2,532 research outputs found

    RF Localization in Indoor Environment

    Get PDF
    In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS) in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment), and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB) of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained

    WLAN Location Sharing through a Privacy Observant Architecture

    Get PDF
    In the last few years, WLAN has seen immense growth and it will continue this trend due to the fact that it provides convenient connectivity as well as high speed links. Furthermore, the infrastructure already exists in most public places and is cheap to extend. These advantages, together with the fact that WLAN covers a large area and is not restricted to line of sight, have led to developing many WLAN localization techniques and applications based on them. In this paper we present a novel calibration-free localization technique using the existing WLAN infrastructure that enables conference participants to determine their location without the need of a centralized system. The evaluation results illustrate the superiority of our technique compared to existing methods. In addition, we present a privacy observant architecture to share location information. We handle both the location of people and the resources in the infrastructure as services, which can be easily discovered and used. An important design issue for us was to avoid tracking people and giving the users control over who they share their location information with and under which conditions

    Application of multiple-wireless to a visual localisation system for emergency services

    Get PDF
    Abstract—In this paper we discuss the application of multiplewireless technology to a practical context-enhanced service system called ViewNet. ViewNet develops technologies to support enhanced coordination and cooperation between operation teams in the emergency services and the police. Distributed localisation of users and mapping of environments implemented over a secure wireless network enables teams of operatives to search and map an incident area rapidly and in full coordination with each other and with a control centre. Sensing is based on fusing absolute positioning systems (UWB and GPS) with relative localisation and mapping from on-body or handheld vision and inertial sensors. This paper focuses on the case for multiple-wireless capabilities in such a system and the benefits it can provide. We describe our work of developing a software API to support both WLAN and TETRA in ViewNet. It also provides a basis for incorporating future wireless technologies into ViewNet. I

    Localization to Enhance Security and Services in Wi-Fi Networks under Privacy Constraints

    Get PDF
    Developments of seamless mobile services are faced with two broad challenges, systems security and user privacy - access to wireless systems is highly insecure due to the lack of physical boundaries and, secondly, location based services (LBS) could be used to extract highly sensitive user information. In this paper, we describe our work on developing systems which exploit location information to enhance security and services under privacy constraints. We describe two complimentary methods which we have developed to track node location information within production University Campus Networks comprising of large numbers of users. The location data is used to enhance security and services. Specifically, we describe a method for creating geographic firewalls which allows us to restrict and enhance services to individual users within a specific containment area regardless of physical association. We also report our work on LBS development to provide visualization of spatio-temporal node distribution under privacy considerations

    Jointly Optimizing Placement and Inference for Beacon-based Localization

    Full text link
    The ability of robots to estimate their location is crucial for a wide variety of autonomous operations. In settings where GPS is unavailable, measurements of transmissions from fixed beacons provide an effective means of estimating a robot's location as it navigates. The accuracy of such a beacon-based localization system depends both on how beacons are distributed in the environment, and how the robot's location is inferred based on noisy and potentially ambiguous measurements. We propose an approach for making these design decisions automatically and without expert supervision, by explicitly searching for the placement and inference strategies that, together, are optimal for a given environment. Since this search is computationally expensive, our approach encodes beacon placement as a differential neural layer that interfaces with a neural network for inference. This formulation allows us to employ standard techniques for training neural networks to carry out the joint optimization. We evaluate this approach on a variety of environments and settings, and find that it is able to discover designs that enable high localization accuracy.Comment: Appeared at 2017 International Conference on Intelligent Robots and Systems (IROS

    Joint received signal strength, angle-of-arrival, and time-of-flight positioning

    Get PDF
    This paper presents a software positioning framework that is able to jointly use measured values of three parameters: the received signal strength, the angle-of-arrival, and the time-of-flight of the wireless signals. Based on experimentally determined measurement accuracies of these three parameters, results of a realistic simulation scenario are presented. It is shown that for the given configuration, angle-of-arrival and received signal strength measurements benefit from a hybrid system that combines both. Thanks to their higher accuracy, time-of-flight systems perform significantly better, and obtain less added value from a combination with the other two parameters
    • 

    corecore