4,517 research outputs found

    Towards an interoperable energy efficient Cloud computing architecture-practice & experience

    Get PDF
    The energy consumption of Cloud computing continues to be an area of significant concern as data center growth continues to increase. This paper reports on an energy efficient interoperable Cloud architecture realized as a Cloud toolbox that focuses on reducing the energy consumption of Cloud applications holistically across all deployments models. The architecture supports energy efficiency at service construction, deployment, and operation and interoperability through the use of the Open Virtualization Format (OVF) standard. We discuss our practical experience during implementation and present an initial performance evaluation of the architecture. The results show that the implementing Cloud provider interoperability is feasible and incurs minimal performance overhead during application deployment in comparison to the time taken to instantiate Virtual Machines

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    On participatory service provision at the network edge with community home gateways

    Get PDF
    Edge computing is considered as a technology to enable new types of services which operate at the network edge. There are important use cases in ambient intelligence and the Internet of Things (IoT) for edge computing driven by huge business potentials. Most of today's edge computing platforms, however, consist of proprietary gateways, which are either closed or fairly restricted to deploy any third-party services. In this paper we discuss a participatory edge computing system running on home gateways to serve as an open environment to deploy local services. We present first motivating use cases and review existing approaches and design considerations for the proposed system. Then we show our platform which materializes the principles of an open and participatory edge environment, to lower the entry barriers for service deployment at the network edge. By using containers, our platform can flexibly enable third-party services, and may serve as an infrastructure to support several application domains of ambient intelligence.Peer ReviewedPostprint (author's final draft

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    Designing a Framework for Exchanging Partial Sets of BIM Information on a Cloud-Based Service

    Get PDF
    The rationale behind this research study was based on the recognised difficulty of exchanging data at element or object level due to the inefficiencies of compatible hardware and software. Interoperability depicts the need to pass data between applications, allowing multiple types of experts and applications to contribute to the work at hand. The only way that software file exchanges between two applications can produce consistent data and change management results for large projects is through a building model repository. The overall aim of this thesis was to design and develop an integrated process that would advance key decisions at an early design stage through faster information exchanges during collaborative work. In the construction industry, Building Information Modeling is the most integrated shared model between all disciplines. It is based on a manufacturing-like process where standardised deliverables are used throughout the life cycle with effective collaboration as its main driving force. However, the dilemma is how to share these properties of BIM applications on one single platform asynchronously. Cloud Computing is a centralized heterogeneous network that enables different applications to be connected to each other. The methodology used in the research was based on triangulation of data which incorporated many techniques featuring a mixture of both quantitative and qualitative analysis. The results identified the need to re-engineer Simplified Markup Language, in order to exchange partial data sets of intelligent object architecture on an integrated platform. The designed and tested prototype produced findings that enhanced project decisions at a relatively early design stage, improved communication and collaboration techniques and cross disciple co-ordination

    Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices

    Full text link
    Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting low-latency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein
    • …
    corecore