92] Guillaume Joutel, Véronique Eglin, Stéphane Bres, and Hubert Emptoz,

“Curvelets based queries for cbir application in handwriting collections,” in Docu-

ment Analysis and Recognition, 2007. ICDAR 2007. Ninth International Confer-

ence on. IEEE, 2007, vol. 2, pp. 649–653.

117

REFERENCES

[93] MS Shirdhonkar and Manesh B Kokare, “Writer based handwritten document im-

age retrieval using contourlet transform,” in Advances in Digital Image Processing

and Information Technology, pp. 108–117. Springer, 2011.

[94] Arthur L Da Cunha, Jianping Zhou, and Minh N Do, “The nonsubsampled con-

tourlet transform: theory, design, and applications,” Image Processing, IEEE

Transactions on, vol. 15, no. 10, pp. 3089–3101, 2006.

[95] Emmanuel J Candes and David L Donoho, “Curvelets: A surprisingly effective

nonadaptive representation for objects with edges,” Tech. Rep., DTIC Document,

2000.

[96] William Webber, Alistair Moffat, and Justin Zobel, “A similarity measure for

indefinite rankings,” ACM Transactions on Information Systems (TOIS), vol. 28,

no. 4, pp. 20, 2010.

118

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and history
	1.2 Motivations
	1.3 Aims and Scope
	1.4 Chapter Overview

	2 Text Line Segmentation
	2.1 Introduction and Related Works
	2.2 Seam carving
	2.3 Our proposed method
	2.3.1 Preprocessing
	2.3.2 Energy function
	2.3.3 Energy accumulation
	2.3.4 Seam extraction
	2.3.5 Postprocessing

	2.4 Experiments and Results
	2.4.1 Evaluation method
	2.4.2 Experimental setup
	2.4.3 Results

	2.5 Conclusion

	3 Handwritten Word Recognition
	3.1 Introduction and Related Works
	3.2 Preprocessing
	3.3 Neural Network for Recognition
	3.4 Splitting of Randomly Selected Training Data
	3.5 Modified CTC Token Passing Algorithm
	3.5.1 CTC Token Passing Algorithm
	3.5.2 Modification to spot trigrams

	3.6 Experiments and Results
	3.6.1 Experimental Setup
	3.6.2 Results on Randomly Selected Training and Testing Data
	3.6.3 Results on Writer Independent Training and Testing Data

	3.7 Conclusion

	4 Handwritten Word Image Matching
	4.1 Introduction and Related Works
	4.2 Descriptor based on Heat Kernel Signature
	4.2.1 Keypoints Detection and Selection
	4.2.2 Heat Kernel Signature
	4.2.3 Discrete Version of Laplace-Beltrami Operator
	4.2.4 Scale Invariant HKS
	4.2.5 Distance between two Descriptors

	4.3 Word Image Matching
	4.3.1 Structure of Keypoints
	4.3.2 Score Matrix

	4.4 Experiments and Results
	4.4.1 Experimental Setup
	4.4.2 Results and Discussion
	4.4.2.1 Comparison with the methods based on DTW
	4.4.2.2 Comparison with the methods based on keypoints

	4.5 Conclusion

	5 Segmentation-free Keyword Spotting
	5.1 Introduction and Related Works
	5.2 Historical Manuscripts written in English
	5.2.1 Keypoint Detection
	5.2.2 Keyword Spotting
	5.2.2.1 Candidate Keypoints
	5.2.2.2 Matching Score of Local Zones

	5.2.3 Experiments and Results
	5.2.3.1 Experimental Setup
	5.2.3.2 Results

	5.3 Handwritten Bangla Documents
	5.3.1 Descriptor Generation
	5.3.1.1 Localization of Keypoints
	5.3.1.2 Size of Local Patch
	5.3.1.3 Patch Normalization

	5.3.2 Keyword Spotting
	5.3.2.1 Candidate Keypoints
	5.3.2.2 Localization of Candidate Local Zones
	5.3.2.3 Matching Score
	5.3.2.4 Removing Overlapping Returned Results

	5.3.3 Experiments and Results
	5.3.3.1 Experimental Setup
	5.3.3.2 Results

	5.4 Conclusion

	6 Handwritten Document Image Retrieval based on Keyword Spotting
	6.1 Introduction and Related Works
	6.2 Features
	6.2.1 Curvelet
	6.2.2 Contourlet

	6.3 Retrieval Model
	6.3.1 Writer identification
	6.3.2 Keyword spotting
	6.3.3 Document representation

	6.4 Experiments
	6.4.1 IAM database
	6.4.2 Historical manuscripts

	6.5 Conclusion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Publications arising from this work
	References

