272 research outputs found

    Intelligent TDMA heuristic scheduling by taking into account physical layer interference for an industrial IoT environment

    Get PDF
    In an Internet of Things environment, where multiple mobile devices are brought together, it is not always possible to serve all these devices simultaneously. We developed an intelligent Time Division Multiple Access (TDMA) scheduler which allows to plan the individual packets of the different streams in such a way that everyone can be served by taking into account the interference on the physical layer. The scheduler is applied in a realistic industrial environment and evaluated based on the maximum link latency, the channel occupancy, and the jitter. Two strategies are compared: one where the packets are sequentially allocated, and one periodically. Our results show that the periodically allocated strategy performs the best for the maximum link latency (for a packet size below 1200 bytes) and for the jitter. The channel occupancy is similar for both strategies. Furthermore, the performance can be improved by using a higher number of channels. Compared to classic Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), the channel occupancy and the jitter are reduced up to 69.9 and 99.9%, respectively. Considering the maximum link latency, the proposed TDMA strategies perform significantly better than the worst case CSMA/CA (up to 99.8%), however, when assuming a best case CSMA/CA scenario, CSMA/CA performs better. Furthermore, we clearly show that there are cases where it is not possible to plan all streams when using CSMA/CA while this becomes feasible when applying the proposed TDMA strategies

    Beyond 5G Wireless IRT for Industry 4.0:Design Principles and Spectrum Aspects

    Get PDF

    Performance analysis of Ethernet Powerlink protocol: Application to a new lift system generation

    No full text
    International audienceTo ensure control, present lifts use the Controller Area Network (CAN) bus for transmitting commands between components. Although it is largely adopted in the industrial process, CAN is not able to guarantee a sufficient throughput to transmit multimedia data or to meet the requirements of some safety standards. In this paper, we present a transition case from electrical/electromechanical components to a networked control system. The main element we focus on in the lift system is the safety chain. We propose to build the lift communication system around real-time Ethernet for more efficiency, smartness and safety. Furthermore, the use of the openSAFETY protocol as a safety layer over the real-time Ethernet allows the achievement of the required Safety Integrity Level (SIL). This adopted solution should meet the adopted standard IEC 61508 requirements

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Analysis of Ethernet Powerlink network and development of a wireless extension based on the IEEE 802.11n WLAN

    Get PDF
    In questa tesi si analizza inizialmente Ethernet POWERLINK (EPL), una delle reti Ethernet Real-Time piĂč popolari grazie alle sue caratteristiche e prestazioni. Viene poi proposta l'estensione wireless della rete POWERLINK basata sulla rete IEEE 802.11n (WLAN), con quest'ultima opportunamente ottimizzata per la comunicazione industriale attraverso l'algoritmo di dynamic rate adaptation RSIN

    Towards 6G in-X subnetworks with sub-millisecond communication cycles and extreme reliability

    Get PDF

    Industrial networks and IIoT: Now and future trends

    Get PDF
    Connectivity is the one word summary for Industry 4.0 revolution. The importance of Internet of Things (IoT) and Industrial IoT (IIoT) have been increased dramatically with the rise of industrialization and industry 4.0. As new opportunities bring their own challenges, with the massive interconnected devices of the IIoT, cyber security of those networks and privacy of their users have become an important aspect. Specifically, intrusion detection for industrial networks (IIoT) has great importance. For instance, it is a key factor in improving the safe operation of the smart grid systems yet protecting the privacy of the consumers at the same time. In the same manner, data streaming is a valid option when the analysis is to be pushed from the cloud to the fog for industrial networks to provide agile response, since it brings the advantage of fast action on intrusion detection and also can buy time for intrusion mitigation. In order to dive deep in industrial networks, basic ground needs to be settled. Hence, this chapter serves in this manner, by presenting basic and emerging technologies along with ideas and discussions: First, an introduction of semiconductor evolution is provided along with the up-to-date hi-tech wired/wireless communication solutions for industrial networks. This is followed by a thorough representation of future trends in industrial environments. More importantly, enabling technologies for industrial networks is also presented. Finally, the chapter is concluded with a summary of the presentations along with future projections of IIoT networks
    • 

    corecore