9,648 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems

    Get PDF
    The groundbreaking transformations triggered by the Industry 4.0 paradigm have dramati-cally reshaped the requirements for control and communication systems within the factory systems of the future. The aforementioned technological revolution strongly affects industrial smart and distributed measurement systems as well, pointing to ever more integrated and intelligent equipment devoted to derive accurate measurements. Moreover, as factory automation uses ever wider and complex smart distributed measurement systems, the well-known Internet of Things (IoT) paradigm finds its viability also in the industrial context, namely Industrial IoT (IIoT). In this context, communication networks and protocols play a key role, directly impacting on the measurement accuracy, causality, reliability and safety. The requirements coming both from Industry 4.0 and the IIoT, such as the coexistence of time-sensitive and best effort traffic, the need for enhanced horizontal and vertical integration, and interoperability between Information Technology (IT) and Operational Technology (OT), fostered the development of enhanced communication subsystems. Indeed, established tech-nologies, such as Ethernet and Wi-Fi, widespread in the consumer and office fields, are intrinsically non-deterministic and unable to support critical traffic. In the last years, the IEEE 802.1 Working Group defined an extensive set of standards, comprehensively known as Time Sensitive Networking (TSN), aiming at reshaping the Ethernet standard to support for time-, mission-and safety-critical traffic. In this paper, a comprehensive overview of the TSN Working Group standardization activity is provided, while contextualizing TSN within the complex existing industrial technological panorama, particularly focusing on industrial distributed measurement systems. In particular, this paper has to be considered a technical review of the most important features of TSN, while underlining its applicability to the measurement field. Furthermore, the adoption of TSN within the Wi-Fi technology is addressed in the last part of the survey, since wireless communication represents an appealing opportunity in the industrial measurement context. In this respect, a test case is presented, to point out the need for wirelessly connected sensors networks. In particular, by reviewing some literature contributions it has been possible to show how wireless technologies offer the flexibility necessary to support advanced mobile IIoT applications

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    A study of the applicability of software-defined networking in industrial networks

    Get PDF
    173 p.Las redes industriales interconectan sensores y actuadores para llevar a cabo funciones de monitorizaciĂłn, control y protecciĂłn en diferentes entornos, tales como sistemas de transporte o sistemas de automatizaciĂłn industrial. Estos sistemas ciberfĂ­sicos generalmente estĂĄn soportados por mĂșltiples redes de datos, ya sean cableadas o inalĂĄmbricas, a las cuales demandan nuevas prestaciones, de forma que el control y gestiĂłn de tales redes deben estar acoplados a las condiciones del propio sistema industrial. De este modo, aparecen requisitos relacionados con la flexibilidad, mantenibilidad y adaptabilidad, al mismo tiempo que las restricciones de calidad de servicio no se vean afectadas. Sin embargo, las estrategias de control de red tradicionales generalmente no se adaptan eficientemente a entornos cada vez mĂĄs dinĂĄmicos y heterogĂ©neos.Tras definir un conjunto de requerimientos de red y analizar las limitaciones de las soluciones actuales, se deduce que un control provisto independientemente de los propios dispositivos de red añadirĂ­a flexibilidad a dichas redes. Por consiguiente, la presente tesis explora la aplicabilidad de las redes definidas por software (Software-Defined Networking, SDN) en sistemas de automatizaciĂłn industrial. Para llevar a cabo este enfoque, se ha tomado como caso de estudio las redes de automatizaciĂłn basadas en el estĂĄndar IEC 61850, el cual es ampliamente usado en el diseño de las redes de comunicaciones en sistemas de distribuciĂłn de energĂ­a, tales como las subestaciones elĂ©ctricas. El estĂĄndar IEC 61850 define diferentes servicios y protocolos con altos requisitos en terminos de latencia y disponibilidad de la red, los cuales han de ser satisfechos mediante tĂ©cnicas de ingenierĂ­a de trĂĄfico. Como resultado, aprovechando la flexibilidad y programabilidad ofrecidas por las redes definidas por software, en esta tesis se propone una arquitectura de control basada en el protocolo OpenFlow que, incluyendo tecnologĂ­as de gestiĂłn y monitorizaciĂłn de red, permite establecer polĂ­ticas de trĂĄfico acorde a su prioridad y al estado de la red.AdemĂĄs, las subestaciones elĂ©ctricas son un ejemplo representativo de infraestructura crĂ­tica, que son aquellas en las que un fallo puede resultar en graves pĂ©rdidas econĂłmicas, daños fĂ­sicos y materiales. De esta forma, tales sistemas deben ser extremadamente seguros y robustos, por lo que es conveniente la implementaciĂłn de topologĂ­as redundantes que ofrezcan un tiempo de reacciĂłn ante fallos mĂ­nimo. Con tal objetivo, el estĂĄndar IEC 62439-3 define los protocolos Parallel Redundancy Protocol (PRP) y High-availability Seamless Redundancy (HSR), los cuales garantizan un tiempo de recuperaciĂłn nulo en caso de fallo mediante la redundancia activa de datos en redes Ethernet. Sin embargo, la gestiĂłn de redes basadas en PRP y HSR es estĂĄtica e inflexible, lo que, añadido a la reducciĂłn de ancho de banda debida la duplicaciĂłn de datos, hace difĂ­cil un control eficiente de los recursos disponibles. En dicho sentido, esta tesis propone control de la redundancia basado en el paradigma SDN para un aprovechamiento eficiente de topologĂ­as malladas, al mismo tiempo que se garantiza la disponibilidad de las aplicaciones de control y monitorizaciĂłn. En particular, se discute cĂłmo el protocolo OpenFlow permite a un controlador externo configurar mĂșltiples caminos redundantes entre dispositivos con varias interfaces de red, asĂ­ como en entornos inalĂĄmbricos. De esta forma, los servicios crĂ­ticos pueden protegerse en situaciones de interferencia y movilidad.La evaluaciĂłn de la idoneidad de las soluciones propuestas ha sido llevada a cabo, principalmente, mediante la emulaciĂłn de diferentes topologĂ­as y tipos de trĂĄfico. Igualmente, se ha estudiado analĂ­tica y experimentalmente cĂłmo afecta a la latencia el poder reducir el nĂșmero de saltos en las comunicaciones con respecto al uso de un ĂĄrbol de expansiĂłn, asĂ­ como balancear la carga en una red de nivel 2. AdemĂĄs, se ha realizado un anĂĄlisis de la mejora de la eficiencia en el uso de los recursos de red y la robustez alcanzada con la combinaciĂłn de los protocolos PRP y HSR con un control llevado a cabo mediante OpenFlow. Estos resultados muestran que el modelo SDN podrĂ­a mejorar significativamente las prestaciones de una red industrial de misiĂłn crĂ­tica

    Time-sensitive networking for interlock propagation in the IFMIF-DONES facility

    Get PDF
    In this study, we have proposed the use of time-sensitive networking (TSN) technologies for the distribution of the interlock signals of the machine protection system of the future IFMIF-DONES particle accelerator, required for implementing the protection mechanisms of the different systems in the facility. Such facilities usually rely on different fieldbus technologies or direct wiring for their transmission, typically leading to complex network infrastructures and interoperability problems. We provide insights of how TSN could simplify the deployment of the interlock network by aggregating all the traffic under the same network infrastructure, whilst guaranteeing the latency and timing constraints. Since TSN is built on top of Ethernet technology, it also benefits from other network services and all its related developments, including redundancy and bandwidth improvements. The main challenge to address is the transmission of the interlock signals with very low latency between devices located in different points of the facility. We have characterized our initial TSN architecture prototype, evaluated the latency and bandwidth obtained with this solution, identified applications to effectively shape the attainable determinism, and found shortcomings and areas of future improvements.Amiga-7 Grant RTI2018-096228-B-C32Programa Operativo FEDER/Junta de Andalucia SINPA Grant SINPA B-TIC-445-UGR18EU DAIS Project 101007273-2Spanish Government FPU20/01857, FPU20/05842Misiones CDTI 2021 framework (DONES-EVO) MIG-20211006European Union via the Euratom Research and Training Programme 10105220

    Time-Sensitive Networking for Industrial Automation: Challenges, Opportunities, and Directions

    Full text link
    With the introduction of Cyber-Physical Systems (CPS) and Internet of Things (IoT) into industrial applications, industrial automation is undergoing tremendous change, especially with regard to improving efficiency and reducing the cost of products. Industrial automation applications are often required to transmit time- and safety-critical data to monitor and control industrial processes, especially for critical control systems. There are a number of solutions to meet these requirements (e.g., priority-based real-time schedules and closed-loop feedback control systems). However, due to their different processing capabilities (e.g., in the end devices and network switches), different vendors may come out with distinct solutions, and this makes the large-scale integration of devices from different vendors difficult or impossible. IEEE 802.1 Time-Sensitive Networking (TSN) is a standardization group formed to enhance and optimize the IEEE 802.1 network standards, especially for Ethernet-based networks. These solutions can be evolved and adapted into a cross-industry scenario, such as a large-scale distributed industrial plant, which requires multiple industrial entities working collaboratively. This paper provides a comprehensive review on the current advances in TSN standards for industrial automation. We present the state-of-the-art IEEE TSN standards and discuss the opportunities and challenges when integrating each protocol into the industry domains. Finally, we discuss some promising research about applying the TSN technology to industrial automation applications

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car
    • 

    corecore