13,864 research outputs found

    An attentive neural architecture for joint segmentation and parsing and its application to real estate ads

    Get PDF
    In processing human produced text using natural language processing (NLP) techniques, two fundamental subtasks that arise are (i) segmentation of the plain text into meaningful subunits (e.g., entities), and (ii) dependency parsing, to establish relations between subunits. In this paper, we develop a relatively simple and effective neural joint model that performs both segmentation and dependency parsing together, instead of one after the other as in most state-of-the-art works. We will focus in particular on the real estate ad setting, aiming to convert an ad to a structured description, which we name property tree, comprising the tasks of (1) identifying important entities of a property (e.g., rooms) from classifieds and (2) structuring them into a tree format. In this work, we propose a new joint model that is able to tackle the two tasks simultaneously and construct the property tree by (i) avoiding the error propagation that would arise from the subtasks one after the other in a pipelined fashion, and (ii) exploiting the interactions between the subtasks. For this purpose, we perform an extensive comparative study of the pipeline methods and the new proposed joint model, reporting an improvement of over three percentage points in the overall edge F1 score of the property tree. Also, we propose attention methods, to encourage our model to focus on salient tokens during the construction of the property tree. Thus we experimentally demonstrate the usefulness of attentive neural architectures for the proposed joint model, showcasing a further improvement of two percentage points in edge F1 score for our application.Comment: Preprint - Accepted for publication in Expert Systems with Application

    Dynamic scene understanding using deep neural networks

    Get PDF

    Multi-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces

    Get PDF
    We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of sequence classification tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state-of-the-art for topic-based sentiment analysis.Comment: To appear at NAACL 2018 (long

    Deep representation learning for human motion prediction and classification

    Full text link
    Generative models of 3D human motion are often restricted to a small number of activities and can therefore not generalize well to novel movements or applications. In this work we propose a deep learning framework for human motion capture data that learns a generic representation from a large corpus of motion capture data and generalizes well to new, unseen, motions. Using an encoding-decoding network that learns to predict future 3D poses from the most recent past, we extract a feature representation of human motion. Most work on deep learning for sequence prediction focuses on video and speech. Since skeletal data has a different structure, we present and evaluate different network architectures that make different assumptions about time dependencies and limb correlations. To quantify the learned features, we use the output of different layers for action classification and visualize the receptive fields of the network units. Our method outperforms the recent state of the art in skeletal motion prediction even though these use action specific training data. Our results show that deep feedforward networks, trained from a generic mocap database, can successfully be used for feature extraction from human motion data and that this representation can be used as a foundation for classification and prediction.Comment: This paper is published at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Modeling Human Visual Search Performance on Realistic Webpages Using Analytical and Deep Learning Methods

    Full text link
    Modeling visual search not only offers an opportunity to predict the usability of an interface before actually testing it on real users, but also advances scientific understanding about human behavior. In this work, we first conduct a set of analyses on a large-scale dataset of visual search tasks on realistic webpages. We then present a deep neural network that learns to predict the scannability of webpage content, i.e., how easy it is for a user to find a specific target. Our model leverages both heuristic-based features such as target size and unstructured features such as raw image pixels. This approach allows us to model complex interactions that might be involved in a realistic visual search task, which can not be easily achieved by traditional analytical models. We analyze the model behavior to offer our insights into how the salience map learned by the model aligns with human intuition and how the learned semantic representation of each target type relates to its visual search performance.Comment: the 2020 CHI Conference on Human Factors in Computing System
    corecore