4,297 research outputs found

    Utilising Deep Learning techniques for effective zero-day attack detection

    Get PDF
    Machine Learning (ML) and Deep Learning (DL) have been used for building Intrusion Detection Systems (IDS). The increase in both the number and sheer variety of new cyber-attacks poses a tremendous challenge for IDS solutions that rely on a database of historical attack signatures. Therefore, the industrial pull for robust IDS capable of flagging zero-day attacks is growing. Current outlier-based zero-day detection research suffers from high false-negative rates, thus limiting their practical use and performance. This paper proposes an autoencoder implementation to detect zero-day attacks. The aim is to build an IDS model with high recall while keeping the miss rate (false-negatives) to an acceptable minimum. Two well-known IDS datasets are used for evaluation—CICIDS2017 and NSL-KDD. To demonstrate the efficacy of our model, we compare its results against a One-Class Support Vector Machine (SVM). The manuscript highlights the performance of a One-Class SVM when zero-day attacks are distinctive from normal behaviour. The proposed model benefits greatly from autoencoders encoding-decoding capabilities. The results show that autoencoders are well-suited at detecting complex zero-day attacks. The results demonstrate a zero-day detection accuracy of [89% - 99%] for the NSL-KDD dataset and [75% - 98%] for the CICIDS2017 dataset. Finally, the paper outlines the observed trade-off between recall and fallout

    Unsupervised Algorithms to Detect Zero-Day Attacks: Strategy and Application

    Get PDF
    In the last decade, researchers, practitioners and companies struggled for devising mechanisms to detect cyber-security threats. Among others, those efforts originated rule-based, signature-based or supervised Machine Learning (ML) algorithms that were proven effective for detecting those intrusions that have already been encountered and characterized. Instead, new unknown threats, often referred to as zero-day attacks or zero-days, likely go undetected as they are often misclassified by those techniques. In recent years, unsupervised anomaly detection algorithms showed potential to detect zero-days. However, dedicated support for quantitative analyses of unsupervised anomaly detection algorithms is still scarce and often does not promote meta-learning, which has potential to improve classification performance. To such extent, this paper introduces the problem of zero-days and reviews unsupervised algorithms for their detection. Then, the paper applies a question-answer approach to identify typical issues in conducting quantitative analyses for zero-days detection, and shows how to setup and exercise unsupervised algorithms with appropriate tooling. Using a very recent attack dataset, we debate on i) the impact of features on the detection performance of unsupervised algorithms, ii) the relevant metrics to evaluate intrusion detectors, iii) means to compare multiple unsupervised algorithms, iv) the application of meta-learning to reduce misclassifications. Ultimately, v) we measure detection performance of unsupervised anomaly detection algorithms with respect to zero-days. Overall, the paper exemplifies how to practically orchestrate and apply an appropriate methodology, process and tool, providing even non-experts with means to select appropriate strategies to deal with zero-days

    An Evasion Attack against ML-based Phishing URL Detectors

    Full text link
    Background: Over the year, Machine Learning Phishing URL classification (MLPU) systems have gained tremendous popularity to detect phishing URLs proactively. Despite this vogue, the security vulnerabilities of MLPUs remain mostly unknown. Aim: To address this concern, we conduct a study to understand the test time security vulnerabilities of the state-of-the-art MLPU systems, aiming at providing guidelines for the future development of these systems. Method: In this paper, we propose an evasion attack framework against MLPU systems. To achieve this, we first develop an algorithm to generate adversarial phishing URLs. We then reproduce 41 MLPU systems and record their baseline performance. Finally, we simulate an evasion attack to evaluate these MLPU systems against our generated adversarial URLs. Results: In comparison to previous works, our attack is: (i) effective as it evades all the models with an average success rate of 66% and 85% for famous (such as Netflix, Google) and less popular phishing targets (e.g., Wish, JBHIFI, Officeworks) respectively; (ii) realistic as it requires only 23ms to produce a new adversarial URL variant that is available for registration with a median cost of only $11.99/year. We also found that popular online services such as Google SafeBrowsing and VirusTotal are unable to detect these URLs. (iii) We find that Adversarial training (successful defence against evasion attack) does not significantly improve the robustness of these systems as it decreases the success rate of our attack by only 6% on average for all the models. (iv) Further, we identify the security vulnerabilities of the considered MLPU systems. Our findings lead to promising directions for future research. Conclusion: Our study not only illustrate vulnerabilities in MLPU systems but also highlights implications for future study towards assessing and improving these systems.Comment: Draft for ACM TOP

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    Anomaly detection through User Behaviour Analysis

    Get PDF
    The rise in cyber-attacks and cyber-crime is causing more and more organizations and individuals to consider the correct implementation of their security systems. The consequences of a security breach can be devastating, ranging from loss of public confidence to bankruptcy. Traditional techniques for detecting and stopping malware rely on building a database of known signatures using known samples of malware. However, these techniques are not very effective at detecting zero-day exploits because there are no samples in their malware signature databases. The limitation of not being able to detect zero-day exploits leaves organisations vulnerable to new and evolving malware threats. To address this challenge, this thesis proposes a novel approach to malware detection using machine learning techniques. The proposed approach creates a user profile that trains a machine learning model using only normal user behaviour data, and detects malware by identifying deviations from this profile. In this way, the proposed approach can detect zero-day malware and other previously unknown threats without having a specific database of malware signatures. The proposed approach is evaluated using real-world datasets, and different machine learning algorithms are compared to evaluate their performance in detecting unknown threats. The results show that the proposed approach is effective in detecting malware, achieving high accuracy and low false positive rates. This thesis contributes to the field of malware detection by providing a new perspective and approach that complements existing methods, and has the potential to improve the overall security of organisations and individuals in the face of evolving cybersecurity threats

    AI-based algorithm for intrusion detection on a real Dataset

    Get PDF
    [Abstract]: In this Project, Novel Machine Learning proposals are given to produce a Network Intrusion Detection System (NIDS). For this, a state of the art Dataset for Cyclo Stationary NIDS has been used, together with a previously proposed standard methodology to compare the results of different models over the same Dataset. An extensive research has been done for this Project about the different Datasets available for NIDS, as has been done to expose the evolution and functioning of IDSs. Finally, experiments have been made with Outlier Detectors, Ensemble Methods, Deep Learning and Conventional Classifiers to compare with previously published results over the same Dataset and with the same methodology. The findings reveal that the Ensemble Methods have been capable to improve the results from prior research being the best approach the Extreme Gradient Boosting method.[Resumen]: En este Proyecto, se presentan novedosas propuestas de Aprendizaje Automático para producir un Sistema de Detección de Intrusos en Red (NIDS). Para ello, se ha utilizado un Dataset de última generación para NIDS Cicloestacionarios, junto con una metodología estándar previamente propuesta para comparar los resultados de diferentes modelos sobre el mismo Dataset. Para este Proyecto se ha realizado una extensa investigación sobre los diferentes conjuntos de datos disponibles para NIDS, así como se ha expuesto la evolución y funcionamiento de los IDSs. Por último, se han realizado experimentos con Detectores de Anomalias, Métodos de Conjunto, Aprendizaje Profundo y Clasificadores Convencionales para comparar con resultados previamente publicados sobre el mismo Dataset y con la misma metodología. Los resultados revelan que los Métodos de Conjunto han sido capaces de mejorar los resultados de investigaciones previas siendo el mejor enfoque el método de Extreme Gradient Boosting.Traballo fin de grao (UDC.FIC). Enxeñaría Informática. Curso 2022/202
    corecore