67,165 research outputs found

    Developing a Software for Diagnosing Heart Disease via Data Mining Techniques

    Get PDF
    This paper builds a data mining tool via a classification method using Multi-Layer Perceptron (MLP) with Backpropagation learning method and an algorithm of feature selection along with biomedical testing values for diagnosing heart disease. Addition to that, developing a prototype for heart disease diagnosing with a friendly-user graphical interface (GUI). The purpose to construct this software is that; clinical prosopopoeia is done in any event by doctor’s experience. Despite that, some cases are reported negative diagnosis and treatment; therefore, patients are asked to take a number of tests for diagnosis. Moreover, not all the tests contribute towards an effective diagnosis of a disease, and by using data mining approach to diagnose heart disease that supports the doctors to make more efficient and subtle decisions

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    A New Ensemble Learning Framework for 3D Biomedical Image Segmentation

    Full text link
    3D image segmentation plays an important role in biomedical image analysis. Many 2D and 3D deep learning models have achieved state-of-the-art segmentation performance on 3D biomedical image datasets. Yet, 2D and 3D models have their own strengths and weaknesses, and by unifying them together, one may be able to achieve more accurate results. In this paper, we propose a new ensemble learning framework for 3D biomedical image segmentation that combines the merits of 2D and 3D models. First, we develop a fully convolutional network based meta-learner to learn how to improve the results from 2D and 3D models (base-learners). Then, to minimize over-fitting for our sophisticated meta-learner, we devise a new training method that uses the results of the base-learners as multiple versions of "ground truths". Furthermore, since our new meta-learner training scheme does not depend on manual annotation, it can utilize abundant unlabeled 3D image data to further improve the model. Extensive experiments on two public datasets (the HVSMR 2016 Challenge dataset and the mouse piriform cortex dataset) show that our approach is effective under fully-supervised, semi-supervised, and transductive settings, and attains superior performance over state-of-the-art image segmentation methods.Comment: To appear in AAAI-2019. The first three authors contributed equally to the pape
    • …
    corecore