2,052 research outputs found

    Towards a threat assessment framework for apps collusion

    Get PDF
    App collusion refers to two or more apps working together to achieve a malicious goal that they otherwise would not be able to achieve individually. The permissions based security model of Android does not address this threat as it is rather limited to mitigating risks of individual apps. This paper presents a technique for quantifying the collusion threat, essentially the first step towards assessing the collusion risk. The proposed method is useful in finding the collusion candidate of interest which is critical given the high volume of Android apps available. We present our empirical analysis using a classified corpus of over 29,000 Android apps provided by Intel SecurityTM

    Towards a threat assessment framework for apps collusion

    Get PDF
    App collusion refers to two or more apps working together to achieve a malicious goal that they otherwise would not be able to achieve individually. The permissions based security model of Android does not address this threat as it is rather limited to mitigating risks of individual apps. This paper presents a technique for quantifying the collusion threat, essentially the first step towards assessing the collusion risk. The proposed method is useful in finding the collusion candidate of interest which is critical given the high volume of Android apps available. We present our empirical analysis using a classified corpus of over 29,000 Android apps provided by Intel SecurityTM

    Integrated Framework for Data Quality and Security Evaluation on Mobile Devices

    Get PDF
    Data quality (DQ) is an important concept that is used in the design and employment of information, data management, decision making, and engineering systems with multiple applications already available for solving specific problems. Unfortunately, conventional approaches to DQ evaluation commonly do not pay enough attention or even ignore the security and privacy of the evaluated data. In this research, we develop a framework for the DQ evaluation of the sensor originated data acquired from smartphones, that incorporates security and privacy aspects into the DQ evaluation pipeline. The framework provides support for selecting the DQ metrics and implementing their calculus by integrating diverse sensor data quality and security metrics. The framework employs a knowledge graph to facilitate its adaptation in new applications development and enables knowledge accumulation. Privacy aspects evaluation is demonstrated by the detection of novel and sophisticated attacks on data privacy on the example of colluded applications attack recognition. We develop multiple calculi for DQ and security evaluation, such as a hierarchical fuzzy rules expert system, neural networks, and an algebraic function. Case studies that demonstrate the framework\u27s performance in solving real-life tasks are presented, and the achieved results are analyzed. These case studies confirm the framework\u27s capability of performing comprehensive DQ evaluations. The framework development resulted in producing multiple products, and tools such as datasets and Android OS applications. The datasets include the knowledge base of sensors embedded in modern mobile devices and their quality analysis, technological signals recordings of smartphones during the normal usage, and attacks on users\u27 privacy. These datasets are made available for public use and can be used for future research in the field of data quality and security. We also released under an open-source license a set of Android OS tools that can be used for data quality and security evaluation

    Runtime Verification For Android Security

    Get PDF
    Users of computer systems face a constant threat of cyberattacks by malware designed to cause harm or disruption to services, steal information, or hold the user to ransom. Cyberattacks are becoming increasingly prevalent on mobile devices like Android. Attacks become more sophisticated along with countermeasures in an ever-increasing arms race. A novel attack method is ’collusion’, where the attack gets hidden by distributing the steps through many malicious software actors [7].We investigate the use of runtime verification to detect collusion attacks on the end-users device. We have developed a novel algorithm called Reverse-Ros¸u-Havelund that is a variation of an exist-ing algorithm by Grigore Ros¸u and Klaus Havelund [26]. Our approach is computationally efficient enough to detect collusion in realtime on the Android device and does not require prior knowledge of malware source code. Thus, it can detect future malware without modification to the detection system or the software under scrutiny

    XMD: An Expansive Hardware-telemetry based Mobile Malware Detector to enhance Endpoint Detection

    Full text link
    Hardware-based Malware Detectors (HMDs) have shown promise in detecting malicious workloads. However, the current HMDs focus solely on the CPU core of a System-on-Chip (SoC) and, therefore, do not exploit the full potential of the hardware telemetry. In this paper, we propose XMD, an HMD that uses an expansive set of telemetry channels extracted from the different subsystems of SoC. XMD exploits the thread-level profiling power of the CPU-core telemetry, and the global profiling power of non-core telemetry channels, to achieve significantly better detection performance than currently used Hardware Performance Counter (HPC) based detectors. We leverage the concept of manifold hypothesis to analytically prove that adding non-core telemetry channels improves the separability of the benign and malware classes, resulting in performance gains. We train and evaluate XMD using hardware telemetries collected from 723 benign applications and 1033 malware samples on a commodity Android Operating System (OS)-based mobile device. XMD improves over currently used HPC-based detectors by 32.91% for the in-distribution test data. XMD achieves the best detection performance of 86.54% with a false positive rate of 2.9%, compared to the detection rate of 80%, offered by the best performing signature-based Anti-Virus(AV) on VirusTotal, on the same set of malware samples.Comment: Revised version based on peer review feedback. Manuscript to appear in IEEE Transactions on Information Forensics and Securit
    • …
    corecore