Facultade de Informatica

>‘ l< UNIVERSIDADE DA CORUNA

TRABALLO FIN DE GRAO
GRAO EN ENXENARIA INFORMATICA
MENCION EN COMPUTACION

Euro-Inf

Bachelor

awarded by

Al-based algorithm for intrusion detection

on a real Dataset

Estudante: Alejandro Esteban Martinez
Direccion: Bertha Guijarro Berdifias
Maria Amparo Alonso Betanzos

Elena Maria Hernandez Pereira

A Coruiia, September of 2023.

To the ones that have limited knowledge, long live APCCEL

Acknowledgements

Thanks to all people that made this possible, starting from my uncle David that started my
passion for science since I was little. Thank you to my great tutors Berta, Amparo and Elena
that made this possible even with the complications I gave all the time. Thanks to all of my
friends that supported me, even the ones that didn’t support me that much and wanted me
to go out drinking with them when I had to work on my Final Project. And special thanks to
Fiordilatte for taking me every day of summer and letting me steal some wifi and a table to

make this Project possible.

Abstract

In this Project, Novel Machine Learning proposals are given to produce a Network Intrusion
Detection System (NIDS). For this, a state of the art Dataset for Cyclo Stationary NIDS has
been used, together with a previously proposed standard methodology to compare the re-
sults of different models over the same Dataset. An extensive research has been done for
this Project about the different Datasets available for NIDS, as has been done to expose the
evolution and functioning of IDSs.

Finally, experiments have been made with Outlier Detectors, Ensemble Methods, Deep
Learning and Conventional Classifiers to compare with previously published results over the
same Dataset and with the same methodology. The findings reveal that the Ensemble Methods
have been capable to improve the results from prior research being the best approach the

Extreme Gradient Boosting method.

Resumo

En este Proyecto, se presentan novedosas propuestas de Aprendizaje Automético para
producir un Sistema de Deteccién de Intrusos en Red (NIDS). Para ello, se ha utilizado un
Dataset de ultima generacion para NIDS Cicloestacionarios, junto con una metodologia es-
tandar previamente propuesta para comparar los resultados de diferentes modelos sobre el
mismo Dataset. Para este Proyecto se ha realizado una extensa investigacion sobre los di-
ferentes conjuntos de datos disponibles para NIDS, asi como se ha expuesto la evolucion y
funcionamiento de los IDSs.

Por ultimo, se han realizado experimentos con Detectores de Anomalias, Métodos de
Conjunto, Aprendizaje Profundo y Clasificadores Convencionales para comparar con resul-
tados previamente publicados sobre el mismo Dataset y con la misma metodologia. Los re-
sultados revelan que los Métodos de Conjunto han sido capaces de mejorar los resultados de

investigaciones previas siendo el mejor enfoque el método de Extreme Gradient Boosting.

Keywords: Palabras chave:

» Aprendizaje Automatico
+ Machine Learning

« Sistema de Deteccién de Intru-

Intrusion Detection System siones

. Ensemble Methods + Métodos de Cojunto

. At de Redes de C tado-
« Computer Network Attacks aques de Redes de L-omputado

ras

« Deep Learning « Aprendizaje Profundo

Outlier Detection « Deteccion de Anomalias

Contents

1 Introduction 1
1.1 Context and justification o 1
1.2 Materialsused 1

121 Dataset 2
1.2.2 Programming Language 2
123 Tools . . . oo 3
1.3 Development Methodology and Projectcosts 4
1.3.1 Methodology andPhases, 4
1.3.2 Costs of the development 6
1.4 Structure of the document L. 7
1.5 Researchobjectives 8
2 Theoretical foundations 9
2.1 Intrusion detection systems Lo 9
2.1.1 Types of IDS based on deployment 10
2.1.2 Types of IDS based on Detection Method 11
2.1.3 Different Data Sources for Intrusion Detection 12
2.1.4 FunctioningofanIDS 14
2.2 Computer Network Attacks 14
2.2.1 Different Computer Network attacks 15
2.3 Artificial Intelligence and Machine Learning 17
2.3.1 Main Types of Problems in Machine Learning 18
2.3.2 ClassificationModels 19
233 Ensemble Methods 27
234 Outlier Detection 29

CONTENTS Contents

3 State of the Art in the Field 31
3.1 DatasetsforIDS 31
3.1.1 DARPAdatasets. 31

312 KDDCUP99 . o o oot e 31

3.1.3 Improvements Proposed for KDDCup’99 32

3.14 Morerecentproposals o 33

32 The UGR’16 Dataset i it 36
3.21 CalibrationSet 37

322 TestSet 38

3.23 Format of the Dataset 38

3.2.4 Composition of the Dataset 39

3.3 Evolution of Machine Learning for IDS 39
3.3.1 Early Attempts and Rule-Based Systems (late 1980s - early 1990s) . . . 39

3.3.2 Emergence of Anomaly Detection (1990s - early 2000s) 39

3.3.3 Machine Learning Integration (2000s - early 2010s) 39

3.3.4 Evolution of Deep Learning (2010s - Present) 40

3.4 Standard Methodology for NIDS development 40
4 Development of the IDS 41
4.1 Free Framework for Machine Learning (FFAML) 41
4.1.1 Previous results from FF4ML methodology with UGR’16 42

4.2 Analysis of the UGR’16 Dataset 43
4.2.1 Data Collection and Cleaning 44

4.2.2 Data Transformation 44

4.2.3 Evaluating the Hypothesis 45

43 Replication of the original results o L. 47
5 Models Development and Results 51
51 Metricsused 51
5.2 Utilizing conventional classifiers o L. 52
5.2.1 Experimentation with Over and Under-Sampling 55

53 DeepLearningmodels o 56
54 Combining Models: Ensemble Methods 60
54.1 VotingEnsemble o L. 60

54.2 StackingEnsemble o L. 63

5.5 Using models for Outlier Detection 65
5.5.1 Experimentation with Outlier Detectors 65

5.6 DiscussionofResults L L L o 67

ii

CONTENTS Contents
6 Conclusions and Future Work 69
6.1 Conclusions 69
6.1.1 Researcher Conclusions 69

6.1.2 Student Conclusions i e 70

6.2 Future work e 71
6.2.1 Experiment with the raw UGR’16 Dataset 71

6.2.2 Explainable and Green Artificial Intelligence 71

6.2.3 Apply the methodology in other NIDS Datasets 72

6.24 DevelopaworkingNIDS, 72

A Additional Material 74
A.1 Full Performance Metrics Tables 74
List of Acronyms 77
Bibliography 78

1ii

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8
5.9

Predicted Plan for the Project. 6
Final Plan compared with baseline 6
Suport Vector Machine functioning from [1] 21
Comparison of different SVM kernels from [2] 21
Functioning of the Random Forestfrom [3] 23
Example of Multilayer Perceptron from [4] 26
kNN binary classification example from [5] 27
Comparison of Bagging and Boosting from [6] 28
Example of Isolation Forest functioning from [7] 30
Diagram of the ISP network from [8] 37
Diagram of the Methodology from [9] 41
Confusion Matrix of the Random Forest 50
Confusion Matrices for KNN and XGBOOST Models 54
Comparison of performance of the proposed classifiers with the Random Forest 55
Confusion matrix for the 2 Layered MLP 58
Comparison of performance for Random Forestand MLP 59
Comparison of Elapsed Time for Random Forestand MLP 59
Confusion Matrices for Voting with uniform and custom weights 62

Comparison of performance for XGBoost and Voting Classifier with custom

weights e 63
Confusion Matrices for Stacking with and without passthrough 64
Comparison of best results over the considered groups 68

iv

List of Tables

1.1
1.2

2.1
2.2
2.3

3.1
3.2

4.1
4.2

4.3
4.4

4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
59

Predicted cost e e

Final cost e

Comparison of Network-based IDS (NIDS) and Host-based IDS (HIDS)
Comparison of Signature-based Detection and Anomaly-based Detection . . .

Comparison of Gradient Boosting and Random Forest

Comparison of Selected Datasets for IDS Evaluation from [8]

Advantages and Disadvantages of Intrusion Detection Datasets

Class Distribution from subsampled Testfile
Performance comparison for Random Forest trained with the Test set and
tested with multiple sets o L
Best hyper-parameter configurations for the replicated models
Replicated performance for the original paper models following their method-

ology . . . e
Elapsed time of training and testing for the replicated models

Best configurations for the conventional classifiers.
Weighted Performance for proposed conventional models
Elapsed time of training and testing for the conventional classifiers
Class Distribution e
Best configurations for the MLPClassifier models
Weighted Performance for the MLPClassifier models
Elapsed time of training and testing for the MLP configurations
Weighted Performance for Voting Models
Weighted Performance for Stacking classifiers with and without passthrough .

5.10 Best configurations for the conventional classifiers.

LIST OF TABLES List of Tables

5.11

Al
A2
A3
A4

Weighted Performance for Outlier Detection Models 66
Performance for proposed conventional models 74
Performance for the MLPClassifiermodels 75
Performance for Voting Modelso L. 76
Performance for Stacking classifiers with and without passthrough 76

vi

Chapter 1

Introduction

1.1 Context and justification

With the start of the Information Era we find ourselves in a more connected world than ever
before, it is possible to send information from one point to another separated by thousands of
kilometers in mere seconds and all because of the Internet. The issue is that as we develop new
technologies and make advancements, we also create new and more intricate problems. For
example, the Internet, while not perfect, has been a significant technological advancement.
However, it has also brought about a crucial problem since it can be accessed remotely, ren-
dering traditional physical security methods ineffective against internet attacks that exploit
vulnerabilities in our layered technology. This includes legacy components that are challeng-
ing to replace and susceptible to hacking.

One of the possible solutions is the implementation of an Intrusion Detection System
(IDS), that monitors network traffic for suspicious activity and in case of a possible attack
alerts the interested party, usually a system administrator.

In this work, we will explore different state-of-the-art technologies that are used or could
be used to improve the IDS detection abilities, developing an Artificial Intelligence approach
for our system trained with the UGR’16 dataset, one of the latest and more complete network
flow datasets that are publicly available. To implement our Al system, we will follow a re-
cently proposed standard methodology for the evaluation of Machine Learning models for
Network Intrusion Detection Systems, and we will attempt to improve our results compared
to the currently published for the UGR’16 dataset.

1.2 Materials used

In this section, we will introduce all the necessary materials and tools for the development

of this Final Project. With this comprehensive overview, we will define the elements needed,

CHAPTER 1. INTRODUCTION 1.2. Materials used

from datasets to software apps and programming languages.

1.2.1 Dataset

For this project, we decided to use the new UGR’16 dataset[8], since it’s considered one of
the newest and most reliable for this kind of problem. Some other datasets that had been used
in the past do not contain this much data, it is mainly synthetic data or it is too old for it to
be useful for a contemporary project, as some attacks are not included.

UGR’16 dataset is used for Intrusion Detection Systems that use cyclo stationarity-based
techniques, which use the periodicity and correlation in the statistical features of data to
distinguish between normal and anomalous behaviour and to classify the possible type of
attack. It was created by a group of researchers in the Universidad de Granada in 2016, where
it takes its name, and it is built with a mixture of real traffic and selected up-to-date synthetic
attacks within a network of a Spanish Internet Service Provider collected into netflow packets.
Divided into two different sets, calibration and test, the first one spans from March to June
with only real traffic while the second one has introduced synthetic attacks apart from the
background data from July to August. The dataset differentiates up to 7 different classes of
data, from background traffic to Dos, DDos, port scanning, brute force, botnet and email spam
campaigns. This makes it the state of the art in its field, including much more realistic data
and diversity than its predecessors and capturing much longer time than the rest, making it
possible to discern periodic patterns in the network activity.

This dataset is available to download in the Universidad de Granada’s webpage[10] along

with the 2017 paper exposing its results.

1.2.2 Programming Language

The selection of the language used and its libraries is fundamental for the development of our
project. We decided to use Python [11] as it is the most used Programming Language in the
field of Data Science and Artificial Intelligence.

Python is known for its simple and clean syntax and even though it is an Interpreted
Programming Language which makes it quite slower than Compiled Languages such as C
and C++, the community of developers is so rich that there is a huge number of open-source
libraries available for any user that allow data manipulation, Artificial Intelligence and more
in a much more straightforward and efficient way than other languages.

Specifically, we will use Python 3.9, and we also rely on the use of the following commonly

known libraries:

- scikit-learn (sklearn) [12][13]: Probably the best known Machine Learning library. It

offers a very big and powerful set of tools for classification, clustering, regression and

CHAPTER 1. INTRODUCTION 1.2. Materials used

more such as tools to be able to explain the results of the model trained. It is easy to

use even for beginner engineers so it has become standard in its field.

« pandas[14][15]: It is used for analysis and manipulation of data, simplifying the use
of datasets in different formats and making possible and efficient the preprocessing of

data and its transformation.

- numpy[16]: Important package for scientific computing, easing array operations and

computations while making them efficient.

« scikit-optimize (skopt) [17]: Probably the less known library of the ones used, it is
used for Bayesian Optimization techniques, mainly because of its BayesSearchCV im-
plementation for hyper-parameter tuning. This has been tested as given almost optimal

results in hyperparameter tuning in less time than the rest of tuners[18].

1.2.3 Tools

Without some tools, the development of this Project wouldn’t have been possible, as these
assist us by making our coding more efficient and comfortable as well as for allowing the
transmission of information to the tutors for it to be reviewed and saved. Next, we will present

the main tools used, how they work, and how we use them.

« Pycharm Professional[19]: This Integrated Development Environment (IDE) sup-
ports us with auto-completion of the functions and syntax correction tools. It also
integrates functionalities like Github that will be presented later and enables debug-
ging to make it possible to understand everything that happens within our program.

Its license is given by the University of A Coruiia (UDC)

« CITIC Supercomputer: A supercomputer SHH connection was lent by the CITIC[20]
to make it possible to do computations of large amounts of data and memory-consuming
tools that in our personal computers wouldn’t have been possible. It also allowed us to
compute very GPU and CPU intensive programs that couldn’t have been used other-

wise.

« Personal Computer: An ASUS laptop, property of the student, was used in the de-
velopment of the project for writing the Final Report, having the project meetings and
doing the proposed models computations, from training to evaluating. The hardware

spec of the laptop are:

— CPU: 11th Gen Intel Core i5 - 11400H (from 2.7GHz to 4.5GHz) with 6 cores
- RAM: 16GB DDR4 SO-DIMM

CHAPTER 1. INTRODUCTION 1.3. Development Methodology and Project costs

— GPU: NVIDIA GeForce RTX 3060 6GB GDDR6
— Storage: 512 GB SSD M.2 NVMe PCle 3.0

« Github[21]: It serves as a centralized hub for version control of our code. It made it
possible for the review of each version of the code to return to older versions of it and to

save newer ones for those to be accessed on any device that is available at the moment.

+ Microsoft Teams[22]: This very important communication tool made it possible to
have meetings with the tutors of the project and to send information such as important
papers to take into account the results of multiple computations of models. The license

was also given by the UDC.

« Overleaf[23]: Tool that enables the editing and writing of LaTex[24] documents, a
markup language that allows us to write our document in plain text instead of having
to do the format by ourselves like with Microsoft Word. Currently the standard in

scientific and engineering publications.

« arXiv[25]: A platform that permits us to access, thanks to the University license, mul-

tiple scientific papers that turn out useful for the Project.

+ CherryTree[26]: It is a hierarchical note-taking tool that allows us to organize the
progress of every meeting and the work done outside of those. It allowed us to keep a

comprehensive record of our short-term objectives.

1.3 Development Methodology and Project costs

In this section, we will introduce the proposed methodology to follow for the development of

the Project and its costs.

1.3.1 Methodology and Phases

For the project a SCRUM Methodology was used from the beginning of the development, hav-
ing progress checkups every two weeks and establishing new short-term objectives to fulfill
the final ones. From the beginning of the project until half of June, that was the periodicity

of meetings, but after that moment we decided to start weekly meetings.

Phases of the project

From the beginning of the project, we proposed a series of phases to be followed so as to be

organized and ordered. These were:

CHAPTER 1. INTRODUCTION 1.3. Development Methodology and Project costs

1. Study of Key IDS Development Techniques with Machine Learning: In this step
we immerse ourselves into a series of state-of-art techniques for IDS development, fo-

cusing mostly on Machine Learning-based technologies

2. Dataset Analysis: We fully analyze the contents of the UGR’16 dataset to be able to
understand how it is formed, its structures, and how could we use it for the betterment
of our IDS models.

3. Acquaintance with Data Analysis Tools: The dataset is a large one, with 4000 Mil-
lion rows, each with 13 distinct variables and a size 1.8 TB. Thus, after having studied it
and the different techniques for Machine Learning IDS development, we will also have

to familiarize ourselves with the necessary tools to explore this data and transform it.

4. Data Cleansing and Transformation: Now that the dataset is known and also the
useful tools for using it for our goals we can begin the process of modifying it for our
use. As the Dataset is not in the necessary format for training Machine Learning models
with values like the time of flow in normal string YYYY:MM:DD that have to be changed

to Unix timestamps

5. Replication of Previous Approaches: It is important to replicate previous studies,
with a double objective. On the one hand, checking the adequacy of the implementa-
tions carried out, and on the other hand, it is important to understand the nuances if

we want to be able to improve the state of the art results.

6. Development of Novel Proposals: Once we have been able to replicate previous
approaches, so as to compare the different results of the state-of-the-art models, we can

begin with our proposals for an improvement in said results.

7. Analysis and Comparison of Models: After doing the necessary tests to be certain
that the results we obtain are correct we can start analyzing them to understand their
inner meaning and compare them with the previous results and also with our newer

proposals.

8. Finalizing and Reporting: Final phase of the development of this project where the
report is written with all the work done, needed information and the conclusions of the
proposals including gained knowledge and resources used learned from the University

Grade in Computer Science.

In figure 1.1 we do an initial planning of the project to be compared with the final develop-
ment plan and analyze the deviations. Once established the baseline we can compare it with

our final Plan in figure 1.2. As we can see the initial estimation of the duration of the project

CHAPTER 1. INTRODUCTION 1.3. Development Methodology and Project costs

Figure 1.2: Final Plan compared with baseline

ended up being different from the final progress. The most notable change is the start date,
as it started approximately 2 weeks after the predicted data. This can be explained by know-
ing that the student did an stay in a foreign country and had to still finish the examinations
necessary in that country.

Also the sizes of the time span of the 'Development of Novel Proposals’ phase and the
’Finalizing and Reporting’ have increased due to the beginning of the professional career of
the student. It was also decided, due to the time-consuming essence of training and testing
Machine Learning models, to begin the writing process in parallel to the development phase.

We had a deviation of 79 days from the original plan finish date.

1.3.2 Costs of the development

For the predicted costs originally we will use the European Credit Transfer System (ECTS)
credits that are given to the subject 'Final Project. Mention in Computer Science’ [27]. As
the subject has 12 ECTS credits, the corresponding hours amount to a total of 300, of which
275 are to be done solely by the student as autonomous work and the remaining 25 should
be worked with the student tutors. To calculate the costs we access the average salary of a
Programmer and of a Project manager in Spain and multiply by their corresponding work
hours. As for material costs, they will not be counted in the final prediction because the only
cost there will be is the electricity costs and the amount to be insignificant compared to the
personal costs.

We can observe the total predicted cost in the table 1.1. But as the initial prediction for
the plan was wrong, as seen in figure 1.2, our cost calculations also changed. Both the Pro-
grammer and the Project Managers worked hours diverged from the prediction, with an ap-

proximate total of 400 hours spent working in the project for the Programmer and 20 for the

CHAPTER 1. INTRODUCTION 1.4. Structure of the document

Project Managers, 12 total meetings and 8 hours each for analyzing the Project Report. the
total calculated cost is given in table 1.2. As we can see the increase in cost is 29% from the
original planning, and it makes sense since the project had a deviation of 79 days, 62% more

than the predicted in figure 1.1

Resource Worked Hours Hourly Rate

Programmer 275 15 €/h

3 Project Managers 25 54 €/h

Total Cost Cost
Programmer + Managers 5475€

Table 1.1: Predicted cost

Resource Worked Hours Hourly Rate

Programmer 400 15 €/h

3 Project Managers 20 54 €/h

Total Cost Cost
Programmer + Managers 7080€ (+29%)

Table 1.2: Final cost

1.4 Structure of the document
In this section, we will introduce the chapters that this document contains:

« Introduction: It contains the project’s motivation, presents the materials and method-

ology used and provides the structure of the memory

+ Theoretical Foundations: We bring the most relevant theoretical context for the un-
derstanding of the project, delving into topics like Intrusion Detection Systems, Artifi-

cial Intelligence and Machine Learning,.

« State of the Art in the Project’s field: In this chapter we do a revision of the newest
information available about our research, presenting the different databases that exist

for IDS and how these are being used.

« Development of the IDS: In this chapter, the previous knowledge for the experiments
to be done is presented, explaining the standard methodology that will be used, previ-
ous experiments with the raw Dataset and finally the replication of previous results to

establish a baseline of comparison.

CHAPTER 1. INTRODUCTION 1.5. Research objectives

« Implementations and Experiments: We detail here the different proposals for im-
provement that were made, what kind of experiments were conducted, and which were
the general results obtained. At the end, we will critically analyze the outcome of our
experiments in detail, comparing them with the previous results from the latest research

included in the second chapter.

« Conclusions and Future Work: Finally some conclusions of the project are provided
with a summary of our discoveries and the contributions that were made through this
project and what else could be explored in the future, with different applications and

improvements to be made.

1.5 Research objectives

The main objective of this work is to develop an improved Intrusion Detection System (IDS)
by utilizing the newly available datasets that consist of real and synthetic network traffic data.

The work will focus on the following key points:

Analysis of different techniques of Automatic Learning for IDS development.
« Utilization of Data Science techniques to handle the large size of the UGR’16 dataset.

« Proposal of an IDS based on artificial intelligence, trained and tested with the UGR’16

dataset, and comparison with previous Al models used for the same dataset.

« Analysis of the obtained results to evaluate the effectiveness of the proposed model and

identify future research directions.

Chapter 2

Theoretical foundations

NTRUSION detection is in the present days a fundamental component of computer security
I systems, safeguarding networks and devices against possible threats and unauthorized
activities. For this project, it’s necessary to fully understand the theoretical bases of these
systems and the advantages brought by the use of artificial intelligence and Machine Learning
techniques.

The following chapter will provide an overview of the field of intrusion detection. We will
start with a presentation of a definition of it, the main objectives of this kind of system and
the challenges that appear when trying to achieve an accurate and robust detection.

Next, we will expose its course of history. Since its conception in the 80s with rule-based
systems, that use predefined rules to detect stated known attack patterns, to later systems that
include anomaly detection methods that focus on finding deviations from ”learned” normal
behaviour. And finally the latest use of Machine Learning and artificial intelligence with the
increase of large-scale available datasets of network traffic.

In summary, this chapter serves as an important introduction to all the knowledge needed
for this Final Project Assignment, providing the background and understanding needed to
comprehend the advancements and alternative methods for intrusion detection presented in

our research.

2.1 Intrusion detection systems

Intrusion Detection Systems (IDS) act as the burglar alarm but in the cyber-security field. It
defends the system by alerting when it could have been compromised by an outsider’s attack
or unauthorized access. It is different from the called Intrusion Prevention Systems (IPS) that
identify potential threats like the IDS but take action to end the threat and solve its damage.

But a more proper definition could be a device or software that monitors network traffic

and alerts when a possible malicious activity is detected. This warning is then often passed to

CHAPTER 2. THEORETICAL FOUNDATIONS 2.1. Intrusion detection systems

a Security Information and Event Management (SIEM)) or to an administrator that processes
the information given and resolves whether the notification is a mere false alarm or if it
represents a real danger.

For this, it uses multiple data sources like network packets, user activity or system logs
that are afterwards analyzed, depending on the system, with many possible tools, like prede-
fined rules, signatures or patterns of common attacks, statistical analysis, or, as is the main
point in this project, with Artificial Intelligence (AI) or Machine Learning based algorithms.

IDSs can be categorized based on their deployment type and the detection methods they
employ, as presented in the next sections of this document.

For research and writing of this next section [28] [29] and [30] have been used.

2.1.1 Types of IDS based on deployment

Intrusion Detection Systems can be differentiated by two main deployment types, Network
based IDS (NIDS) and Host based IDS (HIDS). In this subsection, we will explore their differ-

ences.

Network Intrusion Detection System (NIDS)

These systems are deployed to at a planned point within a network to monitor all traffic from
all the connected devices to the network. It verifies the content and the metadata of all packets
and alerts the administrator of the network for any inconsistency.

It’s normally located at the same location as the firewall of the network to provide a

safeguard in case any attack or breaching of the firewall is tried.

Host Intrusion Detection System (HIDS)

These systems run each on its own independent device of the network. Instead of reading
the whole flow of data of the network where it is deployed, it monitors only the entering and
exiting packets from the host it is from. It uses snapshots of the state of the existing files to
be able to check if after an alert any of them have been modified. In this case, the SIEM is
notified.

These are most commonly used in mission-critical machines that don’t normally change

their configuration.

Hybrid Intrusion Detection System

A system of this kind is made by combining the two approaches explained before, using both
the host with the system data and the network information to get a complete view of the

network system.

10

CHAPTER 2. THEORETICAL FOUNDATIONS 2.1. Intrusion detection systems

The following table 2.1 shows the differences between the two main deployment types,
Network and Host based IDSs, since the third type, Hybrid IDSs, are a combination of the

previous two, therefore it is unnecessary to include it in the comparison.

the network

Aspect Network-based IDS (NIDS) Host-based IDS (HIDS)

Focus Monitors network traffic and events at Monitors events on individual hosts or de-
network level vices

Scope Covers multiple devices and systems in Limited to the host it is installed on

Data Source

Analyzes network flows, firewall logs, etc.

Analyzes system logs, file integrity, etc.

Detection Detects network-level attacks, intrusions, Detects local host-level attacks and un-
and anomalies usual activities

Visibility Provides an overview of network-wide Offers detailed insight into host-specific
threats threats

Deployment Positioned strategically within the net- Installed on individual hosts or devices
work

Performance Can handle high-volume network traffic Less affected by network traffic, but

resource-intensive on hosts

Management Centralized monitoring and alerting for Distributed monitoring and alerting for
the entire network individual hosts

Examples Snort, Suricata, Bro/Zeek OSSEC, Tripwire, AIDE

Table 2.1: Comparison of Network-based IDS (NIDS) and Host-based IDS (HIDS)

2.1.2 Types of IDS based on Detection Method

IDSs can use a variety of methods to analyze the given data and detect threats within its
deployment field. These can be encased into three main categories that we will explore now:
Signature-based detection, Anomaly-based detection and Hybrid Detection.

Each type has its own unique characteristics and their use will depend on the requirements

of the environment where our IDS is deployed.

Signature-based Detection

Also known as Rule-based detection, the systems that employ this method of detection use a
series of predefined rules or signatures for known attacks, also known as patterns, comparing
the input data with these saved signatures and sending an alert if there is a match.

This method for detection is very effective towards already known attacks but can have
problems with newer ones, as it requires a constant update of its signature database to avoid
false negatives and won'’t be able to recognize infections that are too novel for it to know its

patterns, such as zero-day attacks.

11

CHAPTER 2. THEORETICAL FOUNDATIONS 2.1. Intrusion detection systems

Anomaly-based Detection

Systems that use this method center their detection around developing what we can call a
baseline of normal network behaviour and then comparing the input data with this baseline to
identify a possible deviation, based on the principle that abnormal data will also hide abnormal
patterns.

In contrast to the Signature-based detection systems, Anomaly-based detection systems
can positively detect unseen attacks and zero-day malicious behaviour. But IDSs that employ
anomaly detection can also be more prone to give false positives, identifying normal data as

a possible attack, because of the intrinsic variations in the network traffic or the host system.

Hybrid Detection

Nowadays is more common to find IDSs that employ both methods for detection. This way
these systems can sum the strengths of both while reducing their weaknesses. By combining
both Signature-based and Anomaly-based detection methods we can have the ability to detect
known and unknown attacks.

The following table 2.2 exposes in a simplified way the differences between the Signature

and the Anomaly-based Detection Methods.

Method Signature-based Detection Anomaly-based Detection
Characteristics Relies on predefined patterns or signa- Identifies deviations from normal behav-
tures of known attacks ior based on a baseline model
Advantages
« Highly effective at detecting known « Detects novel attacks
threats

« Adaptability

Low false positive rate
« Covers a broader range of threats

Simple model creation

Limitations

Ineffective against new or zero-day « Higher false positive rate

attacks .
« Complex model creation

Requires constant updates
« Difficulty in setting thresholds

Limited coverage

Table 2.2: Comparison of Signature-based Detection and Anomaly-based Detection

2.1.3 Different Data Sources for Intrusion Detection

We have now explained different types of IDSs, from the deployment to the method they use

to classify the threats, but we still have to define what data they use to determine an attack.

12

CHAPTER 2. THEORETICAL FOUNDATIONS 2.1. Intrusion detection systems

In this subsection, we will explain what data is gathered by the network and host IDSs.

Network-deployment Data

The Network IDS obtains its data from the network traffic, getting an overview of the activities

happening across the entire network where it is deployed. That data consists in:

« Network Flow: This flow is represented as a sequence of packets that detail the com-
munication between different hosts, with the IPs, ports and protocols involved. This
flow also contains more information about the transaction like its timestamp or the

number of packets sent.

« Network logs: These logs are files produced by the different components of the net-
work such as the router or a firewall are very valuable for the detection of abnormal
traffic. They contain a record of the events that occurred in the network with their

severity and information of the hosts involved.

« Packet data: The raw network packet is captured when it passes through the segment
where our NIDS is located. With it, we are able to inspect all of the packet’s information,

including its headers, application data or commands.

Host-deployment Data

The Host IDS, instead of selecting the network traffic, is centered on gathering the events and

activities that happen in a single host. The data that it will process is the following:

« System logs: Also called syslogs, these files record the events and activities of the
device and provide essential information, including event types, severity, timestamps,
event descriptions, and user involvement. With these logs, the HIDS can detect anoma-

lies in the device record of events.

« File Integrity Monitoring: It consists of recording in a database the known normal
status of the host files, from the file paths to their attributes. By having a baseline of
the device’s file normal status, the HIDS can detect modifications in size, permissions,
etc. This way if any file has been tampered with, like if a worm has been hidden inside,

there is a way to know it.

« Application logs: They are files with the record of the activity, errors and events
produced by software applications. With information similar to the System logs but
in a different scope, it is possible to detect if any unusual behaviour of unauthorized

execution has happened.

13

CHAPTER 2. THEORETICAL FOUNDATIONS 2.2. Computer Network Attacks

« Process Monitoring: The HIDS can monitor the processes running in the machine
to check for unauthorized executions and strange processes that consume too many
resources, communicate with other hosts without permission or commit malicious ac-

tivity.

2.1.4 Functioning of an IDS

In this section, we will explain how the IDS works.
As we stated before, the IDS monitors network traffic and notifies in case of a possible mali-

cious intention. This process can be separated into multiple steps:

1. Data Collection: Data is gathered from multiple sources to be reviewed by the IDS.

2. Preprocessing of Data: Before all data can be analyzed, it passes this crucial step to

extract all the valuable information and reject the useless or incomplete data.

3. Use of Analysis Techniques: After the data is correctly transformed, the next step
is to discern if the incoming information is part of the normal network traffic and user
data or if some part of the system might have been compromised. To make this happen,

several methods are applied, as it was explained previously.

4. Alert Generation: If the possible malicious activity is identified by the analysis tech-
nique, an alert with the necessary information of the detected anomaly is generated
and it passed to the SIEM.

5. Response to the Alert: In this step, the IDS is no longer involved directly as it is the
SIEM or the system administrator the one that, given the proper information, assesses

the importance of the alert and selects the proper actions to be performed.

2.2 Computer Network Attacks

While talking about the workings of an IDS we mentioned multiple times the words attack and
malicious behaviour. In this section, we will introduce what this is and give some explained
examples of these instances that the IDS has the objective to detect.

A Computer Network Attack is an action or activity that aims to compromise Confiden-
tiality, Integrity or Availability. These 3 factors are commonly called the CIA Triad [31] as a
model to guide information security policies in all organizations. Every Computer Network
attack can be assigned to attempt to break one or a combination of these principles.

This attack can be the result of malicious intent or unintentional actions due to negligence

or just a lack of knowledge that can result in a security breach.

14

CHAPTER 2. THEORETICAL FOUNDATIONS 2.2. Computer Network Attacks

Aswe will see next, these can range to a very big set of attacks from gaining access without
proper authorization to making the functioning of the System complicated or impossible,

overloading it.

2.2.1 Different Computer Network attacks

Now that we have explained what are the different kinds of attacks and what a Computer
Network attack is we can explain the different kinds there are of this. But first, we will pro-
vide information about the previously presented term, the CIA Triad and its components:

Confidentiality, Integrity and Availability.

The CIA Triad

The CIA Triad, as stated before, is used as a framework to take into account when designing
and implementing security features against possible threats and risks.

We will now present the components:

« Confidentiality: This means that all data being used is only accessible by the autho-
rized parties. By implementing it into our security measures we prevent unauthorized

users from accessing, obtaining or viewing this data.

It can be implemented in various ways like encryption of the information, authentica-

tion to interact with it, or access control.

« Integrity: It assures that all data remains as it is, accurate, complete and without al-
terations. When implemented we can prevent modifications that are not authorized,

either by accident or by a user with bad intentions.

For its implementation we can use from hashing to checksums or digital signing to be
able to detect any tampering in our information or possible corruption of data and in

some cases be able to revert it.

« Availability: All data is accessible by the authorized parties when needed, preventing

service interruptions or disconnection of critical systems.

It can be achieved by physical and digital means. A physical way to prevent an avail-
ability error can be to have multiple backups or redundancy in the system to be able
to solve it as soon as possible or even make it unnoticeable by the interested user. By
digital ways we mean implementing software tools that avoid possible attacks that try
to rid us of our System response by overloading it like with Denial of Service (DOS)

attacks.

15

CHAPTER 2. THEORETICAL FOUNDATIONS 2.2. Computer Network Attacks

Confidentiality Attacks

The most common attacks that attempt to surpass this principle are: Phishing attacks, Eaves-

dropping and Data breach.

« Phishing: This is a technique where attackers send fraudulent emails or messages that
attempt to pass as legitimate sources, such as banks, companies, or government agen-
cies to get the confidence of the recipient. Once the trust has been forged they trick the
users into revealing their personal or financial information, like passwords or identifi-

cation data that could be used for impersonation.

« Eavesdropping: This is based on the ability of the attacker to intercept the commu-
nication between the authorized parties without the proper permissions to attempt to

capture said data for the possibility of extracting valuable information.

« Data breach: Common when there is a vulnerability in the System that allows unautho-
rized access to some or all of our data. This vulnerability can be in any part of the chain
of the security process, either by faulty equipment, an error in software, or a personal

mistake.

Integrity attacks

For attempting to tamper with data without permission there are three most common exam-

ples: Injections and Man-in-the-middle attacks.

« Injections: This refers to any attempt to trick the attacked parties into executing some
unknown code to try to manipulate, access or damage their data. The most common
example is the SQL injection. It consists of finding a vulnerability, normally in a search
engine or a web application that interacts with a database, that allows the attacker to
send in their command and expression that is read, instead of a search for the expres-

sion, as some other command to be run.

+ Man-in-the-middle: With this technique, the attacker attempts to disguise themselves
as a hidden intermediary between the connection of two or more parties, being able to
analyze their communications like with a confidentiality attack and having the ability

to alter or redirect the exchanged data.

Availability attacks

To disrupt the normal flow of data in a system or deny access to a network there are two main

dangers: Denial-of-service and Ransomware.

16

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

« Denial-of-Service: most known for its acronym, DoS, is a type of attack that consists of
flooding the system or network with more traffic or requests than it is able to receive in
normal conditions. This causes slow functioning or even a complete stall. It can either

be done by one or multiple attackers in a distributed way, called DDoS, Distributed Dos.

» Ransomware: is a kind of malware that encrypts the data of the system and demands,
as the name says, a ransom to restore the victims’ access to their data. It is probably
the most renowned kind of attack because of the very big expansion in 2017 of the
WannaCry ransomware that affected 200.000 devices worldwide, including hospitals

and critical infrastructure of cities [32].

2.3 Artificial Intelligence and Machine Learning

Mostly known in popular culture as Al it represents the intent of generating machines or
software that is able to reproduce or perform tasks that would normally require human in-
telligence. This can be used in a very diverse number of domains from the most famous now
like Natural Language Processing, due to the new Large Language Models like ChatGPT[33],
to diverse fields as Healthcare of even Law.

In this section we will explore the concepts of Artificial Intelligence and Machine Learning
that are instrumental in the development of this Final Project.

Machine Learning[34] is a branch of Artificial Intelligence that utilizes datasets to learn
patterns from data and perform functions that would require human intelligence, with the
objective of being able to solve new problems learning from the given dataset without having
the process explicitly programmed. This capability allows the Machine Learning model to bet-
ter adapt to future incoming information, to which it must apply the previously constructed
model generated through prior training.

These Machine Learning models are made to solve different problems, that we will de-
scribe in a subsequent section, and can be categorized into three main groups: classification,
regression, and clustering.

However, before delving into that, we must explain how the training of Machine Learning

models works, which can be categorized into four distinct types.

Supervised Learning

In this type of learning, the dataset consists of tuples <attributes, value>. The attributes rep-
resent the information we wish to provide to the model during training, and the value or label
represents the final outcome that a perfectly trained model should achieve after analyzing the

given attributes.

17

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

In supervised learning, the typical training process of a Machine Learning model involves
at least one training set and one testing set, which are necessarily distinct from each other.
Generally, data should not be repeated between these two sets.

The first set, the training set, will be the larger one in terms of data quantity and will
consist exclusively of the attribute portion of the <attribute-value> tuple. It is with this set
that the model will attempt to learn hidden patterns within our data, enabling it to solve the
given problem.

On the other hand, the testing set will only be used after the training is complete, allowing

us to evaluate how our model performs on data it has never encountered before.

Unsupervised Learning

This type of learning differs from the previous one in that it lacks the value for each data
point, having data consisting only of a set of unlabelled attributes. As a result, the goal is to
identify hidden patterns in the data that allow grouping based on their attributes.

In this type of learning, there isn’t a separation of the dataset into a training and a test set

because we don’t have any labeled data to compare with.

Semi-Supervised Learning

Sitting between supervised and unsupervised learning, this type of learning involves tuples
of <attribute-value> pairs but only for a limited number of previously labeled data points.
This technique is typically used when there is a scarcity of pre-labeled data but enough of it

to provide support in our unsupervised training.

Reinforcement Learning

Unlike supervised learning, reinforcement learning doesn’t initially provide data with a label
for tuning the model. Instead, it employs a trial-and-error process where the model explores
various possible actions with the aim of maximizing or minimizing a score depending on the

problem at hand, in order to reach an optimal solution.

2.3.1 Main Types of Problems in Machine Learning

In this subsection, we will explore the three main types of problems that can be addressed
using classical Machine Learning models: classification, regression, and clustering.
Classification

This type of problem, typically solved using supervised or semi-supervised learning, involves

assigning a predefined class to each data point. Classification problems can be binary, where

18

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

the classification occurs between two exclusive classes, or multi-class, where there are three
or more classes into which the data can be categorized. There is also a special type of classi-
fication known as multi-label classification, where classes are not completely exclusive, and
each data point can belong to more than one class simultaneously.

An example of classification is predicting whether a given text is in English or Spanish or

classifying an email as spam or non-spam based on its characteristics.

Regression

In regression problems, the goal is to predict continuous numeric values based on the provided
attributes. The primary distinction between classification and regression problems lies in
the type of output data. Classification involves discrete values, while regression deals with
continuous values.

A typical example of a regression problem is predicting the value of a property based on
its attributes such as location or size, or forecasting the temperature a day might reach by

measuring its environmental factors.

Clustering

Clustering problems involve grouping similar data points together based on their intrinsic
properties. Unlike classification, clustering is an unsupervised learning task, as it doesn’t
rely on predefined class labels. Clustering algorithms discover patterns and structures in the
data by identifying data points that share common characteristics. Applications of clustering
include customer segmentation for targeted marketing, identifying natural groupings in bio-

logical data, or image segmentation for object detection.

After presenting the main problems to solve with traditional Machine Learning techniques
we will introduce the main algorithms used for solving these problems, centering the ex-
planations in classification problems as the one to solve in our Final Project is a multi-class
classification problem.

2.3.2 Classification Models

In this section we will present the algorithms for classification problems used in this project.

Support Vector Machines (SVM)

The Support Vector Machine (SVM), sometimes called Support Vector Classification (SVC) for
Classification SVMs, originated in the 1960s and was further developed in the 1990s, finally

19

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

being presented in 1995 by Vladimir Vapnik and Alexey Chervonenkis [35]. Its primary ob-
jective is to find a hyperplane that optimally separates different data points of each class in
high-dimensional spaces.

The goal of the SVM is to create a kind of separation between two classes by maximizing
the margin’s distance between each class so that if data points fall on different sides of the
boundary, they can be classified. This algorithm is commonly used for binary classification
problems and linearly separable cases, where the sought boundary is represented by the hy-
perplane function: w’z 4+ b = 0, where the weight vector w determines the orientation of
the classification boundary by assigning significance to features in the input vector x, the bias
term b permits the boundary to shift, accommodating data not centered at the origin, and the

transpose w’

is employed to gauge the similarity between the weight vector and the feature
vector x.

However, in reality, most problems are not linearly separable due to noise introduction or
high complexity in data. To address such cases, two approaches have been devised: using a
soft margin or employing the kernel trick.

With the solution of the soft margin, a parameter C' is introduced, which represents the
trade-off between allowing misclassification and minimizing the margin width. This allows
some values to be classified within a margin they shouldn’t be in, to avoid overfitting and
excessively lengthy training.

The kernel trick is used for non-linear SVM problems. The kernel used by the model can be
changed to measure the similarity between different data points and to find the best boundary
with the maximum margin. The kernel trick involves using kernels that allow mapping our
data into higher-dimensional spaces, where the problem might be linearly separable. Impor-
tantly, the kernel doesn’t need to calculate the projection in this higher-dimensional space; it
only needs to compute the dot product in the new space, which significantly reduces compu-
tational load.

The most commonly used kernels nowadays are:

« Linear Kernel: Represents the original feature space and performs linear classification.

It calculates the dot product of the input data points.

+ Polynomial Kernel: Maps the data into a higher-dimensional space using polynomial

functions, enabling SVM to capture more complex relationships between data points.

« Radial Basis Function (RBF) Kernel: Measures similarity between data points based on

a Gaussian distribution.

We can see in figure 2.1 a representation of a SVM solving a binary classification prob-
lem and in figure 2.2 an example of the different kernels and how it affects on the solution

hyperplane is displayed

20

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

/
Support vector ,/

* &

Optimal Hyperplane

ey i

4

vector

Figure 2.1: Suport Vector Machine functioning from [1]

SVC with linear kernel

LinearSVC (linear kernel)

sepal width (cm)
sepal width (cm)

sepal length (cm) sepal length (cm)
SVC with RBF kernel SVC with polynomial (degree 3) kernel

sepal width (cm)
sepal width (cm)

] sepal length (cm) sepal length (cm)

Figure 2.2: Comparison of different SVM kernels from [2]

21

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

Random Forest

The Random Forest (RF) algorithm, introduced by Leo Breiman and Adele Cutler in the year
2001 [36], is a versatile ensemble (2.3.3) learning method that combines multiple decision trees
to achieve improved performance and robustness.

Random Forest’s main objective is to address overfitting and enhance generalization by
aggregating predictions from individual decision trees. It constructs an ensemble of decision
trees during training, where each tree is trained on a random subset of the training data,
introducing randomness into the process.

The algorithm makes predictions by averaging or voting on the predictions of individ-
ual trees within the forest. This aggregation reduces the impact of individual decision trees’
errors, resulting in a more accurate and stable prediction.

Random Forest has several advantages, including handling non-linear relationships, fea-
ture importance estimation, and resistance to overfitting. It is suitable for both classification
and regression tasks.

The key steps in Random Forest include:

1. Bootstrapping: Creating multiple subsets of the training data using a process called

bootstrapping, allowing each decision tree to be trained on a different subset.

2. Random Feature Selection: Randomly selecting a subset of features at each node of a

decision tree, reducing correlation among trees.

3. Growing Trees: Growing decision trees using the selected features and bootstrapped

subsets, resulting in a diverse set of trees.

4. Aggregating Predictions: Combining the predictions of individual trees through aver-

aging (regression) or voting (classification).

In figure 2.3 we can observe a simple representation of how the Random Forest model

works

22

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

Random Forest Classifier

X dataset

N, features N, features N, features N, features
e e e e
o ° a o & 0 o e
o €0 db e de b S0 €0
TREE #1 TREE #2 TREE #3 TREE #4

gl »2 i i

S D LASS B CLASS C

FINAL CLASS

Figure 2.3: Functioning of the Random Forest from [3]

Gradient Boosting

Gradient Boosting, introduced by Jerome H. Friedman in 2001 [37], is an advanced ensemble
(2.3.3) learning technique that aims to create a strong predictive model by combining the
predictions of multiple weak models, typically decision trees.

The primary objective of Gradient Boosting is to improve the predictive accuracy of a
model through an iterative process. It builds the model sequentially, where each new model
corrects the errors made by the previous ones.

Here’s how Gradient Boosting works:
1. Initialization: The first model is trained on the original data.

2. Residual Calculation: The difference between the actual target values and the predic-

tions of the current model is calculated, creating a residual.

3. Training Weak Models: New weak models (typically decision trees) are trained to pre-

dict the calculated residuals.

4. Combining Predictions: The predictions of the new models are added to the previous

model’s predictions, updating the previous model.
5. Iteration: Steps 2 to 4 are repeated for a predefined number of iterations.

The process of Gradient Boosting is guided by optimization techniques like gradient de-
scent, where the algorithm tries to minimize the loss function by adjusting the model’s pa-
rameters.

There are several implementations of Gradient Boosting, with eXtreme Gradient Boosting

(XGBoost) [38] being one of the most popular. XGBoost introduces enhancements to tradi-

23

CHAPTER 2. THEORETICAL FOUNDATIONS

2.3. Artificial Intelligence and Machine Learning

tional Gradient Boosting by incorporating techniques such as regularization, parallel com-

puting, and handling missing values. This leads to improved performance, efficiency, and

generalization.

Since both Random Forest and Gradient Boosting are ensemble learners we expose their

differences and similarities in the table 2.3:

errors made by previous models

Aspect Gradient Boosting Random Forest

Construction Sequentially builds models by correcting Constructs multiple decision trees inde-
errors of previous models pendently in parallel

Weighting Errors Assigns weights to data points based on Trains each tree on a random subset of

data with replacement

Bias-Variance Tradeoff

Tends to have lower bias but more prone

to overfitting

Typically has a slightly higher bias but

less prone to overfitting

Interpretability May be harder to interpret due to sequen- Easier to interpret as each tree is indepen-

tial construction dent

Table 2.3: Comparison of Gradient Boosting and Random Forest

Logistic Regression

Logistic Regression (LR), introduced as a statistical model by Joseph Berkson in 1944[39], is a
fundamental Machine Learning algorithm widely used for binary classification tasks. Unlike
its name suggests, it’s primarily used for classification rather than regression. It’s a simple
yet effective algorithm that can model the probability of a binary outcome based on input
features.

The core idea behind Logistic Regression is to apply a logistic function (also known as
the sigmoid function) to the linear combination of input features and corresponding weights.
This function maps any input into a value between 0 and 1, which can be interpreted as the
probability of the input belonging to the positive class.

The logistic function is defined as:

1

7)==

where z is the linear combination of weights and input features.

In the training phase, the algorithm adjusts the weights to minimize the difference be-
tween predicted probabilities and the actual binary labels. This optimization process is typi-
cally done using techniques like gradient descent.

The key components of Logistic Regression are:

« Linear Combination: Logistic Regression calculates a linear combination of input

24

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

features and corresponding weights.

 Sigmoid Function: The logistic function maps the linear combination to a probability

value between 0 and 1.

» Thresholding: A threshold value (usually 0.5) is applied to the predicted probabilities

to classify instances into positive or negative classes.

+ Cost Function: Logistic Regression uses the cross-entropy loss as the cost function to

measure the difference between predicted and actual labels.

However, Logistic Regression has its limitations. It may struggle with handling highly
imbalanced datasets or dealing with non-linear relationships. In such cases, more advanced
algorithms like Support Vector Machines or ensemble methods like Random Forests and Gra-
dient Boosting might be more suitable.

But it can be possible to use different training strategies to improve its ability of gen-
eralizing and making it able to work for multi-class problems, like One vs Rest or One vs
One.

Multilayer Perceptrons

The Multilayer Perceptron (MLP) is a type of neural network that evolved from the original
Perceptron, introduced in 1958 by Frank Rosenblatt [40]. It is a series of interconected nodes,
also called neurons, that are organized into layers, including an input layer, one or more
hidden layers and an output layer. These connections are weighted to determine their strength
and are adjusted during training to minimize the difference between the predicted and real
outputs.

The improvement of the MLP, from the original Perceptron is the inclusion of multiple
hidden layers, that allows our model to pass through multiple steps of feature extraction of
the input data and permits for solving non linear problems and capture more complex data
patterns.

In the figure 2.4, an example of a simple MLP is shown.

25

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

Input layer Hidden layer Output layer

Figure 2.4: Example of Multilayer Perceptron from [4]

K-Nearest Neighbors (kNN) Algorithm

The K-Nearest Neighbors (kNN) algorithm is a versatile and intuitive classification technique
that operates on the principle of similarity. Introduced in 1951 by Evelyn Fix and Joseph
Hodges in 1951 [41] . It works by classifying a data point by examining its proximity to its
neighboring data points. It assumes that data points with similar features tend to belong to
the same class. In essence, kNN defines classes based on the majority class of its k nearest
neighbors, where k is a user-defined parameter.

kNN is particularly useful when dealing with non-parametric and non-linear data distri-
butions. Unlike some other algorithms, kNN doesn’t make any underlying assumptions about
the data’s distribution or structure. This flexibility allows it to handle complex data scenarios,
such as clusters, outliers, and noisy data.

The algorithm’s steps are:

1. Calculate Distances: For a given data point, calculate the distance to all other data
points in the dataset. The choice of distance metric, such as Euclidean or Manhattan

distance, depends on the nature of the data.

2. Select Neighbors: Identify the k nearest data points based on their calculated distances.
These data points form the "neighborhood” of the target data point.

3. Classify: Determine the class of the target data point by tallying the classes of its k
neighbors. The class that appears most frequently among the neighbors is assigned to

the target data point.

We can observe in figure 2.5 the functioning of the k Nearest Neighbours algorithm for a

binary classification problem.

26

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

New example
to classify Class A

ol * __ Class B

Y-AXis
) o
~

\\
x*
A Y
]
I
r'4
I
s
~

\ ‘\K=3 A 7
\
\\ \\.___r,IA I! A
S K= /’
X-Axis

Figure 2.5: kNN binary classification example from [5]

An important consideration in kNN is the selection of the parameter k. A small & value
can make the algorithm sensitive to noise and outliers, potentially leading to overfitting. On
the other hand, a large £ value can result in a loss of local information, making the algorithm
less sensitive to the underlying patterns in the data.

While kNN is relatively simple, it may suffer from computational inefficiency when ap-
plied to large datasets. Calculating distances between data points can be time-consuming.
But nowadays various techniques like KD-trees[42] can be employed to speed up the nearest

neighbor search.

2.3.3 Ensemble Methods

Ensemble methods involve combining multiple individual models to create a stronger and
more robust predictive model. These methods often outperform single models by leveraging
the diversity and collective knowledge of the individual models.

There are multiple different methods for ensemble models but we will explain next the
principal ones that are more used nowadays, apart from Random Forest and Gradient Boosting

because we have already explained them in points 2.3.2 and 2.3.2.

Bagging (Bootstrap Aggregating)

Bagging, published originally in 1996 by Leo Breiman[43], is a fundamental ensemble tech-
nique that involves creating multiple subsets (bags) of the training dataset through random
sampling with replacement.

Each subset is used to train a separate base model, typically a decision tree. During pre-

diction, the outputs of the individual models are combined, often through majority voting

27

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

for classification tasks. Bagging helps reduce overfitting and variance by averaging out the

individual model’s errors.

Boosting

Boosting is another ensemble technique that focuses on sequentially improving the perfor-
mance of weak base models by combining them. assigning higher weights to misclassified
instances, making subsequent models focus on correcting those mistakes. The final predic-
tion is a weighted combination of the predictions from all base models. One of the most
known implementations of Boosting is AdaBoost (Adaptive Boosting) [44].

Boosting can lead to significant improvements in accuracy, especially when combined
with simple models like decision stumps.

In the figure 2.6, a graphic representation of the difference of Boosting and Bagging En-
semble Methods is presented.

Bas(f!in::f BOOS‘UV\?
Original

Boctstrapping Tebhining, Lt nodal 1 E‘T:ic;:b, Misclagsified
(eoe o0
I\o e L

Origimanl

Lorrectly v 4
Clagsities Miselassified
eoe| [oee
L X] L]
y— 1.
;.e,'f":cf f Misclassied

(e0e| [000)
LX) |
e A

Figure 2.6: Comparison of Bagging and Boosting from [6]

Voting

Voting ensembles, introduced in 1992 by Robert M. French[45], involve combining the pre-
dictions of multiple individual models to make a final prediction, taking the opinion of each
of the models to make the decision based on the collective insight. There are three main types

of voting:

« Hard Voting: In hard voting, the final prediction is determined by majority rule. Each
individual model’s prediction contributes to the final decision, and the class with the

most votes is selected.

28

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

It works better with multiple models that each differ in their area of expertise and have

different errors, correcting misclassifications in the process.

+ Soft Voting: In soft voting, the final prediction is based on the class probabilities pre-
dicted by the individual models. The class with the highest average probability across

all models is chosen.

« Weighted Voting: Weighted voting assigns different weights to the predictions of in-
dividual models. This allows more influential models to have a larger say in the final

decision.

It introduces importance to the models, so for a model that has better known perfor-

mance on the problem tried to solve, it can be given more importance to its prediction.

Stacking

Stacking, first proposed in 1992 by David H. Wolpert [46], is an ensemble method that entails
training multiple base models and using their predictions as inputs to a higher-level model,
often referred to as a meta-model. This meta-model learns how to combine the predictions
from the base models for the final prediction. This ensemble method attempts to join the

stenghts of the different base models to improve the final prediction.

2.3.4 Outlier Detection

As exposed previously, one of the main methods for IDSs to detect and classify their input
data into possible threats is the Anomaly-based Detection (2.1.2), that attempts to establish
what is considered common behaviour and detect the ones that deviate from that. And that
is also the principle of this task to be solved with Machine Learning.

As there are multiple methods for Outlier Detection, we will center our explanation in
three of them: Isolation Forest, Local Outlier Factor and One Class SVM.

Isolation Forest

It was introduced by Lie et al. in 2008 [47] and follows the principle that anomalies should
normally be isolated data so with a set of binary trees that divide the data space we should
require fewer partitioning steps to identify them than for normal data.

We randomly select a feature and divide the data space within the range of the feature
value. This way we can measure the quantity of anomaly of the data by its difference of
partitioning steps compared to the average of the inliers.

An example of functioning of the Isolation Forest can be seen in figure 2.7

29

CHAPTER 2. THEORETICAL FOUNDATIONS 2.3. Artificial Intelligence and Machine Learning

iForest
A

iTree iTree iTree

Anomaly
Potential Anomaly

Normal Instance

Figure 2.7: Example of Isolation Forest functioning from [7]

Local Outlier Factor

The Local Outlier Factor (LOF), introduced by Breunig et al. in 2000[48], presents a distinct
perspective on anomaly detection that leverages the local density variations of data points.
LOF evaluates the deviation of the density of a data point from the densities of its neigh-
bors, as outliers are often surrounded by regions of lower density compared to the broader
data distribution. By comparing this local density with the densities of its neighbors, LOF
quantifies the degree to which a point is an outlier. If the local density is notably lower com-

pared to the neighbours’, it is classified as anomaly.

One Class SVM

The One-Class Support Vector Machine (One-Class SVM), introduced by Schélkopf et al. in
2001 [49], is a variant of the traditional Support Vector Machine built for outlier and novelty
detection.

In this method, the primary objective is to create a decision boundary that encapsulates
the majority of the data points, defining a region that is considered "normal”. Instances ly-
ing outside this boundary are classified as outliers. One-Class SVM operates with the notion
that the majority of data points are expected to lie within the boundary, making the outliers’
representation significantly smaller. To achieve this, the One-Class SVM seeks to find a hy-
perplane that best encapsulates the data, maximizing the margin while accounting for the
prescribed tolerance of outliers. The resulting hyperplane and margin effectively establish

the boundary within which most data points should reside.

30

Chapter 3

State of the Art in the Field

ACHINE learning for Network Intrusion Detection Systems is fundamental to be able
M to cope with the development of new attacks as well as to rid ourselves of unwanted
exposure to bad-intention behaviour. But to train our Machine Learning models we first
need to be able to establish a standard methodology to follow. Not only the methodology is
relevant, but also the data used to train our system. Thus, in this chapter we will discuss the
state of the art in both aspects, starting with the evolution of Datasets used for IDS Machine

Learning models and their history.

3.1 Datasets for IDS

The evolution of Intrusion Detection System (IDS) datasets has been driven by the need to
address various challenges posed by real-world network traffic and attacks. In the following,
we will describe briefly the main datasets used in the field. Some of the information has been

extracted from the dataset comparison present in [9] and [50].

3.1.1 DARPA datasets

The initial DARPA datasets from 1998 and 1999 [51] marked the inception of intrusion de-
tection data, featuring synthetic network traffic collected over an extended period of several
weeks. However, these datasets were criticized for having unrealistic traffic patterns, out-

dated attacks, and inaccurate labels.

3.1.2 KDDCup’99

After the DARPA’98 datasets, the KDDCup’99 dataset [52] was developed as a derivative,
aiming to incorporate features extracted from TCP connections, traffic behaviors, and con-
tent attributes, deemed more useful to machine training. Despite becoming a widely utilized

benchmark for Intrusion Detection System (IDS) evaluation, the KDDCup’99 dataset inherits

31

CHAPTER 3. STATE OF THE ART IN THE FIELD 3.1. Datasets for IDS

several limitations present in its predecessor, the DARPA’98 dataset, and even introduces new

challenges [50]. The main problems this Dataset has are:

+ Subset of DARPA’98: The KDDCup’99 dataset is a subset of the DARPA’98 dataset
and therefore inherits its limitations in terms of traffic volume and diversity. The con-
strained scope of the dataset limits its representation of network traffic and attack sce-

narios, potentially affecting the generalizability of IDS models trained on it.

« High Proportion of Attack Traffic: With a skewed distribution, the KDDCup’99
dataset contains a significantly higher proportion of attack traffic (80.5%) in comparison
to normal traffic (19.5%). This imbalance does not accurately reflect real-world traffic

distributions, leading to biased training and evaluation results.

« Imbalanced Attack Type Distribution: The dataset also presents skewed distribu-
tions among attack types. Certain attacks, like Neptune, are overrepresented, while
others, like U2R, are underrepresented. This imbalance can distort the effectiveness of

IDS models in recognizing less frequent attack behaviors.

» Unnecessary Features: In the Dataset, there are included irrelevant, redundant and
correlated features that bring difficulty in model interpretation and prediction, as they
can potentially lead to increased complexity and reduced performance of Machine Learn-

ing algorithms.

» Missing Values Some features within the dataset contain missing values, introducing
uncertainty and compromising the integrity of data analysis. Missing values can distort

the training process and affect the reliability of IDS evaluations.

As a result of these limitations, the KDDCup’99 dataset falls short in evaluating modern
IDS methods, as it fails to accurately capture the intricacies and dynamics of contem-
porary network traffic and attacks. Consequently, there is an imperative for newer
and more realistic datasets capable of serving as reliable benchmarks for the evalua-
tion of IDS techniques. These datasets should reflect the evolving landscape of network
threats and provide a foundation for training, testing, and refining IDS models under

more accurate and challenging conditions.

3.1.3 Improvements Proposed for KDDCup’99

To address the limitations of previous datasets, several new datasets were developed, each
aiming to enhance the representation of network traffic and attacks. These datasets, including
gureKDDCup, ISCX 2012, and NSL-KDD, attempted to provide more realistic, diverse, and up-

to-date network environments. They introduced new features, metadata, and attack details

32

CHAPTER 3. STATE OF THE ART IN THE FIELD 3.1. Datasets for IDS

to better capture the nuances of contemporary network threats. However, these datasets
faced challenges such as incomplete network configurations, insufficient traffic diversity, and
limited internal-external network interactions. Notable improvements and specific features

of these datasets are outlined below.

gureKDDCup

The gureKDDCup dataset [53] aimed to overcome the limitations of KDDCup’99 by incor-
porating the missing connections from DARPA’98. This expansion resulted in a more com-
prehensive dataset with detailed attack descriptions and categories. While addressing some
of KDDCup’99’s issues, such as class imbalance and outdated attacks, gureKDDCup retained

certain challenges like irrelevant features.

ISCX 2012

The ISCX 2012 dataset [54] simulated diverse network scenarios, including normal activities,
brute force attacks, HTTP DoS attacks, and more, to create a realistic network environment. It
offered raw network traffic in pcap format and extracted features with corresponding labels in
xml format. Despite its merits, ISCX 2012 had limitations in terms of traffic volume, diversity,

and label consistency.

NSL-KDD

The NSL-KDD dataset [55] utilized a selection method to rectify redundancy in the KDD-
Cup’99 dataset and balance class distributions. It provided two distinct subsets: KDDTrain+
and KDDTest+, intended for training and testing respectively. Although addressing issues like
redundant records, NSL-KDD shared some drawbacks with KDDCup’99, including irrelevant

features and outdated attacks.

3.1.4 More recent proposals

Apart from the previous examples that were all based on legacy datasets, some newer ones
have been developed in the past years to try to solve the problems that were criticized, such
as the use of very old types of attacks and mostly or only synthetic data. Some main examples

are:

+« MAWI Working Lab Dataset [56]: This dataset contains data from 2001 to 2007,
with only the last year being labeled. The tcpdump trace represents just 15 minutes
per day. It provides real network traffic from a trans-Pacific backbone link, covering

various types of applications and protocols. It also includes some attacks, such as DDoS,

33

CHAPTER 3. STATE OF THE ART IN THE FIELD 3.1. Datasets for IDS

port scanning, and worm propagation. However, it has some limitations, including low

traffic volume, lack of diversity in attack types, and incomplete labels.

« CTU-13 [57]: This dataset features 13 different types of malware labeled in real net-
work traffic from short periods between 2013 and 2016, primarily used for botnet behav-
ior detection. It offers raw network traffic in pcap format, along with extracted features
and labels in csv format. Detailed descriptions of malware samples and their charac-
teristics are also provided. However, it has limitations such as low traffic volume, lack
of diversity in normal traffic and attack types, and limited interaction between internal

and external networks.

- UNSW-NB15 [58]: This dataset employs an attack generation tool called PerfectStorm
to generate synthetic data spanning 31 hours. It provides network traffic with nine
different attack categories, such as DoS, Fuzzers, Exploits, etc. Each network flow is
accompanied by 49 features and labels. However, it has limitations including unrealistic

traffic patterns, inaccurate labels, and irrelevant features.

« UGR’16 [10] [8]: This dataset comprises 4 months of anonymized network traffic flows
from a Spanish ISP, divided into Calibration and Test parts. Test contains synthetically
generated and real attacks, making it suitable for supervised classification using Ma-
chine Learning techniques. The dataset provides real network traffic with high volume
and diversity, covering various types of applications and protocols. It also includes
some attacks, such as DDoS, port scanning, brute force, etc. However, it has limita-
tions like incomplete network configuration and lack of attack details and labels, as
some attacks have been grouped into bigger categories and the Calibration files had
to be passed through already existing models to classify the background data like One
Class SVM and M SN M, (Multivariate Statistical Network Monitoring for anomaly

detection).

These new datasets represent significant progress in addressing the limitations of previ-
ous datasets and provide more realistic and diverse environments for evaluating Intrusion
Detection System (IDS) methods.

For this Final Project we will center our implementations around the use of the last dataset,
UGR’16. We will use it to train our different models used in applying the necessary transfor-
mation to the netflow data.

The UGR’16 dataset offers a distinct advantage over its predecessors by being useful to the
evaluation of Network Intrusion Detection Systems (NIDS) that emphasize long-term evolu-
tion and traffic periodicity. This dataset enables the training and evaluation of models that

account for variations in daytime and nighttime, as well as differences between labor week-

34

CHAPTER 3. STATE OF THE ART IN THE FIELD 3.1. Datasets for IDS

days and weekends. Such considerations significantly enhance the dataset’s utility in assess-

ing NIDS performance across diverse temporal patterns.

To better reflect the properties of each dataset exposed we show in table 3.1 a reduced version
of the table present in [8]. As in the original table, we use 'yes’ to say that a requirement
is met, ’(yes)’ if is met with some limitations and 'no’ otherwise. We also expose in a sum-
marized way the advantages and disadvantages over choosing each of the newest proposals
exposed previously in the table 3.2.

As we end up choosing to use the UGR’16, in the next section we will present it in a more

extended manner.

Dataset Reference Real back traffic Updated attack traffic Duration Format
DARPA’98/°99 [51] no no yes pcap
KDDCup99 [52] no no yes csv
gureKDDCup’08 [53] no no yes csv
UNB ISCX’2012 [54] no yes no csv
NSL-KDD’09 [55] no no yes csv
MAWILab’2010 [56] yes yes (yes) pcap
CTU-13 [57] (yes) yes (yes) peap & flow
UNSW-NB15 [58] no yes no csv
UGR’16 [10] yes yes yes flow

Table 3.1: Comparison of Selected Datasets for IDS Evaluation from [8]

35

CHAPTER 3. STATE OF THE ART IN THE FIELD

3.2. The UGR’16 Dataset

Dataset Advantages

Disadvantages

MAWI Working Lab

Contains real network
traffic data.

Covers various applica-

tions and protocols.

Includes some attacks.

CTU-13

Features various types of

labeled malware traffic.

.

Offers detailed descrip-

tions of malware samples.

UNSW-NB15

Provides data with differ-

ent attack categories.

Includes features and la-
bels.

UGR’16

Contains real network
traffic data from an ISP.

Covers various applica-

tions and protocols.

Includes some attacks.

Low traffic volume.

Lack of diversity in attack types.

Incomplete labels.

Low traffic volume.

Lack of diversity in normal traffic and attack

types.

Limited interaction between internal and ex-

ternal networks.

Unrealistic traffic patterns.

Inaccurate labels.

Irrelevant features.

Lack of attack details and labels.

Limited interaction between internal and ex-

ternal networks.

Table 3.2: Advantages and Disadvantages of Intrusion Detection Datasets

3.2 The UGR’16 Dataset

As mentioned earlier in 1.2.1, the UGR-16 dataset, published in 2017 by the University of

Granada, is used for Intrusion Detection Systems based on cyclostationary techniques. It

comprises network traffic data from a Tier 3 ISP in Spain, with the aim of capturing hetero-

geneous traffic thanks to having multiple real services like email or WordPress hosted on the

ISP network.

The network’s architecture is sufficiently complex to mimic the operation of a typical net-

work, featuring five attacking machines in their own subnet, five victim machines within the

36

CHAPTER 3. STATE OF THE ART IN THE FIELD 3.2. The UGR’16 Dataset

@ Netflow sensors

A As
Internet ! -
BRI BR2 % gﬁ- #
é T

- Attacker network
: Vi Vis
«p O

-
Victim network V,;

Victim networks V,, Vi, V,

Figure 3.1: Diagram of the ISP network from [8]

network but outside the firewall, and an additional fifteen machines distributed across three
subnets after the firewall. Both attackers and victims are located within the ISP’s infrastruc-
ture to avoid potential detection and blocking of attacks by intermediate ISPs. However, the
attackers’ network is positioned at the border router to simulate attack traffic as if it were
coming from the Internet. The explained structure can be better seen in figure 3.1.

To create the UGR’16 Dataset, it was divided into two distinct captures: a calibration
capture spanning from 10:47 on March 18, 2016, to 18:27 on June 26, 2016, and a test capture
from 13:38 on July 27, 2016, to 09:27 on August 29, 2016. The calibration capture exclusively
contains real network traffic, while the test set introduces synthetically generated attacks in

combination with real background traffic.

3.2.1 Calibration Set

The calibration set spans 100 days and Its primary purpose is to assist in building and cal-
ibrating normality models. It is important to note that while no attacks were synthetically
generated during this period, it does not necessarily mean that no attacks are present, so, as
the traffic does not include generated attacks, the authors needed to pass the obtained traffic
through multiple filters to be able to establish with some certainty what is normal traffic and
what could have be an outsider attack. This was done not only for the calibration set but also

for the included background traffic in the test set.

37

CHAPTER 3. STATE OF THE ART IN THE FIELD 3.2. The UGR’16 Dataset

To detect and classify the attacks they used multiple methods explained before in section
2.1.2, like signature-based, including the patterns of typical attacks and the known IPs from
blacklists hpHosts, Malware DL, spamhaus and abuse.ch, and anomaly-based detection with
models like MSNMC, MSNMS, and One Class SVM explained in 2.3.4.

With this methods three main attacks were identified: UDP scan, SSH scan and SPAM
attacks.

3.2.2 Test Set

The test set last little more than a month and includes, as said previously, a traffic produced
by combining the background traffic of the network with generated attacks by state-of-the-
art hacking tools,generated in batches at different times and different days to attempt to be
distributed over the set, and its porpouse is to be able to test IDS detection capabilities.

The generated attacks are grouped into three main categories: Low-rate Dos Attacks, Port
Scanning and Botnet Traffic. For the Dos attacks the hping3 tool was used to send TCP SYN
packets to port 80 of multiple victims and three different scenarios where genereted, one
attacker to one victim, five attackers to three victims at the same time and the same but each
with a difference of 30 seconds. For the Port Scanning they generated a SYN scanning with
nmap with a one to one scan and a four to four. For the botnet the malware Neris, a type
of computer worm that infects hosts and sends spam to spread and is also able to execute
malicious files, traffic was inserted into the dataset converted from pcap files to nfcapd to be
able to transform it to netflow v9 data that will be used for the UGR’16 dataset. They did not
infect the computers of the nework as it is not a private network and the authors considered
ethical complications as they cannot control its spread. For the generated traffic they use
the available CTU-Malware-Capture-Botnet-42 [57]. As the dataset is proposed for use in a
ciclo stationary IDS the generated traffic is inserted in a period of 12 consecutive days over

all possible hours, with planned and random attacks.

3.2.3 Format of the Dataset

The format used for the capture of the flows of data is Netflow v9 from CISCO and it is stored
in nfcapd binary files, that include all Netflow v9 details. It is later prepocessed with an
anonymization process, where the IP addresses of the machines within the dataset undergo
anonymization using the CryptoPan prefix-preserving anonymization with the tool nfanon,
and after transformed into CSV format. This transformation attempts to simplify the data
while preserving the most common features for Machine Learning, timestamps, flow dura-
tion, source and destination IP addresses, source and destination ports, protocol, flags, for-
warding status, type of service, packets exchanged within the flow, and their corresponding

byte counts.

38

CHAPTER 3. STATE OF THE ART IN THE FIELD 3.3. Ewvolution of Machine Learning for IDS

3.2.4 Composition of the Dataset

As exposed by the authors, the total number of flows is more than 16900 Million, with a
duration of 4 months and 600 Million different external IPs from 10 Million different networks.

As exposed in [8], the analysis of network traffic patterns in the dataset reveals several
notable findings: the HTTP/S protocol dominates, accompanied by consistent DNS traffic, the
authors express surprise as, despite security concerns, many companies still use Telnet for
equipment management, and there are peaks in SMTP traffic occur sporadically, representing
legitimate email campaigns and spam, as with SSH traffic that corresponds with SSH scan

attacks.

3.3 Evolution of Machine Learning for IDS

The incorporation of Machine Learning algorithms in Intrusion Detection Systems (IDS) has
marked a significant advancement in enhancing the security of computer networks. This sec-
tion explores the historical evolution of Machine Learning’s integration into IDS [30], tracing

its progression from early attempts to the sophisticated models used today[59][60].

3.3.1 Early Attempts and Rule-Based Systems (late 1980s - early 1990s)

In the 1990s, the field of intrusion detection saw its early stages with the emergence of rule-
based systems. These systems relied on predefined signatures and patterns to identify known
attacks. While effective against specific threats, these rule-based approaches struggled to

adapt to evolving attack techniques, as they necessitated manual updates for each new threat.

3.3.2 Emergence of Anomaly Detection (1990s - early 2000s)

As the nature of attacks evolved, so did the approach to intrusion detection. Anomaly-based
detection methods gained prominence in the 1990s. These methods aimed to identify devi-
ations from normal system behavior, making them more adaptable to new and previously
unseen attacks. However, they often suffered from a high rate of false positives due to their
reliance on complex statistical models that had difficulty capturing the intricacies of legiti-

mate variations in network behavior.

3.3.3 Machine Learning Integration (2000s - early 2010s)

The 2000s witnessed a paradigm shift with the integration of Machine Learning techniques
into IDS. This integration aimed to overcome the limitations of rule-based and anomaly-based
systems. Supervised Machine Learning algorithms, such as Support Vector Machines (SVM)

and Random Forests, were employed to classify network traffic as normal or malicious. These

39

CHAPTER 3. STATE OF THE ART IN THE FIELD 3.4. Standard Methodology for NIDS development

models relied on labeled datasets for training and demonstrated improved accuracy and adapt-

ability.

3.3.4 Evolution of Deep Learning (2010s - Present)

In recent years, the rise of deep learning has reshaped the landscape of IDS. Deep neural
networks, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNN5s), have shown remarkable capabilities in feature extraction and pattern recognition.
Their hierarchical architecture enables them to capture complex relationships in network data,
enhancing the accuracy of intrusion detection. Additionally, the advent of transfer learning

has facilitated the use of pre-trained models, even with limited labeled data.

3.4 Standard Methodology for NIDS development

It is imperative to develop a standard methodology to test the different proposals of Machine
Learning and Deep Learning models for Network Intrusion Detection Systems (NIDS). There
have been various proposals like the one presented in [61] or [9].

Both methodologies share common ground in their use of Machine Learning techniques
to develop and evaluate Machine Learning-based Network Intrusion Detection Systems (ML-
NIDS). They both emphasize key aspects like data quality, feature engineering, model se-
lection, parameter tuning, validation techniques, and performance metrics. Moreover, both
methodologies strive to create structured approaches for systematically assessing and com-
paring ML-NIDS, employing established datasets for their experiments.

However, they differ in their primary goals and methods. The first methodology fo-
cuses on cross-evaluations, using multiple datasets to test the same ML-NIDS. This uncovers
new qualities like detection capabilities and robustness. The second methodology is centered
on single-dataset evaluations, providing guidelines for standardized assessments within one
dataset. The former aims to discover hidden attributes, while the latter seeks to enhance
reliability in comparisons and evaluations.

For the development of our Project we chose the second methodology, the one proposed
in [9], as it is has been found more suitable for our project and it is the methodology used by
previous works in the evaluation of the dataset UGR’16 [10].

In the next chapter, we will present the followed steps by the chosen methodology and

how it has been used for our project.

40

Chapter 4

Development of the IDS

RTIFICIAL Intelligent systems and Machine Learning are nowadays one of the most used
methods for detection in IDSs, but, as authors like [9] and [61] expose, there needs to be

an standard methodology to be able to compare different Machine Learning approaches over
a Dataset. For it, in this chapter we will introduce the Free Framework for Machine Learning
Methodology presented in [9], we will attempt to solve a problem present in the methodology
explained in their publication and finally we will replicate their results as a baseline for later

attempts for improvement.

4.1 Free Framework for Machine Learning (FF4ML)

This methodology has been implemented in the open project Free Framework for Machine
Learning (FF4ML) [62]. It follows a series of 4 differentiated steps to extract the important
information from the UGR’16 dataset, transform it to be able to train consistently Machine
Learning models, and obtain the final results with the proper format to be able to compare
these models’ performance with each other and previous state of the art models. The steps

are shown in figure 4.1 and explained in continuation:

1. Feature Engineering

As most of the current datasets for NIDS come in various formats, mostly containing

Raw Derived

Dataset Dataset
P P(P>P)

Figure 4.1: Diagram of the Methodology from [9]

41

CHAPTER 4. DEVELOPMENT OF THE IDS 4.1. Free Framework for Machine Learning (FF4ML)

very large files of binary data, we need to transform this into a suitable input for our
models. For this, the authors in [9] propose the Feature as a Counter technique (FaaC).
It transforms our huge number of rows of data into rows that have the information
grouped within a given span of time.Then it adds each of the different features, as the
name exposes, as a counter. It sums all of the occurrences of the predefined features in
said span of time. This alone manages to reduce greatly the size of our data, going from
approximately 4.000 million rows in the total UGR’16 dataset to 47000, but increasing

the complexity of our problem from 11 features to a total of 132 in the reduced dataset.

To confront this increase of complexity in our dataset the authors propose the next step:

Feature Selection.

2. Feature Selection

In this step we aim to reduce the number of features that our dataset will contain,
removing the least important ones that carry less information or those that are du-
plicated. The Least Absolute Shrinkage and Selection Operator (LASSO) model is em-
ployed, training 5 LASSO models, because they try to solve a 5-label classification prob-
lem. This models work in parallel with an added penalty, and only the variables that

are proven necessary to predict all K labels remained in the dataset.

After this step, the total number of features is reduced from 132 to 87.

3. Data Preprocessing

Effective Machine Learning models necessitate normalized input features to account for
varying variable distributions. A standard normalization process is applied to numeric

input variables, ensuring consistent input for ML models.

4. Hyper-parameters Selection

Any Machine Learning model that is used will not perform in an optimal way without
a proper tuning of their inner parameters for the given problem. In this methodology
it is proposed the use of Bayesian optimization[18] for this task, as it has been proven
that it can get a pseudo-optimal solution for the hyper-parameter selection with less

iteration than the given alternatives, Grid Search and Random Search.

4.1.1 Previous results from FF4AML methodology with UGR’16

After presenting the methodology proposed in the reference paper [9], we will briefly expose
the models used, and a summary of the results obtained so as to be able to compare it later

with our proposals.

42

CHAPTER 4. DEVELOPMENT OF THE IDS 4.2. Analysis of the UGR’16 Dataset

To follow the necessary steps of their methodology they chose 3 distinct models, the Multi-
nomial Logistic Regression model, the Support Vector Machine, choosing for the kernel both
the Linear Function and the Radial Basis Function, and the Random Forest. The study [9]
evaluates the performance of these Machine Learning (ML) models, trained and tested with
the UGR’16 Dataset, in Intrusion Detection Systems (IDS).

Statistical tests, including pairwise Wilcoxon signed-rank comparisons and Holm post-
hoc correction, were used to establish significance with a 95% confidence level.

The findings include:

« Significant differences in accuracy exist among the models for most cases, except in

certain attack classes and accuracy metrics.

« Random Forest and Suport Vector Machine with Radial Basis Function kernel models
exhibit strong performance, particularly for synthetically generated attacks (DoS, Bot-

net, Scan).

+ Real attacks (Spam) and real network traffic (Background) prove more challenging to

classify due to complex patterns.

+ Random Forest demonstrates robustness for unbalanced classifications, outperforming

other models in weighted averages of performance metrics.

 Botnet attacks, designed to hide network traffic, are effectively detected by the ML-
based NIDS.

« Background class results are less accurate, possibly due to a reduction in observations.

4.2 Analysis of the UGR’16 Dataset

This exploratory phase is indispensable to get used to the data that is going to be used, its
format and the information it includes. This is to be then able to properly propose improve-
ments around the problem and avoid the design of unrealistic approaches that would be later
seen impossible for the nature of our data.

As said in the previous paper authors envision that it (the general low accuracy in the
class Background over the evaluated models) might be due to the reduction of the number
of observations concerning the original ones as a consequence of the FaaC approach.’ [9]
For this reason, and the importance of working with the raw Dataset before using Feature

Engineering, we decide to first test this hypothesis before the replication of the results of [9].

43

CHAPTER 4. DEVELOPMENT OF THE IDS 4.2. Analysis of the UGR’16 Dataset

4.2.1 Data Collection and Cleaning

The UGR’16 dataset, as it turns out, surpasses initial expectations in terms of its size. Each
week’s dataset amounts to approximately 50 GB once uncompressed and with a total of 23
weeks in the whole Dataset the summed size amounts to approximately 1.8 TB.

This substantial size poses challenges for traditional analytical tools. For instance, soft-
ware like Excel lacks the memory capacity to load such a voluminous dataset into a computer
with only 16 GB of available RAM.

For this reason, it was decided to use CITIC’s supercomputer, a high-performance ma-
chine offering sufficient storage space to hold the complete dataset, which allowed for the
following transformation and analysis. Access was provided via SSH.

To facilitate initial analysis, a decision was made to download a single week’s worth of test
data (76GB uncompressed), corresponding to the first week of August, part of the UGR’16 Test
set. This decision comes from the fact that the calibration subset does not feature synthetically
generated attacks.

By conducting a random sampling of this week’s data to retrieve only a 0.1% fraction of the
original size of the file, we attempt to maintain a proportional representation of both attacks
and background data to align with the original paper’s [8] dataset composition, as analyzed
in this paper [63], very imbalanced towards background data. It allowed us to employ the
models used by the paper authors [9] for training, as with our processing capabilities we lack
the necessary memory to train with very big sets of data. And with this previous steps we
are able to determine if the Feature Engineering step truly makes our models have problems
with the background class.

Subsequently, necessary modifications are applied to the CSV file of the selected week.
This file lacks headers and some rows (described in subsection 3.2.3) have missing values,
causing training errors in any model. Because of the missing values, we perform a filtering
step to remove such rows and retain only those with complete data. It is done in bash code,
removing the rows with a column number different from 13. Even though there are more
sophisticated techniques to treat missing values, this approach is used due to the large size of
our data that forces us on a simpler and faster approach.

After this preprocessing steps, the resulting dataset serves as a more manageable and

representative training subset for our analyses and model evaluations.

4.2.2 Data Transformation

The transformation of our original netflow data is necessary due to its inherent diversity of
data types, ranging from strings of dates and IP addresses to categorical variables. These

diverse data types need a series of transformations to ensure the data’s compatibility with

44

CHAPTER 4. DEVELOPMENT OF THE IDS 4.2. Analysis of the UGR’16 Dataset

our Machine Learning models.To achieve this, we did the following transformations:

« Conversion of Dates: we convert strings of dates in format 'YYYY-mm-dd HH:MM:SS’
into Unix timestamps. This conversion standardizes the time representation and enables

consistent time-based analyses.

o IP Address Transformation: IP addresses are transformed from strings that repre-
sent them and include points into integer representations, from ’125.149.122.195" to
125149122195. This transformation facilitates uniform numerical treatment, allowing

these values to be efficiently processed by our models.

+ Binary Encoding of Protocol and Flags: to accommodate Machine Learning algo-
rithms that expect numerical inputs, we binary-encode protocol information and net-
work packet flags. This ensures that these categorical variables are appropriately pro-

cessed by our models.

4.2.3 Evaluating the Hypothesis

As said in [9], a possible problem in the implementation of the Methodology could have to
be with the Feature Engineering part with FaaC, as it decreases the number of background
samples and the authors say it could explain their lower results in the class that represents the
normal traffic. For this, after doing the necessary transformation of the original dataset and
extracting a section of it we attempt to reproduce their experiments but without the Feature
Engineering.

For this, we chose to train our Machine Learning models with a subsample of the Test set
of the UGR’16 Dataset [10], as it is the only set that contains generated attacks and as such it
contains a class distribution better for evaluating the real performance of our model as seen
in the table 4.1 in comparison with the Calibration set.

To test the Machine Learning models we have two possible ways, to test it also with the
Test set or to test it with the Calibration set. By testing with the Test set we can analyze the
capacity of our system to classify background data from the different generated attacks, but
we fall into an unrealistic scenario, where it does not show the reality of our system with real
traffic. And we can also test it with the Calibration test to find if our system can accurately
differentiate between background data and real attacks. For the comparisons we will use the
Random Forest (RF) Model, as it has the best results in [9].

45

CHAPTER 4. DEVELOPMENT OF THE IDS 4.2. Analysis of the UGR’16 Dataset

Class Count Percentage from Total (%)
Background 811375 92.12%

Spam 27957 3.17%

Dos 4959 0.56%

Scan44 2417 0.27%

Blacklist 2374 0.27%

UDPScan 1005 0.11%

Botnet 961 0.11%

Scanl1 566 0.06%

Table 4.1: Class Distribution from subsampled Test file

As we can see in table 4.2, Random Forest has very good results at deciding the class of
each sample with the Test set, which includes the generated attacks, better than the ones
shown in table 4.4 with the replicated results, but they can’t be conclusive as it has been
evaluated with only a very small part of the whole dataset because of the memory limitations
that avoiding the Feature Engineering entails. But when we try to test the same model with
the Calibration set, it proves that it does not have a perfect ability to differentiate background
data from attacks in real traffic. For it to be evaluated with the necessary depth, it is necessary
to train and test it with as much as possible of the UGR’16 Dataset, but it falls outside the scope

of our Project, due to temporal restrictions.

46

CHAPTER 4. DEVELOPMENT OF THE IDS 4.3. Replication of the original results

Model Class P R F1 AUC
RF tested with Test set Background 1.00 1.00 1.00 0.9752
Dos 1.00 1.00 1.00 1.0000
Scan44 0.99 0.98 0.99 0.9905
Spam 1.00 1.00 1.00 0.9990
Blacklist 0.90 0.22 0.36 0.6117
Botnet 0.93 0.93 0.93 0.9635
UDPscan 1.00 1.00 1.00 1.0000
Scan11 0.97 0.98 0.98 0.9902
RF tested with Calibration set ' Background 1.00 0.92 0.96 0.4948
Blacklist 0.00 0.00 0.00 0.5000

Table 4.2: Performance comparison for Random Forest trained with the Test set and tested
with multiple sets

4.3 Replication of the original results

After finishing working with the raw dataset, it is the moment to attempt to replicate the
results given in [9]. The aim is to ensure that we are not implementing their methodology
badly, that the processing done in the dataset is correct and, therefore, that we will be able
to make a fair comparison between the models developed later in this project (see chapter 5)
and the results already published.

The first attempt to replicate the initial results was to analyze the original paper [9] to
get the explanations of the used tools for each part of the process, starting with the Feature
Extraction with the Feature as a Counter (FaaC)) method, implemented in the FCParser github
repository [64]. After using the tool with the needed configuration, we got the expected
results, from 11 initial features to 132 counters.

Afterwards, we commenced with the rest of the methodology steps. In order to achieve
a deeper understanding of the tools used and as a more formative action for the student, our
first attempt was implementing each of the steps by researching each tool that they used.
However, soon we find some problems as some of the steps given in the original paper are
not well explained to be able to exactly reproduce their experiments. We cannot say that our
time was lost as with the research necessary to reproduce the methodology we improved our
knowledge in all of the tools that are used in the original repository but, finally, we decided

to employ the code uploaded by the authors of the article in the ff4ml repository [62]. Once

47

CHAPTER 4. DEVELOPMENT OF THE IDS 4.3. Replication of the original results

we were able to use the developed code for the methodology, we were able to retrain the
models to reproduce the paper experiments. As part of the training process, we carried out
the hyper-parameter selection and optimization step. Table 4.3 contains the set of optimal

parameters obtained for each of the Machine Learning models considered in [9].

Model Optimal Hyper-parameter values
LR max_iter=10000, penalty="none’
RF max_features=16, n_estimators=318
SVC-RBF C=0.1804, gamma=0.1256
SVC-L C=0.1008 , kernel="linear’

Table 4.3: Best hyper-parameter configurations for the replicated models
Note: LR - Logistic Regression, RF - Random Forest, SVC-RBF - Support Vector Classification with Radial Basis
Function kernel, SVC-L - Support Vector Classification with Linear kernel.

Table 4.4 contains the results obtained by each model in terms of Precision (P), Recall (R),
F1 Score (F1) and Area Under Curve, broken down for each class (Background, Dos, Botnet,
Scan and Spam) except UDP and SSH Scan, as they have a very low number of samples and
the models do not learn to classify them. Also, it is declared the percentage of difference in
the weighted average (calculated by summing all classes’ AUCs multiplied by the number of
samples of each class in the test set and then divided by the total number of samples in the test
set) compared to the original. The results are practically identical, with some minor changes
due to the intrinsic randomness inside the methodology, mainly in the Hyper-parameter se-
lection, as the Bayes Search does not try each time all the combinations so the sub-optimal
hyper-parameters could change from different runs, and the training of the model. Therefore
we can conclude this crucial step of the process and start implementing improvements to the

proposed ones.

48

CHAPTER 4. DEVELOPMENT OF THE IDS 4.3. Replication of the original results

Model Class P R F1 AUC

LR Background 0.8182 0.9251 0.8684 0.7750
Dos 0.8111 0.8690 0.8391 0.9570
Botnet 0.9533 0.8644 0.9067 0.9450
Scan 0.7292 0.9722 0.8333 0.9570
Spam 0.8016 0.6241 0.7018 0.7640
Weighted avg. 0.8132 (+0.4%) 0.8216 (+1.2%) 0.8115 (+0.7%) 0.7830 (+0.9%)

RF Background 0.9134 0.9553 0.9339 0.8710
Dos 0.9487 0.8810 0.9136 0.9420
Botnet 0.9732 0.9237 0.9478 0.9610
Scan 1.0000 0.9722 0.9859 0.9620
Spam 0.9155 0.8249 0.8678 0.8570
Weighted avg. 0.9147 (+2.0%) 0.9095 (+2.5%) 0.9110 (+2.6%) 0.8977 (+3.4%)

SVC-RBF Background 0.8190 0.9370 0.8860 0.8100
Dos 0.9136 0.8810 0.8970 0.9150
Botnet 0.9633 0.8898 0.9251 0.9430
Scan 0.9429 0.9167 0.9296 0.7680
Spam 0.8261 0.7393 0.7802 0.7825
Weighted avg. 0.8261 (-1.3%) 0.8264 (-0.7%) 0.8183 (-1.0%) 0.7875 (-2.3%)

SVC-L Background 0.8194 0.9364 0.8740 0.7876
Dos 0.9136 0.8810 0.8970 0.9150
Botnet 0.9633 0.8898 0.9251 0.9430
Scan 0.9429 0.9167 0.9296 0.7680
Spam 0.8321 0.6162 0.7081 0.7900
Weighted avg. 0.8261 (-0.0%) 0.8264 (+0.7%) 0.8183 (+0.4%) 0.7875 (+0.3%)

Table 4.4: Replicated performance for the original paper models following their methodology

We find it also important for the future comparisons to show in table 4.5 the time each of
the four Machine Learning models took to train and give their predictions, as some models
were very costly to train and could be an important measure for the next results. As we can
see, the Logistic Regression model is the fastest one to train, followed by the Random Forest
that takes much more time but 10 times less than the SVC models.

Since Random Forest is the classifier with the best results we will review its confusion
matrix in figure 4.2 to mark our baseline of improvement. We can observe that our Random
Forest model has a clear bias towards the background and the spam classes, as those are the

ones that have more samples, being the biggest problem the false mix up of instances from

49

CHAPTER 4. DEVELOPMENT OF THE IDS

4.3. Replication of the original results

Confusion Matrix

°
g
5
<
&
£
]
©
8
8- 7 75 0
8
"
©
5
8- 7 [110
=
"
EE
=5 1 2 0
o B
E
=
<
&
$- 5 [0
2
E
e
®
'E 3 [0
g
ki
E]
£ a9 [1
&

33

l . 0
sshscan udpscan spam

' ! . '
background dos nerisbotnet scan

Predicted Labels

0 250
5000
0 2
4000
0 1
q 7 - 3000
0 L - 2000
0 0

- 1000

Figure 4.2: Confusion Matrix of the Random Forest

both classes. The bias towards the background class is bigger, as the smaller classes also tend

to have some samples wrongly classified as background.

Model Elapsed Time (s)
Logistic Regression 17.24
Random Forest 722.82
SVC-L 7205.18
SVC-RBF 10197.14

Table 4.5: Elapsed time of training and testing for the replicated models

50

Chapter 5

Models Development and Results

FTER the initial positive results reproducing the paper values for the given models, we
will present each of the Novel proposal suggestions that have been evaluated during
this Project’s development, along with their outcomes, whether they are positive or not.

Despite instances where the ultimate result might not improve the previous from [9], this
process of experimentation has provided us with an increased understanding on the field and
will be helpful for analyzing future research lines.

To allow for a better understanding of the progress of the project, the next sections will
attempt to follow a chronological order, but some of the experiments were carried in parallel,
so selecting a closed time range for each section has been rendered unnecessary.

For this, the experiments consist of using Conventional Classifiers, Deep Learning models,
Outlier Detectors, and Ensemble Models to combine the best resulting models. We will first
begin with an explanation of the metrics used for our experiments, the same used in [9] to be

able to compare results.

5.1 Metrics used

For measuring the quality of the models the authors of the paper that will be used as our
state-of-the-art reference, propose the use of 5 different metrics: Recall, Precision, F1 Score,
Area Under Curve and the Weighted Average of these metrics. [65]:

« Recall: Recall is the proportion of correctly predicted positive instances (true positives)
out of all actual positive instances (true positives + false negatives). It measures how
well the model captures the positive cases. For example, in a Network Intrusion Detec-
tion System (NIDS), recall would be the percentage of actual network attacks that are
correctly identified by the model. Recall is calculated as:

True Positive
Recall =

True Positive + False Negative

51

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.2. Utilizing conventional classifiers

« Precision: Precision measures the proportion of correctly predicted positive instances
(true positives) out of all instances predicted as positive (true positives + false positives).
It measures how accurate the model is when it makes a positive prediction. For example,
in a NIDS, precision would be the percentage of instances flagged as attacks by the

model that are indeed actual attacks. Precision is calculated as:

True Positive

Precision = — -

True Positive + False Positive
« F1 Score: F1 score is the harmonic mean of precision and recall. It is a single metric
that balances both the concerns of precision and recall. It is useful when you want to
compare two NIDS models that have different trade-offs between precision and recall.

F1 score is calculated as:

2 x Precision X Recall

F1 score = —
Precision + Recall

« Area Under Curve (AUC): The Area Under Curve (AUC) is the area under the Re-
ceiver Operating Characteristic (ROC) curve. The ROC curve plots the true positive
rate against the false positive rate for different threshold values. AUC measures how
well the model can distinguish between actual network attacks and non-attacks. The
higher the AUC, the better the model is at predicting attacks as attacks and non-attacks
as non-attacks. AUC ranges from 0 to 1, where 0.5 is a random classifier and 1 is a

perfect classifier.

« Weighted Average: Weighted average is a way of combining the metrics for different
classes in a multi-class classification problem. It assigns a weight to each class based
on its frequency or importance, and then calculates the average of the metrics using
those weights. For the followed methodology proposed in [9], the weighted average of
each metric is calculated summing each class’ metric value multiplied by the number

of samples in that class and finally dividing the result by the total number of instances.

5.2 Utilizing conventional classifiers

For this attempt to improve the results in the problem we are trying to solve we decided
to use different classifiers from the ones that were used for the original paper, as we found
it possible that other classifiers could reach the problem from another view and could give
some interesting results.

For this, we propose using K-Nearest Neighbours classifier and Extreme Gradient Boost-

ing, even though the Extreme Gradient Boosting is an ensemble method, as explained in 2.3.2,

52

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.2. Utilizing conventional classifiers

we differentiate this approach from the section 5.4 as the Ensemble Methods section is focused
on methods that combine the predictions of multiple different models, and XGBoost does not
fall in this category.

After computing the Bayes hyper-parameter optimization for both models the final pa-

rameters for the optimal evaluation are in the table 5.1:

Model Configuration
k Nearest Neighbours metric="euclidean’, n_neighbors=3, weights="distance”
Extreme Gradient Boosting max_depth=6, n_estimators=1000

Table 5.1: Best configurations for the conventional classifiers

We can observe the evaluation results of both of the models in table 5.2, and as we can
see they both have very good results, with an interesting result of both models having per-
fect Precision and a very good performance in general on the Scan class that can be seen in
annexed table A.1. However the Extreme Gradient Boosting has the best results of the two of
them in all of the metrics.

Also we can observe in the table 5.3 that both have very small training times and testing
times, with the kNN significantly smaller than the XGBoost and for future improvements and

to better know how each model treats each class we have the confusion matrix of both 5.1

Model P R F1 AUC
k Nearest Neighbors r 0.8419 0.8417 0.8416 0.8260
Extreme Gradient Boosting 0.9291 0.9290 0.9289 0.9219

Table 5.2: Weighted Performance for proposed conventional models

Layer Configuration Elapsed Time (s)
kNN 72.00
XGBOOST 173.18

Table 5.3: Elapsed time of training and testing for the conventional classifiers

53

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS

5.2. Utilizing conventional classifiers

Confusion Matrix

o
=
3
g 5348 4 1 0 1
2
&
E
a
8- 16 63 0 0 0
=
-
L
5
§‘ 16 0 a7 0 0
o g
o =
| E- 1 1 0 34 0
2 3
=1
=3
c
=
g- 5 0 0 0 0
=
7
=
L]
S- 1 0 0 0 0
o
E]
) 1 3 0 0
g

i I i i I I
background dos nerisbotnet scan sshscan udpscan

Predicted Labels

1

663 5000
5
4000
5
3000
0
1 - 2000
1l
- 1000
2425
i -0
spam

(a) Confusion Matrix for KNN Model

Confusion Matrix

o
=
3
-
=
%
=
8- 6 76 0 0 0
-
-
v
=
§‘ E] 0 108 0 0
=
in
o2
g c
®E- 2 1 0 33 0
w B
I
=
c
m
g_. 5 0 0 0 0
=
9
=
mn
g- 2 0 0 0 0
o
E]
PE 1 3 0 0
g

i I i i I I
background dos nerisbotnet scan sshscan udpscan

Predicted Labels

o

203

5000

4000

0 - 3000

- 2000

- 1000

2752

Il
spam

(b) Confusion Matrix for XGBOOST Model

Figure 5.1: Confusion Matrices for KNN and XGBOOST Models

But if we want to know the level of our improvement we need to compare it in the figure

5.2 with the performance values of the replicated Random Forest that we selected as our

baseline.

In the comparison we can observe clearly that the newly proposed Extreme Gradient

Boosting turns out to be better in all metrics than the previous best, the Random Forest.

The K-nearest Neighbours is still worse than the Random Forest but still has good perfor-

mance and very low training times that can be beneficial for larger quantities of data.

54

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.2. Utilizing conventional classifiers

Comparison of Random Forest and proposed conventional classifiers

1
0.9291 0.929 0.9289 0.9219
0.841 0.841 0.841 0.826

0.75
3
=
£

s 05
=
@
o

025

0

Precision Recall F1 Score AUC
W knn I RF XGBOOST

meta-chart.com

Figure 5.2: Comparison of performance of the proposed classifiers with the Random Forest

5.2.1 Experimentation with Over and Under-Sampling

After obtaining the positive results and also analyzing the structure of our dataset after the
Feature Engineering, which can be seen in table 5.4, we added as a possible improvement to
implement Oversampling, Undersampling or both with models like SMOTEEN([66] to level the
distribution of our data over the different classes and possibly reduce the bias of our model.
But after trying multiple different techniques for each of the types of sampling we came to
the conclusion that this did not only not help our models grasp the complexity of our classes

with fewer instances, but degrade heavily the performance metrics in all classes.

55

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.3. Deep Learning models

Class Count Percentage from Total (%)
Background 30091 63.41%

Dos 417 0.88%

Botnet 594 1.25%

Scan 176 0.37%

Spam 15961 33.63%

SSHScan 27 0.06%

UDPScan 9 0.02%

Table 5.4: Class Distribution

5.3 Deep Learning models

After trying the conventional classifiers we want to compare them with another technique
that is very used nowadays for wrongful behaviour detection in NIDS, Deep Learning[67]
[68].

For this the proposed model to use is the sklearn Multilayer Perceptron[69].

Deep Learning method have been proven to be very good at predicting attacks in com-
puter networks so they could be a good improvement over the reproduced results with the
conventional classifiers.

In the case of this particular model, the initial crucial step entails hyper-parameter selec-
tion. However, this process might be deemed more intricate compared to that of conventional
classifiers. This intricacy arises due to the need to explore diverse hidden layer architectures,
alongside activation functions, solver choices, and several other pertinent attributes.

As, at the moment of development of this project, it is not possible to tune the MLP hyper-
parameters with the hyper-parameter optimizer proposed in [9] directly, because it has still
not been added the possibility of optimization with tuples, and we need them to be able to
optimize our MLP with multiple hidden layers. For this we had to create a custom wrapper
class that would let us find the best configuration.

After the hyper-parameter tuning, we had 4 different results, one for each configuration
of layers.

As it is not possible to test with only one fit for the optimizer configurations with multiple

number of hidden layers we need to run it 4 times, each selecting the layers we want to train

56

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.3. Deep Learning models

our tuner with.

The optimal results given by the Bayes Search are 5.5:

Configuration Hidden Layer Sizes Activation Solver Alpha Max Iterations
1 Layer 45 relu sgd 0.1 873
2 Layers 49, 59 relu sgd 0.0001 229
3 Layers 34, 28, 30 relu Ibfgs 0.0001 678
4 Layers 39,49,48,32 tanh Ibfgs 0.002 748

Table 5.5: Best configurations for the MLPClassifier models

Model P R F1 AUC

1 Layer 0.8812 0.8853 0.8832 0.8888
2 Layers 0.8893 0.8933 0.8913 0.8962
3 Layers 0.8950 0.8861 0.8902 0.83980
4 Layers 0.8662 0.8735 0.8698 0.8742

Table 5.6: Weighted Performance for the MLPClassifier models

Layer Configuration Elapsed Time (s)
1 Layer 478.08
2 Layers 108.87
3 Layers 297.09
4 Layers 998.60

Table 5.7: Elapsed time of training and testing for the MLP configurations

To select what can be our best configuration we have two possible answers, 2 or 3 Layers.
As for comparison we choose to use the weighted F1 Score and AUC.

If we take into account the scores they are leveled as with 3 Layers we obtain a better
F1 Score but lower AUC, so to choose the best model we will apply the followed in Machine
Learning principle of Occam’s Razor, when faced with two approaches of similar performance,
the simpler one is always chosen. So for the next results the 2 Layers model is chosen as the
best one, as is less complex than the other best, the 3 layered one, with a lower number of

hidden layers.

57

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.3. Deep Learning models

Confusion Matrix

-
=
=2
g 5830 1 1 0 0 1 185
<
= 5000
8- 8 75 0 0 0 0 1
=
!
g 4000
_Lgn- 15 0 103 0 0 0 0
=
%]
3 g
®5-. 0 1 0 35 0 0 0 - 3000
o 7
I~
Z
[=
8. s 0 0 0 0 0 1
a - 2000
A
c
[+
g- 2 0 0 0 0 0 0
© - 1000
E_ a3 0 1 1 1 0 2376
g
| | -0

I I I I I
background dos nerisbotnet scan sshscan udpscan spam
Predicted Labels

Figure 5.3: Confusion matrix for the 2 Layered MLP

To be able to analyze how our resulting model reacts to every class we can observe the
figure 5.3, and to really understand these results we need to compare them with the previous
ones obtained from the original paper.

For this comparison we will use also the results from the Random Forest Classifier that
we replicated from the original paper, as it is determined in it that it has the best results in

with all metrics in all different classes, and the 2 Layered MLP, as stated before.

58

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.3. Deep Learning models

Comparison of Random Forest and MLP

0.933

0.9147 0.9095 0.8912 0911 0.8962 0.8977

0.8893

0.75

05

Performance

0.25

Precision Recall F1 Score AUC

v EERF

meta-chart.com

Figure 5.4: Comparison of performance for Random Forest and MLP

Comparison of times for Random Forest and MLP

108.87

Elapsed Time

722.82

0s 100s 200s 300s 400s 500 s 600 s 700 s 800 s
Elapsed Time
B vLp EERF

meta-chart.com

Figure 5.5: Comparison of Elapsed Time for Random Forest and MLP

As we can see in the graph 5.4 , both models have very similar performance, with a better
Precision and F1 Score for the Random Forest, a better Recall for MLP and a similar AUC for
both models.

The main difference can be seen in the graph 5.5, Random Forest took in total almost 7

times more time than the MLP with 2 Layers.

59

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.4. Combining Models: Ensemble Methods

For this we can conclude that they are both interchangeable, but if used for a bigger set

of data the best model would be the MLP for its lower training times.

54 Combining Models: Ensemble Methods

The last proposed approach consists in the use of Ensemble Models to try to mix the results
of the classifiers that had the best outcomes and improve those results based on the principle
that different classifiers can approach in multiple ways the same problem and be able to detect
the class correctly of some data that others cannot.

There will be two tried different ensemble methods: Voting and Stacking.

5.4.1 Voting Ensemble

For the Voting Ensemble implementation we will use the 3 best models that we have gotten
in the development of this project, XGBoost, MLP with 2 layers and the replicated Random
Forest, combined with the sklearn Voting Classifier[70].

It is important use use an uneven number of estimators to avoid draws in the voting that
would result in a possibly incorrect result of the voting process, as with draws in choosing
the prediction by alphabetic order.

To do the experimentation we will use soft voting, using the prediction probabilities, as it
is recommended for well calibrated estimators.

There are two possible solutions, to use uniform weights for the voting process or to find
the best weights to combine the predictions of the estimators. Our hypothesis is that the
second solution should work better as the XGBoost model should have more importance in
the decision for its better overall performance.

As for the model without custom weights, it doesn’t need a parameter optimization, as
none can be changed. But for the second solution we can attempt to optimize with Bayes
Search the weights that will give more importance or less to the model predictions. For this
we need to implement a custom class for a Voting Wrapper, similar to the one used for the
MLP layers optimization.

After this step, the optimal solution proposed by the Bayes optimizer is 6 for XGBoost
and 7 for Random Forest and MLP. This seems non-intuitive as the model with the best per-
formance is XGBoost, the one that the proposed optimal weights give less importance in the
decision. But it could probably be because there are different predictions in the RF and MLP
compared to the XGBoost and less decision power for the XGBoost could be beneficial in the
final result.

As we can see in the table 5.8, both models have a very similar performance, with a slight

improvement with the custom weights, specially in the Recall and F1 Score metrics, proving

60

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.4. Combining Models: Ensemble Methods

our initial hypothesis.
In the figures displayed in 5.6 we can appreciate the main difference between the two
Voting models, the model with custom weights has more true positives for spam and less for

background than with uniform weights.

Model P R F1 AUC
Voting Classifier with uniform weights 0.9298 0.9264 0.9277 0.9188
Voting Classifier with custom weights 0.9300 0.9309 0.9301 0.9209

Table 5.8: Weighted Performance for Voting Models

61

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.4. Combining Models: Ensemble Methods

Confusion Matrix

o
=
=2
g 1 0 0 0 0 161
2
&
I 5000
&- 7 76 0 0 0 0 1
=
k]
5 4000
§' E] 0 108 0 0 0 1
E? E
5. 2 1 0 33 0 0 0 - 3000
v 9
=1
=3
c
9. s 0 0 0 0 0 1
£ - 2000
]
=
L]
S- 2 0 0 0 0 0 0
o
] - 1000
£
2 1 507 0 3 0 0 0 2682

i I i i I I I
background dos nerisbotnet scan sshscan udpscan spam
Predicted Labels

(a) Confusion Matrix for Voting model with uniform weights

Confusion Matrix

o
=
=2
E 0 0 0 0 0 232
o
-
= 5000
8- 6 76 0 0 0 0 7
-
=
£ 4000
§- 7 0 109 0 0 0 2
=
n
3 2
S5 o 1 0 35 0 0 0 - 3000
w B
I
=
c
5]
R 0 0 0 0 0 1 5000
]
=
mn
9. 2 0 0 0 0 0 0
o
3 - 1000
E_ 303 0 2 0 0 0
g

i I i i I I I
background dos nerisbotnet scan sshscan udpscan spam
Predicted Labels

(b) Confusion Matrix for Voting Model with custom weights

Figure 5.6: Confusion Matrices for Voting with uniform and custom weights

However, to really analyze the possible improvement of our Voting Classifier we need
to compare it with our best model for the moment, XGBoost. We propose the comparison
with XGBoost and not with Random Forest because with Extreme Gradient Boosting we have
been able to surpass the previous replicated results and, since we use it as an estimator for
our Voting model, the comparison should be with it.

As we can see in the graph 5.7, there is a minimal improvement over the use of just the
XGBoost model with the Voting Classifier, but it is so small it cannot be considered significant.

And to follow the Occam’s Razor principle, the XGBoost model is still considered best between

62

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.4. Combining Models: Ensemble Methods

Performance comparison of XGBoost and Voting Classfier with custom weights

0.9291 0.93 0.929 0.9309 0.9289 0.9301 0.9219 0.9209
0.75
[o3
o
{ =
@
E 05
o
=
[}
o
0.25
0
Precission Recall F1 Score AUC

XGBoost [l Voting Classifier with custom weights

meta-chart.com

Figure 5.7: Comparison of performance for XGBoost and Voting Classifier with custom
weights

the two, with lower complexity.

5.4.2 Stacking Ensemble

We will use the Stacking Ensemble given by the Sklearn library to attempt to improve the
results of our three best models combined, the same used for the Voting Ensemble.

For this experimentation, hyper-parameter selection was dismissed, as the only hyper-
parameter that makes sense to change is the passthrough that selects whether our final es-
timator will include for its training the original data or only the predictions of the list of
estimators.

For our final estimator that will give the predictions we will use the default Logistic Re-
gression model, as it is usually not recommended to change it.

As we can observe in the table 5.9, both with and without passthrough behave really well
with our data, with slightly better results with the passthrough activated, as it can benefit
apart from the stacking predictions from the original data to train the final estimator.

And in the figure 5.8 we can understand the difference between both approaches, with
passthrough it is slightly better at differentiating the spam class from background data, with

9 more elements classified correctly as spam in the figure 5.8b than in 5.8a.

63

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.4. Combining Models: Ensemble Methods

Model P R F1 AUC
Stacking without passthrough 0.9307 0.9284 0.9294 0.9224
Stacking with passthrough 0.9301 0.9308 0.9303 0.9237

Table 5.9: Weighted Performance for Stacking classifiers with and without passthrough

Confusion Matrix

=
c
=1
¢ 5804 0 0 0 0 0 214
=
2 5000
- 6 76 0 0 0 0 2
=]
2 4000
§7 11 0 107 0 0 0 0
=
w
O
= - 3000
S5- 2 1 0 33 0 0 0
z B
2
£
e
]
g- s 0 0 0 0 0 1 | 5000
E]
c
[
g. 2 0 0 0 0 0 0
o
3 - 1000
£
2 415 0 3 0 0 0 2774

! I ! ! I I T
background dos nerisbotnet scan sshscan udpscan spam
Predicted Labels

(a) Confusion Matrix for Stacking model without passthrough

Confusion Matrix

o
c
=1
S 5803 0 0 0 0 0 215
=
2 5000
8- 8 74 0 0 0 0 2
-
2 4000
§7 15 0 103 0 0 0 0
=
w
3 2
=5. 2 1 0 33 0 0 0 - 3000
o B
2
=
c
3 5 o 0 0 0 0 1
5 - 2000
E]
c
[
g2- 2 o 0 0 0 0 0
[=9
E - 1000
£
5 1 405 1 2 0 0 1 2783

! I ! ! I I
background dos nerisbotnet scan sshscan udpscan spam
Predicted Labels

(b) Confusion Matrix for Stacking Model with passthrough

Figure 5.8: Confusion Matrices for Stacking with and without passthrough

The results are very similar to the XGBoost results in table 5.2, but with a slight improve-

64

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.5. Using models for Outlier Detection

ment that is not really significant, and following the Occam’s Razor principle, the simplest
and best model between the eXtreme Gradient Boosting and the Stacking Classifier is the
XGBoost.

5.5 Using models for Outlier Detection

As we are using an imbalanced dataset like UGR’16 [63], even after the Feature Engineering
proposed in [9], the problem could benefit from the use of Outlier Detectors, possibly im-
proving the capacity to differentiate background from attack data and using the imbalances
that bias towards background data in our favour. For an Outlier Detection problem, we will
no longer be working with a multi-class classification problem, working only with inlier and
outlier data, so multiple changes will have to be done to the Dataset to effectively train and
test our Outlier Detection models.

To test the assumption that the Intrusion Detection problem can be solved under this
perspective we used two different outlier detectors that work in completely different ways:
Isolation Forest and One Class SVM.

Also, to work with the outlier detection methods with the UGR’16 dataset we have to make
some modifications to the ff4ml methodology, as this is no longer a classification method and
we cannot use the same structure of data or the same metrics to evaluate the trained models.

The first thing to solve is regarding the training data, as we have two proposed approaches:
to train with the same training set as the previous experiments or to train the Outlier Detectors
only with inlier data, the background class, to later be able to identify anomalies in the test set
that differ from the normal baseline. So, for the second approach, we need to extract from the
training data only the background cases to get the inlier data and we also need to transform
our Dataset into a binary problem, i.e. Background and Other, as it is not possible to solve a
multi-class problem with an Outlier Detector.

To obtain the best parameters for our models we also found a problem, as the prediction
values of the outlier detector seem to not work with the hyper-parameter optimization scorer
used in [9], in charge of computing the F1 Score over all classes without taking into account
the number of samples of each class. It is important to use that score, as the rest of the models
and the used in [9] use it, so, in order to maintain equal conditions, we needed to create our

own scorer to evaluate the predictions of our Outlier Detectors

5.5.1 Experimentation with Outlier Detectors

For the hyper-parameter optimization step we had two possible approaches, to optimize our
models to train with background data only or with a mix of background and attack data. So

we decided to try both, as Outlier Detectors are implemented with the possibility of selecting

65

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.5. Using models for Outlier Detection

the level of contamination and it could work well depending on the parameters used.

The results in the table 5.10 are expected to take into account the data used for training. For
the Isolation Forest, the contamination varies from near 0 for the background data to a third
with attacks added into the training set. This makes sense compared with the distribution of
data shown in table 5.4.

And for the One Class SVM, the nu parameter represents the percentage of samples that
can be classified by an outlier by the decision boundary, and it matches, for the model trained

with attacks, the distribution of our classes.

Model Configuration

Isolation Forest without attacks bootstrap=True, contamination=0.0289, max_features=30, max_samples=272, n_estimators=316
Isolation Forest with attacks contamination=0.3210, max_features=36, max_samples=834, n_estimators=390

One Class SVM without attacks gamma=0.0002, max_iter=12443, nu=0.7493, tol=3.8688e-05

One Class SVM with attacks coef0=5.2869, degree=2, gamma=0.0023, kernel="poly’, max_iter=24806, nu=0.3487, tol=6.5637e-05

Table 5.10: Best configurations for the conventional classifiers

As for this experiments we have multiple different sets of data that we can use, we have the
opportunity to evaluate our optimized models each with and without attacks mixed inside our
data. In the table 5.11 we can observe how each of the approaches performed, with a common
bad result at being able to detect attacks in the test data except for the One Class SVM that
had the hyper-parameter optimization done with the normal set of data that includes attacks,
and trained only with the Background data, that has only samples labelled as normal traffic.
As for times comparison, all of them had very small and similar training and testing times,
around 10s, so it is not found relevant for the discussion.

Compared with the Random Forest model, the best outlier detector results are still much

worse than the results of the RF over the Background class shown in table 4.4

Model Trained With Tested With P R F1 AUC

Isolation Forest N N 0.5567 0.5609 0.5587 0.5208
Isolation Forest B B 0.6224 0.6449 0.5490 0.5226
Isolation Forest B N 0.6001 0.6165 0.5692 0.5731
Isolation Forest N B 0.5724 0.4923 0.5275 0.5055
One Class SVM N N 0.5611 0.5643 0.5626 0.5256
One Class SVM B B 0.5467 0.4407 0.4183 0.4957
One Class SVM B N 0.7760 0.7323 0.7373 0.7556
One Class SVM N B 0.5346 0.4325 0.4099 0.4981

Table 5.11: Weighted Performance for Outlier Detection Models

66

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.6. Discussion of Results

5.6 Discussion of Results

As seen in the previous sections, some models have improved the results given in [9], some
have worsened them and others have very similar results. They have been compared sep-
arately but in this section we will compare all the experimentations done to select the best
models with the best results.

For our comparison, we have to take into account Outlier detectors, Ensemble Methods
to join multiple classifiers, conventional classifiers and Deep Learning Approaches. And we
will compare them by their performance metrics and also their run times.

Within the 4 considered groups, the two that had the best results were the Ensemble
Methods and the Conventional Classifiers, followed by the Deep Learning with the Multilayer
Perceptron and finally the Outlier Detectors. As we can observe in figure 5.9, when we use for
comparison the Weighted Area Over Curve of the evaluated models with the best results of
each group, we can find the best results in the Extreme Gradient Boosting (XGBoost) and the
Stacking Classifier with XGBoost, RF and MLP as estimators for the Logistic Regression final
estimator. We can also observe that Anomaly Detection models don’t work very well with
the UGR’16 Dataset [8] and the Methodology ff4ml [9], possibly because of the reduction of
background data produced in the Feature Engineering and the augmentation of the number
features the process produces, from 11 to 132 and 87 after the Feature Selection.

Finally, we can conclude that the Ensemble Methods, like the XGBoost, the Stacking Clas-
sifier, and the previous better results of Random Forest presented in [9], are still the most ca-
pable of discerning the differences between the classes with very good results in all of them.
The best of this Ensemble Models in terms of performance results is the Stacking Classifier
with passthrough activated. It is capable of slightly improving the results of the XGBoost by
combining its predictions with the Random Forest and the 2 Layers MLP. But because the
improvement is not really considerable, and to follow the principle of the Occam’s Razor,
the model selected as the best in term of quality is the Extreme Gradient Boosting, having
less complexity because we don’t have to combine multiple different models and thus having

much shorter training and testing times.

67

CHAPTER 5. MODELS DEVELOPMENT AND RESULTS 5.6. Discussion of Results

Comparison of best results over the considered groups

0.8962
i 0.8977
Weighted AUC 0.9219;
0.9237
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1
Performance
W mMp I RF XGBoost [l Stacking [l One Class SVM

meta-chart.com

Figure 5.9: Comparison of best results over the considered groups

68

Chapter 6

Conclusions and Future Work

URING the development of this Project, valuable knowledge has been gained about the

field of Intrusion Detection Systems with Machine Learning techniques, and some im-
portant results have been extracted from it. In this next chapter the extracted conclusions,
including the valuable lessons obtained from the process, will be exposed, and also the possi-
ble Future Approaches in this field that our work did not include and, thanks to the increased

knowledge in the field, are selected as possible high interest research lines.

6.1 Conclusions

For this section we have decided to differentiate into two main point of views of the con-
clusions of the Project, the Researcher and the Student point of views, separating the main
advances of the novel proposals for the development of a NIDS with the UGR’16 dataset from
the gained and used knowledge over the course of this work, presenting the important set of
information that was obtained during the Computer Engineering University Grade and was
beneficial for the development of this work, and the gained knowledge with in the process of

the Project.

6.1.1 Researcher Conclusions

In this Project we have developed new Machine Learning proposals of improvement for a
Cyclo-Stationary Network Intrusion Detection System. For this we have used the UGR’16
Dataset [8] as a train and test set for our Machine Learning models and followed the method-
ology proposed in [9] to be able to compare our results and their previous results. The Dataset
was composed of 16000 Million different flows in 4000 Million CSV rows and was latter re-
duced, following the methodology, to 47000 rows that compress all that information into more
useful data that allowes our model to analyze the network traffic in bigger spans of time.

As it is custom, the previous results from [9] and their methodology were recreated to

69

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 6.1. Conclusions

establish a baseline of comparison for our improvement proposals and Random Forest was
declared, as it was in the paper [9], the best model from all previously tested.

The approaches range from using Conventional Classifiers, like Extreme Gradient Boost-
ing (XGBoost) and k - Nearest Neighbours, to Deep Learning with the Multilayer Perceptron,
Outlier Detection methods likes Isolation Forest and One Class SVM and finally Ensemble
Methods to combine the individual models that had the best results. The previous results were
surpassed with the XGBoost and the Ensemble Methods, that used a combination of Random
Forest, XGBoost and Multilayer Perceptron (as these methods had the best results) for Vot-
ing and Stacking Classifiers. The best results are given by the Stacking Classifier, but they
are very close to the XGBoost alone, and considering the time of training the other models
and following Occam’s Razor principle, the XGBoost model is considered the best to classify

network data and detect attacks as it has lower complexity than the Stacking Classifier.

6.1.2 Student Conclusions

For the development of this project, the student has had to put into practice a lot of the knowl-
edge gained in the course of his studies, going into high detail of the functioning of the Intru-
sion Detection Systems and the different computer network attacks as seen in the subject of
Networks (2° year), using methodologies like SCRUM that were taught in Software Process (2°
Year) and using the planification techniques learned in Project Management (3° year). As the
focus of the Project is in the development of Machine Learning approaches for the detection
of attacks using the UGR’16 dataset[8], related knowledge was obtained in the subjects Intel-
ligent Systems (2° year), where most of the used models were presented, and later improved
with more depth into each of them in the subject Machine Learning (3° year), and relative to
the Intrusion Detection Systems and the types of attacks, a lot of his knowledge comes from
Computer Security and Legislation (3° year). And finally very important general knowledge
was gained in the whole student carrier, with special mention to the Company Practices (4°
year) that provided with knowledge on research with Machine Learning models and taught
the student about the report process, together with the subject of Intelligent Systems Devel-
opment (3° year), that focused more on the documentation for Artificial Intelligence models.
The documentation of said subjects is available in [71]

Apart from the used resources obtained in the Degree, the student also had to do an in-
tensive research on the different detection methods Intrusion Detection Systems employ and
how the state-of-the-art Machine Learning methods are introduced into the field and what
methodologies are used for comparing the performance of different models over the same
Dataset. The student also had to research on the different Datasets available to train and test
the Machine Learning models, outside of the scope of the University Degree. Outlier Detec-

tion methods also were not in the taught curriculum as well as newer models like Gradient

70

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 6.2. Future work

Boosting and there had to be autonomous work from the student to apply these models and
the ones taught in the Degree, as most of them were only taught theoretically and never used
in practice.

In conclusion, the development and report of this Project has been very beneficial for
the student advancement and acquisition of the required competences for a student of Com-
puter Engineering in the Computation itinerary, allowing the student to apply the learned
knowledge over the course of his studies and contributing to his development as a Computer

Scientist.

6.2 Future work

In this section we will explore four proposed future works that were not attempted in the
scope of this project and have been found as a possible improvement over the final results

and as future research approaches for the UGR’16 dataset [8] and the used methodology from

[9].

6.2.1 Experiment with the raw UGR’16 Dataset

As explained in subsection 4.2.3, this approach fell outside the scope of our Project due to
temporary restrictions. However it would be an important advance to train the models with
the best results with the Dataset UGR’16 without Feature Engineering and compare it with the
results given in this Project to evaluate posible improvements to the methodology proposed
in [9] and followed for the development of this Project. We could extract conclusions on how
the different steps proposed affect the final result for our detectors and compare the train and

test times and energy consumption for our models.

6.2.2 Explainable and Green Artificial Intelligence

In consonance to the new directives about inclusive, sustainable and centered on the citizens
Al from the European Union [72] and the Spanish Government [73], the use of Explicable and
Green models are proposed as a future improvement.

Explainablility could help with transparency of how the system recognises threats, to open
the possibilty to the general public to understand the process of decision behind detection.

Green models lie in the principle of the sustainable AL With the start era of information,
the size and complexity of Machine Learning models and the Dataset these use for training
have increased exponentially. The EU and Spanish directives compel us to tend to use Machine
Learning models with lower computational load and to improve our Datasets to reduce the

unnecessary information to reduce the consumption of our models.

71

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 6.2. Future work

6.2.3 Apply the methodology in other NIDS Datasets

We propose this branch of experimentation for the methodology of [9] used in this Project
to be able to empirically compare the performance of our models over mutiple Datasets for
Cyclo Stationary NIDS. This would give important information to compare the state-of-the-
art Datasets in the field with the used UGR’16 and extract conclusions over what features
should a good NIDS Dataset contain.

6.2.4 Develop a working NIDS

As the Project found improvements over previous results in models for NIDS, the next step is
to test this model in real conditions, building a working real time Network Intrusion Detection

System to evaluate our model with real traffic and newer attacks.

72

Appendices

73

Appendix A

Additional Material

IN this chapter we will include the necessary content that, due to the extent of it or because
it is found to not add to the understanding of the project, has been excluded from the main

corpus of this report.

A.1 Full Performance Metrics Tables

In this section, the full tables where the performance of the tested models over the different

classes individually and collectively can be seen.

Model Class P R F1 AUC
KNeighborsClassifier Background 0.8704 0.8873 0.8788 0.8280
Dos 0.9130 0.7500 0.8235 0.8747
Botnet 0.9604 0.8220 0.8858 0.9108
Scan 1.0000 0.9444 0.9714 0.9722
Spam 0.7823 0.7597 0.7708 0.8259
Weighted avg. 0.8419 0.8417 0.8416 0.8260
XGBClassifier Background 0.9377 0.9548 0.9462 0.9218
Dos 0.9500 0.9048 0.9268 0.9522
Botnet 0.9730 0.9153 0.9432 0.9575
Scan 1.0000 0.9722 0.9859 0.9861
Spam 0.9123 0.8835 0.8977 0.9200
Weighted avg. 0.9291 0.9290 0.9289 0.9219

Table A.1: Performance for proposed conventional models

74

APPENDIX A. ADDITIONAL MATERIAL A.1. Full Performance Metrics Tables

Model Class P R F1 AUC
1 Layer Background 0.9026 0.9196 0.9110 0.8738
Dos 0.9740 0.8929 0.9317 0.9463
Botnet 0.9130 0.8898 0.9013 0.9444
Scan 0.9722 0.9722 0.9722 0.9861
Spam 0.8385 0.8214 0.8299 0.8704
Weighted avg. 0.8812 0.8853 0.8832 0.8888
2 Layers Background 0.9128 0.9184 0.9156 0.8845
Dos 0.8864 0.9286 0.9070 0.9463
Botnet 0.9145 0.9068 0.9106 0.9529
Scan 0.9722 0.9722 0.9722 0.9861
Spam 0.8453 0.8459 0.8456 0.8835
Weighted avg. 0.8893 0.8933 0.8913 0.8962
3 Layers Background 0.9110 0.9274 0.9191 0.8816
Dos 0.8481 0.7976 0.8221 0.8982
Botnet 0.9804 0.8475 0.9091 0.9236
Scan 1.0000 0.9444 0.9714 0.9722
Spam 0.8639 0.8136 0.8380 0.8742
Weighted avg. 0.8950 0.8861 0.8902 0.8980
4 Layers Background 0.8929 0.9018 0.8973 0.8603
Dos 0.9277 0.9167 0.9222 0.9580
Botnet 0.9310 0.9153 0.9231 0.9572
Scan 0.9722 0.9722 0.9722 0.9861
Spam 0.8128 0.8186 0.8157 0.8613
Weighted avg. 0.8662 0.8735 0.8698 0.8742

Table A.2: Performance for the MLPClassifier models

75

APPENDIX A. ADDITIONAL MATERIAL A.1. Full Performance Metrics Tables

Model Class P R F1 AUC
Voting Classifier with uniform weights Background 0.9334 0.9598 0.9464 0.9199
Dos 0.9620 0.9048 0.9325 0.9870
Botnet 0.9730 0.9237 0.9432 0.9522
Scan 1.0000 0.9722 0.9859 0.9575
Spam 0.9219 0.8662 0.8932 0.9144
Weighted avg. 0.9298 0.9264 0.9277 0.9188
Voting Classifier with custom weights Background 0.9334 0.9614 0.9472 0.9207
Dos 0.9870 0.9048 0.9441 0.9523
Botnet 0.9819 0.9237 0.9519 0.9575
Scan 1.0000 0.9722 0.9859 0.9861
Spam 0.9219 0.8763 0.8985 0.9192
Weighted avg. 0.9300 0.9309 0.9301 0.9209

Table A.3: Performance for Voting Models

Model Class P R F1 AUC
Stacking without passthrough Background 0.9390 0.9538 0.9463 0.9225
Dos 0.9870 0.9048 0.9441 0.9523
Botnet 0.9727 0.9068 0.9386 0.9532
Scan 1.0000 0.9444 0.9714 0.9722
Spam 0.9136 0.8841 0.8986 0.9207
Weighted avg. 0.9307 0.9284 0.9294 0.9224
Stacking with passthrough Background 0.9392 0.9545 0.9468 0.9231
Dos 0.9487 0.8810 0.9136 0.9403
Botnet 0.9626 0.8729 0.9156 0.9362
Scan 0.9189 0.9444 0.9315 0.9721
Spam 0.9137 0.8919 0.9027 0.9245
Weighted avg. 0.9301 0.9308 0.9303 0.9237

Table A.4: Performance for Stacking classifiers with and without passthrough

76

List of Acronyms

Al Artificial Intelligence. 10, 17

AUC Area Under Curve. 47-49, 52, 53, 57, 59, 61, 64, 66
FaaC Feature as a Counter. 42, 43, 45, 47

LR Logistic Regression. 24, 49

MLP Multilayer Perceptron. iv, v, 25, 56-60, 67

RF Random Forest. 22, 45, 47-49, 60, 66, 67

SIEM Security Information and Event Management. 10, 14
SVC Support Vector Classification. 19, 48, 49

SVM Support Vector Machine. 19, 65, 66

XGBoost eXtreme Gradient Boosting. iv, 23, 53, 60, 62-65, 67

77

Bibliography

(1]

S. Sharma. (2021) Support vector machines(svm): A complete guide for beginners.
Accessed on 2023-09-11. [Online]. Available: https://www.analyticsvidhya.com/blog/

2021/10/support-vector-machinessvm-a-complete-guide-for-beginners/

scikit-learn developers. (2021) sklearn.svm.svc. Accessed on 2023-09-11. [Online].

Available: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

S. Saha. (2020) How to use the tree-based algorithm for machine learning.
Accessed on 2023-09-11. [Online]. Available: https://www.freecodecamp.org/news/

how-to-use-the-tree-based-algorithm-for-machine-learning/

S. S. Mousavi, S. M. Hashemi, and M. A. Nekoui. (2019) Example of
multilayer perceptron (mlp) network for regression analysis. Accessed

on 2023-09-11. [Online]. Available: https://www.researchgate.net/figure/

Example-of-multilayer-perceptron-MLP-network-for-regression-analysis-here-n-13-and_

figl_347244673

S. Sharma. (2021) Introduction to k-nearest neighbors (knn) algo-
rithm. Accessed on 2023-09-11. [Online]. Available: https://ai.plainenglish.io/

introduction-to-k-nearest-neighbors-knn-algorithm-e8617a448fa8

P. Kumar. (2021) Bagging vs boosting: The power of ensemble methods in machine

learning. Accessed on 2023-09-11. [Online]. Available: https://pub.towardsai.net/

bagging-vs-boosting-the-power-of-ensemble-methods-in-machine-learning-6404e33524e6

Y. Regaya, F. Fadli, and A. Amira, “Point-denoise: Unsupervised outlier detection
for 3d point clouds enhancement,” Multimedia Tools and Applications, vol. 80,
no. 20, p. 28161-28177, 2021. [Online]. Available: https://www.researchgate.net/figure/

Isolation-Forest-learned-iForest-construction-for-toy-dataset_figl 352017898

78

https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners/
https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-for-beginners/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://www.freecodecamp.org/news/how-to-use-the-tree-based-algorithm-for-machine-learning/
https://www.freecodecamp.org/news/how-to-use-the-tree-based-algorithm-for-machine-learning/
https://www.researchgate.net/figure/Example-of-multilayer-perceptron-MLP-network-for-regression-analysis-here-n-13-and_fig1_347244673
https://www.researchgate.net/figure/Example-of-multilayer-perceptron-MLP-network-for-regression-analysis-here-n-13-and_fig1_347244673
https://www.researchgate.net/figure/Example-of-multilayer-perceptron-MLP-network-for-regression-analysis-here-n-13-and_fig1_347244673
https://ai.plainenglish.io/introduction-to-k-nearest-neighbors-knn-algorithm-e8617a448fa8
https://ai.plainenglish.io/introduction-to-k-nearest-neighbors-knn-algorithm-e8617a448fa8
https://pub.towardsai.net/bagging-vs-boosting-the-power-of-ensemble-methods-in-machine-learning-6404e33524e6
https://pub.towardsai.net/bagging-vs-boosting-the-power-of-ensemble-methods-in-machine-learning-6404e33524e6
https://www.researchgate.net/figure/Isolation-Forest-learned-iForest-construction-for-toy-dataset_fig1_352017898
https://www.researchgate.net/figure/Isolation-Forest-learned-iForest-construction-for-toy-dataset_fig1_352017898

BIBLIOGRAPHY Bibliography

(8]

[10]

[11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

G. Macia-Fernandez, J. Camacho, R. Magan-Carrién, P. Garcia-Teodoro, and R. Theron,
“Ugr’16: A new dataset for the evaluation of cyclostationarity-based network idss,” Com-

puters & Security, vol. 73, pp. 411-424, 2017.

R. Magan-Carrion, D. Urda, I. Diaz-Cano, and B. Dorronsoro, “Towards a reliable com-
parison and evaluation of network intrusion detection systems based on machine learn-
ing approaches,” IEEE Access, vol. 8, p. 112227-112247, 2020.

G. Macia-Fernandez,]J. Camacho, R. Magan-Carrion, P. Garcia-Teodoro, and R. Theron,
“Ugr’16 dataset - universidad de granada,” https://nesg.ugr.es/nesg-ugrl6/index.php,
2016.

P. S. Foundation, “Python.org,” https://www.python.org/, 2021, [Online; accessed 2021-
08-10].

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “scikit-learn: machine learning in python —

scikit-learn 1.3.0 documentation,” https://scikit-learn.org/, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,”
Journal of machine learning research, vol. 12, no. Oct, p. 2825-2830, 2011.

W. McKinney, “Data structures for statistical computing in python,” in Proceedings of the
9th Python in Science Conference, S. van der Walt and J. Millman, Eds., 2010, pp. 56 - 61.

T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020. [Online].
Available: https://pandas.pydata.org/

C.R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van
Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array
programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357-362, Sep. 2020. [Online].
Available: https://doi.org/10.1038/s41586-020-2649-2

T. scikit-optimize contributors, “Scikit-optimize,” https://scikit-optimize.github.io/
stable/, 2023, accessed: 2023-08-09.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine

learning algorithms,” 2012.

79

https://nesg.ugr.es/nesg-ugr16/index.php
https://www.python.org/
https://scikit-learn.org/
https://pandas.pydata.org/
https://doi.org/10.1038/s41586-020-2649-2
https://scikit-optimize.github.io/stable/
https://scikit-optimize.github.io/stable/

BIBLIOGRAPHY Bibliography

[19] JetBrains, “Pycharm professional,” https://www.jetbrains.com/pycharm/, 2021.

[20]

(21]

[22]

(23]
[24]
[25]
[26]

(27]

(28]

(29]

(30]

“Udc - citic — centro de investigacion en tecnologias de la informacion y las comunica-

ciones,” https://citic.udc.es/, accessed: 2023-08-09.
“Github,” https://github.com.

“Microsoft teams,” https://www.microsoft.com/en-us/microsoft-teams/

group-chat-software.

“Overleaf” https://www.overleaf.com.

“Latex,” https://www.latex-project.org.

“arxiv;” https://arxiv.org/.

“Cherrytree,” https://www.giuspen.net/cherrytree/.

U. da Coruiia, “Final project. mention in computer science,” 2023, accessed: 2023-09-09.
[Online]. Available: https://guiadocente.udc.es/guia_docent/index.php?centre=614&
ensenyament=614G01&assignatura=614G01106&any_academic=2023_24&idioma_

assig=&idioma=eng

A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion
detection systems: techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1,
p. 1-32, 2019. [Online]. Available: https://cybersecurity.springeropen.com/articles/10.
1186/s42400-019-0038-7

K. Scarfone and P. Mell, “Guide to intrusion detection and prevention systems
(idps), National Institute of Standards and Technology, NIST Special Publication
800-94, February 2007. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/legacy/sp/
nistspecialpublication800-94.pdf

D. G. G’omez, Sistemas de Detecci'on de Intrusiones, July 2003, online; accessed
8-august-2023. [Online]. Available: https://dgonzalez.net/papers/ids/IDS_v1.0.pdf

[31] J. Fruhlinger, “The cia triad: Definition, components and examples, CSO

(32]

Online, 2023. [Online]. Available: https://www.csoonline.com/article/568917/

the-cia-triad-definition-components-and-examples.html

Kaspersky, “Wannacry ransomware: What you need to know;” 2021, online; accessed
1-September-2023. [Online]. Available: https://www .kaspersky.com/resource-center/

threats/ransomware-wannacry

80

https://www.jetbrains.com/pycharm/
https://citic.udc.es/
https://github.com
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.overleaf.com
https://www.latex-project.org
https://arxiv.org/
https://www.giuspen.net/cherrytree/
https://guiadocente.udc.es/guia_docent/index.php?centre=614&ensenyament=614G01&assignatura=614G01106&any_academic=2023_24&idioma_assig=&idioma=eng
https://guiadocente.udc.es/guia_docent/index.php?centre=614&ensenyament=614G01&assignatura=614G01106&any_academic=2023_24&idioma_assig=&idioma=eng
https://guiadocente.udc.es/guia_docent/index.php?centre=614&ensenyament=614G01&assignatura=614G01106&any_academic=2023_24&idioma_assig=&idioma=eng
https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-0038-7
https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-0038-7
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-94.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-94.pdf
https://dgonzalez.net/papers/ids/IDS_v1.0.pdf
https://www.csoonline.com/article/568917/the-cia-triad-definition-components-and-examples.html
https://www.csoonline.com/article/568917/the-cia-triad-definition-components-and-examples.html
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry

BIBLIOGRAPHY Bibliography

(33]

[34]

(35]

(36]

“Openai chatgpt” [Online]. Available: https://chat.openai.com

Coursera, “What is machine learning? definition, types, and examples,” 2023,
online; Accessed 02-09-2023. [Online]. Available: https://www.coursera.org/articles/

what-is-machine-learning

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, p.
273-297, 1995.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, p. 5-32, 2001.

[37] J. H. Friedman, “Greedy function approximation: A gradient boosting machine”

(38]

Annals of Statistics, vol. 29, pp. 1189-1232, 2001. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:39450643

T. Chen and C. Guestrin, “XGBoost,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, aug 2016.
[Online]. Available: https://doi.org/10.1145%2F2939672.2939785

[39] J. Berkson, “Application of the logistic function to bio-assay,” Journal of the American

[40]

[41]

Statistical Association, vol. 39, no. 227, p. 357-365, 1944.

F. Rosenblatt, “The perceptron: a probabilistic model for information storage and orga-

nization in the brain,” Psychological review, vol. 65, no. 6, p. 386, 1958.

E. Fix and]J. Hodges, Discriminatory Analysis: Nonparametric Discrimination:
Consistency Properties. USAF School of Aviation Medicine, 1951. [Online]. Available:
https://books.google.es/books?id=4XwytAEACAA]

[42] J. L. Bentley, “Multidimensional binary search trees used for associative searching,’

(45]

Commun. ACM, vol. 18, no. 9, p. 509-517, sep 1975. [Online]. Available: https:
//dOi.Org/lo.l145/361002.361007

L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, p. 123-140, 1996.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning
and an application to boosting,” Journal of computer and system sciences, vol. 55, no. 1, p.
119-139, 1997.

R. M. French, Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems.
Springer, 1992, p. 273-299.

81

https://chat.openai.com
https://www.coursera.org/articles/what-is-machine-learning
https://www.coursera.org/articles/what-is-machine-learning
https://api.semanticscholar.org/CorpusID:39450643
https://api.semanticscholar.org/CorpusID:39450643
https://doi.org/10.1145%2F2939672.2939785
https://books.google.es/books?id=4XwytAEACAAJ
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007

BIBLIOGRAPHY Bibliography

[46]

(47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2, pp.
241-259, 1992. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
50893608005800231

F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE International
Conference on Data Mining, 2008, pp. 413-422.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying density-based
local outliers,” SIGMOD Rec., vol. 29, no. 2, p. 93-104, may 2000. [Online]. Available:
https://doi.org/10.1145/335191.335388

B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating
the support of a high-dimensional distribution,” Neural computation, vol. 13, no. 7, p.
1443-1471, 1999.

M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “Kdd cup 99 data sets: A perspective
on the role of data sets in network intrusion detection research,” Computer, vol. 52, no. 2,

pp. 41-51, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8672520

M. Lincoln Laboratory, “1998 darpa intrusion detection evaluation
dataset,” 1998. [Online]. Available: https://www.ll.mit.edu/r-d/datasets/

1998-darpa-intrusion-detection-evaluation-dataset

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “Kdd cup 1999 data,” in Proceedings
of the Second International Workshop on Security and Artificial Intelligence, 2009, p. 1-6.
[Online]. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

I. Perona, I. Gurrutxaga, O. Arbelaitz,]J. . Mart’in, J. Muguerza, and J. M. P’erez,
“gurekddcup data base,” 2008. [Online]. Available: http://aldapa.eus/res/gureKddcup/

A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Intrusion detection evaluation
dataset (iscxids2012),” in Military Communications and Information Systems Conference
(MilCIS), 2015. IEEE, 2015, p. 1-6. [Online]. Available: https://www.unb.ca/cic/
datasets/ids.html

M. Tavallaece, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis
of the kdd cup 99 data set] Proceedings of the Second IEEE Symposium on
Computational Intelligence for Security and Defence Applications, 2009. [Online].
Available: https://www.unb.ca/cic/datasets/nsl.html

R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “Mawilab: Combining diverse

anomaly detectors for automated anomaly labeling and performance benchmarking,”

82

https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://doi.org/10.1145/335191.335388
https://ieeexplore.ieee.org/document/8672520
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://aldapa.eus/res/gureKddcup/
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/nsl.html

BIBLIOGRAPHY Bibliography

(58]

[59]

[60]

[61]

Proceedings of the ACM CoNEXT Conference (CoNEXT), 2010. [Online]. Available:
http://www.fukuda-lab.org/mawilab/v1.1/2010.html

S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “The ctu-13 dataset. a labeled
dataset with botnet, normal and background traffic,” https://www.stratosphereips.org/
datasets-ctu13/, 2014.

N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set),” Information Security
Journal: A Global Perspective, vol. 25, no. 3, p. 125-126, 2016. [Online]. Available:

https://research.unsw.edu.au/projects/unsw-nb15-dataset

S. S. M. Aljawarneh, M. Aldwairi, and M. B. Yassein, “Machine learning in intrusion
detection systems: A survey, International Journal of Advanced Computer Science and
Applications, vol. 10, no. 1, p. 557-567, 2019.

M. A. Ahmad, F. Algahtani, A. A. Shah, F. A. Khan, M. U. R. Khan, J. Sher Khan, K.-A.
Tait, and J. Ahmad, “Network intrusion detection system: A systematic study of machine

learning and deep learning approaches,” IEEE Access, vol. 8, p. 132894-132917, 2020.

G. Apruzzese, L. Pajola, and M. Conti, “The cross-evaluation of machine learning-
based network intrusion detection systems,” IEEE Transactions on Network and
Service Management, vol. 19, no. 4, pp. 5152-5169, dec 2022. [Online]. Available:
https://doi.org/10.1109%2Ftnsm.2022.3157344

UCADatalab, “ff4ml: Free framework for machine learning,” https://github.com/
ucadatalab/ff4ml, 2022.

L. Yilmaz and R. Masum, “Expansion of cyber attack data from unbalanced datasets using

generative techniques,” 2019.

[64] josecamachop, “Fcparser,” https://github.com/josecamachop/FCParser, 2023.

(65]

[66]

D. Powers, “Evaluation: From precision, recall and f-factor to roc, informedness, marked-

ness correlation,” Mach. Learn. Technol., vol. 2, 01 2008.

G. Lemaitre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python toolbox to

tackle the curse of imbalanced datasets in machine learning,” 2016.

S. Wankhede and D. Kshirsagar, “Dos attack detection using machine learning and neural
network,” in 2018 Fourth International Conference on Computing Communication Control
and Automation (ICCUBEA), 2018, pp. 1-5.

83

http://www.fukuda-lab.org/mawilab/v1.1/2010.html
https://www.stratosphereips.org/datasets-ctu13/
https://www.stratosphereips.org/datasets-ctu13/
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://doi.org/10.1109%2Ftnsm.2022.3157344
https://github.com/ucadatalab/ff4ml
https://github.com/ucadatalab/ff4ml
https://github.com/josecamachop/FCParser

BIBLIOGRAPHY Bibliography

(68]

[69]

(72]

(73]

Y. N. Kunang, S. Nurmaini, D. Stiawan, and B. Y. Suprapto, “Attack classification of
an intrusion detection system using deep learning and hyperparameter optimization,”
Journal of Information Security and Applications, vol. 58, p. 102804, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2214212621000430

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “sklearn.neuralnetwork.mlpclassifier,” https://
scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html,
2011, accessed on 2023-08-31.

——, “Sklearn Voting Classifier,” https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.VotingClassifier.html, 2011, accessed on 2023-09-05.

U. of A Corunia, “Teaching guide 2023/24 faculty of
computer science,” accessed on 2023-09-11. [Online]. Avail-
able: https://guiadocente.udc.es/guia_docent/index.php?centre=614&ensenyament=

614G01&consulta=assignatures&any_academic=2023_24&idioma=eng

E. Commission, “A european approach to artificial intelligence,” accessed
on 2023-09-11. [Online]. Available: https://digital-strategy.ec.europa.eu/en/policies/

european-approach-artificial-intelligence

M. de Ciencia e Innovacion, “Inteligencia artificial,” accessed on 2023-09-11.
[Online]. Available: https://portal.mineco.gob.es/es-es/ministerio/areas-prioritarias/

Paginas/inteligencia-artificial.aspx

84

https://www.sciencedirect.com/science/article/pii/S2214212621000430
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://guiadocente.udc.es/guia_docent/index.php?centre=614&ensenyament=614G01&consulta=assignatures&any_academic=2023_24&idioma=eng
https://guiadocente.udc.es/guia_docent/index.php?centre=614&ensenyament=614G01&consulta=assignatures&any_academic=2023_24&idioma=eng
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://portal.mineco.gob.es/es-es/ministerio/areas-prioritarias/Paginas/inteligencia-artificial.aspx
https://portal.mineco.gob.es/es-es/ministerio/areas-prioritarias/Paginas/inteligencia-artificial.aspx

	Introduction
	Context and justification
	Materials used
	Dataset
	Programming Language
	Tools

	Development Methodology and Project costs
	Methodology and Phases
	Costs of the development

	Structure of the document
	Research objectives

	Theoretical foundations
	Intrusion detection systems
	Types of IDS based on deployment
	Types of IDS based on Detection Method
	Different Data Sources for Intrusion Detection
	Functioning of an IDS

	Computer Network Attacks
	Different Computer Network attacks

	Artificial Intelligence and Machine Learning
	Main Types of Problems in Machine Learning
	Classification Models
	Ensemble Methods
	Outlier Detection

	State of the Art in the Field
	Datasets for IDS
	DARPA datasets
	KDDCup'99
	Improvements Proposed for KDDCup’99
	More recent proposals

	The UGR'16 Dataset
	Calibration Set
	Test Set
	Format of the Dataset
	Composition of the Dataset

	Evolution of Machine Learning for IDS
	Early Attempts and Rule-Based Systems (late 1980s - early 1990s)
	Emergence of Anomaly Detection (1990s - early 2000s)
	Machine Learning Integration (2000s - early 2010s)
	Evolution of Deep Learning (2010s - Present)

	Standard Methodology for NIDS development

	Development of the IDS
	Free Framework for Machine Learning (FF4ML)
	Previous results from FF4ML methodology with UGR'16

	Analysis of the UGR'16 Dataset
	Data Collection and Cleaning
	Data Transformation
	Evaluating the Hypothesis

	Replication of the original results

	Models Development and Results
	Metrics used
	Utilizing conventional classifiers
	Experimentation with Over and Under-Sampling

	Deep Learning models
	Combining Models: Ensemble Methods
	Voting Ensemble
	Stacking Ensemble

	Using models for Outlier Detection
	Experimentation with Outlier Detectors

	Discussion of Results

	Conclusions and Future Work
	Conclusions
	Researcher Conclusions
	Student Conclusions

	Future work
	Experiment with the raw UGR'16 Dataset
	Explainable and Green Artificial Intelligence
	Apply the methodology in other NIDS Datasets
	Develop a working NIDS

	Additional Material
	Full Performance Metrics Tables

	List of Acronyms
	Bibliography

