

Towards a threat assessment framework
for apps collusion

Kalutarage, HK, Nguyen, HN & Shaikh, SA

Published PDF deposited in Coventry University’s Repository

Original citation:
Kalutarage, HK, Nguyen, HN & Shaikh, SA 2017, 'Towards a threat assessment
framework for apps collusion' Telecommunication Systems, vol 66, no. 3, pp. 417-430
https://dx.doi.org/10.1007/s11235-017-0296-1

DOI 10.1007/s11235-017-0296-1
ISSN 1018-4864
ESSN 1572-9451

Publisher: Springer

This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecomm ons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

Copyright © and Moral Rights are retained by the author(s) and/ or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This item cannot be
reproduced or quoted extensively from without first obtaining permission in
writing from the copyright holder(s). The content must not be changed in any way
or sold commercially in any format or medium without the formal permission of
the copyright holders.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CURVE/open

https://core.ac.uk/display/228143444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1007/s11235-017-0296-1

Telecommun Syst (2017) 66:417–430
DOI 10.1007/s11235-017-0296-1

Towards a threat assessment framework for apps collusion

Harsha Kumara Kalutarage1 · Hoang Nga Nguyen2 · Siraj Ahmed Shaikh2

Published online: 7 March 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract App collusion refers to two or more apps work-
ing together to achieve a malicious goal that they otherwise
would not be able to achieve individually. The permissions
based security model of Android does not address this threat
as it is rather limited to mitigating risks of individual apps.
This paper presents a technique for quantifying the collu-
sion threat, essentially the first step towards assessing the
collusion risk. The proposed method is useful in finding the
collusion candidate of interest which is critical given the high
volume of Android apps available. We present our empiri-
cal analysis using a classified corpus of over 29,000 Android
apps provided by Intel SecurityTM.

Keywords Android security · Apps collusion · Threat
assessment · Bayesian · Statistical modelling

B Harsha Kumara Kalutarage
h.kalutarage@qub.ac.uk
http://www.qub.ac.uk/schools/eeecs/Connect/Staff/

Hoang Nga Nguyen
hoang.nguyen@coventry.ac.uk
http://www.coventry.ac.uk/research/research-
directories/researchers/dr-hoang-nga-nguyen/

Siraj Ahmed Shaikh
s.shaikh@coventry.ac.uk
http://www.coventry.ac.uk/research/research-directories/
researchers/siraj-shaikh/

1 The Centre for Secure Information Technologies, Queen’s
University of Belfast, Belfast, UK

2 Centre for Mobility and Transport Research, Coventry
University, Coventry CV1 5FB, UK

1 Introduction

The current PBSM for Android has a rather narrow focus on
individual malicious apps, and as it stands has no means to
control flow of information or activity that may occur across
apps. App collusion is an emerging threat [1] which can be
exploited by aggregating permissions, using covert or overt
channels between apps to achieve a malicious goal [2].

Existing security solutions would fail to detect such
attacks [3], and there is no evidence to suggest that new app
security protectionmechanisms1 byGoogle™would address
collusion.

This paper contributes towards a practical automated
threat intelligence system for app collusion. The first con-
tribution is a systematic threat assessment mechanism where
we extend the current assumption of a single malicious app
attack model to address a set of multiple colluding apps (see
Fig. 1) and hence estimate the colluding threat using a concise
definition. The second contribution is a computationally effi-
cient filtering algorithm to filter out collusion candidates of
interest using various possible threat assessment techniques.

1.1 Rest of this paper

The rest of this paper is organised as follows. Section 2 pro-
vides an overview of the related work. Section 2.1 is a review
ofAndroidmalware detection techniques and their suitability
to employ in this particular problem. Inter apps communica-
tion is an integral part of collusion, hence Sect. 2.2 provides
a review of inter apps communication and information leak-
age detection methods. Section 3 lays down the foundation

1 With “verify apps” turned on, apps will be scanned at the time of
installation as well as periodically thereafter individually for potentially
harmful behaviour.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11235-017-0296-1&domain=pdf
http://orcid.org/0000-0001-6430-9558
http://orcid.org/0000-0003-0260-1697
http://orcid.org/0000-0002-0726-3319

418 H. K. Kalutarage et al.

Fig. 1 An example of permissions and operations being split between
colluding apps for call-eavesdrop. Channel 1 can be an intent based
communication while channel 2 can be a communication via external
storage

of our threat assessment framework. Section 3.1 defines the
notion of collusion while in Sect. 3.2 using permissions to
denote threats to be materialised in collusion context. Sec-
tion 4 formulates our research questions with a view of
evaluating possible threat estimation approaches discussed
in Sect. 4.1. Section 4.2 includes the filtering algorithm. Sec-
tion 5 describes the dataset used for our experiments paying
due attention to their relevance to wider global trends in
Sect. 5.1. The experimental setup is described in Sect. 6 along
with results. Section 7 reflects on the results and Sect. 8 con-
cludes the paper.

2 Related work

Android malware detection has been an attractive and active
research area during last few years. As a result techniques for
detecting Android malware are largely available [4,5], but
most of them target single malicious apps. The notion of col-
lusionhas recently beendiscussed inmany researchpapers.A
practical demonstration of collusion attacks through covert
channels can be found in [2,6]. Authors analyse free apps
from the Android market and show that app collusion is a
real threat. Soundcomber [7] is also a similar effort.

2.1 Detecting malicious applications

In general, techniques for detecting Android malware are
categorised into two groups: static and dynamic. In static
analysis, certain features of an app are extracted and anal-
ysed using different approaches such as machine learning
techniques. For example, Kirin [8] proposes a set of policies
which allows matching permissions requested by an app as
an indication for potentially malicious behaviour. DREBIN
[9] trained Support Vector Machines for classifying mal-
wares using number of features: used hardware components,
requested permissions, critical and suspicious API calls and
network addresses. Similar static techniques can be found
in [10–14]. Conversely, dynamic analysis detects malware at
the run-time. It deploys suitable monitors on Android sys-
tems and constantly looks for malicious behaviours imposed
by software within the system. For example, [15] keeps track
of the network traffic (DNS and HTTP requests in particu-
lar) in an Android system as input and then utilises Naive
BayesClassifier in order to detectmalicious behaviours. Sim-
ilarly, [16] collects information about the usage of network
(data sent and received), memory and CPU and then uses
multivariate time-series techniques to decide if an app admit-
ted malicious behaviours. A different approach to translate
Android apps into formal specifications and then employing
existing model checking techniques to explore all possible
runs of the apps in order to search for a matching malicious
activity represented by formulas of some temporal logic can
be found in [17,18].

2.2 Detecting malicious inter-app communication

Current research mostly focuses on detecting inter-app com-
munication and information leakage. DidFail [19] is a
analysis tool for Android apps that detects possible informa-
tion flows between multiple apps. Each APK is fed into the
APK transformer, a tool that annotates intent-related func-
tion calls with information that uniquely identifies individual
cases where intents are used in the app, and then transformed
APK is passed to two other tools: FlowDroid [20,21] and
Epicc [22]. The FlowDroid tool performs static taint track-
ing in Android apps. That analysis is field, flow and context
sensitive with some object sensitivity. Epicc performs static
analysis to map out inter-component communication within
an Android app. Epicc [22] provides flow and context sen-
sitive analysis for app communication, but it does not tackle
each and every possible communication channels between
apps’ components. Themost similarwork toDidFail is IccTA
[23] which statically analyses app sets to detect flows of sen-
sitive data. IccTA uses a single-phase approach that runs the
full analysis monolithically, as opposed to DidFail’s compo-
sition two-phase analysis. Didfail authors acknowledge the
fact that IccTA is more precise than the current version of

123

Towards a threat assessment framework for apps collusion 419

DidFail because of its greater context sensitivity. This sup-
ports our claim in Sect. 4.1.1 - “context would be the key” for
improving the precision. FUSE [24], a static informationflow
analysis tool for multi-apps, provides similar functions as
didFail and IccTA in addition to visualising inter-component
communication (ICC) maps. DroidSafe [25] is a static infor-
mation flow analysis tool to report potential leaks of sensitive
information in Android applications.

ComDroid [26] detects app communication vulnerabili-
ties. Automatic detection of inter-app permission leakage is
provided [27]. Authors address three kinds of such attacks:
confused deputy, permission collusion and intent spoofing
and use taint analysis to detect them. An empirical evaluation
of the robustness of ICC through fuzz testing can be found
in [28]. A study of network covert channels on Android is
[29,30]. Authors show that covert channels can be success-
fully implemented in Android for data leakage. A security
framework for Android to protect against confused deputy
and collusion attacks is proposed [31]. Themaster thesis [32]
provides an analysis of covert channels on mobile devices.
COVERT [33] is a tool for compositional analysing inter-
app vulnerabilities. TaintDroid [34], an information-flow
tracking system, provides a real time analysis by leveraging
Android’s virtualized execution environment. DroidForce
[35], build upon on FlowDroid, attempts to addresses app
collusion problem with a dynamic enforcement mechanism
backed by a flexible policy language. However static analy-
sis encourages in collusion detection due the scalability and
completeness issues [3]. Desired properties for a practical
solution include, but not limited to: characterising the context
associated with communication channels with fine granular-
ity, minimising false alarms and ability to scalable for a large
number of apps.

3 Collusion threat intelligence

This section presents our main definition for collusion. We
concern ourselveswith the use of permissions for apps to exe-
cute threats. Permissions offer both, means to identify which
combinations of apps can potentially execute a threat, as in
Sect. 3.1, and means to indicate the nature of the threat likely
to materalise given the type of permission as in Sect. 3.2.

3.1 Formal definition

In this paper, the notion of collusion informally refers to the
ability for a set of apps to carry out a threat in a collab-
oration fashion. In existing works [2,20,23,24,24,26,36],
collusion is usually associated with inter-app communica-
tions and information leakage. However, to the best of our
knowledge, there is no evidence suggesting the difference
between threats caused by single apps and colluding apps.

Therefore, we consider that colluding apps can carry out any
threat such as the known ones posed by single apps. This
allows collusion to cover a broader set of threats applicable,
especially, for mobile devices.

A threat is a set of actions that must be executed in a
certain order. In this paper, therefore, they are modelled by
partially ordered sets (T,≤) where T is a set of actions
and ≤ specifies the order in which actions must be exe-
cuted. When (T,≤) is carried out, actions from T must be
sequentially executed according to some total order ≤′ (i.e.,
∀t1, t2 ∈ T : t1 ≤′ t2 ∨ t2 ≤′ t1) such that ≤⊆≤′; in other
words, (T,≤′) is a total extension of (T,≤). Let Ex((T,≤))

denote the set of all possible total extensions of (T,≤); i.e.,
all possible ways of carrying out the threat (T,≤). We have
Ex((T,≤)) = {(T,≤′) | ≤⊆≤′ ∧ ≤′ is total}. To this end,
a sequence of actions can be seen interchangeably as a totally
order set. Furthermore, one may obfuscated a total exten-
sion of a threat by scattering it with meaningless or unrelated
actions. However, the total extensionmust be a subsequence2

of the execution. Similarly, we also define an inter-app com-
munication as a poset.

We define the notion of collusion based on the following
axioms:

A1: Actions are operations provided by Android API (such
as record audio, access file, write file, send data, etc.).
Let Act denote the set of all actions.

A2: Actions can be characterised by a number of static or
dynamic attributes such as permissions, input parame-
ters, etc. For the purpose of this paper, we only consider
permissions. Let B denote the set of all action attributes
and pms : Act → ℘(B) specify the set of permissions
required to execute an action.

A3: A threat t = (T,≤) is a poset. Let τ denote the set of
all threats. In the scope of this paper, τ represents the
set of all known threats caused by single apps.

A4: An inter-app communication c = (C,≤) is a poset. Let
com denote the set of all known inter-app communica-
tions.

Definition 1 A non-singleton set S of apps is colluding if
they execute a sequence A ∈ Act∗ such that:

– (d1): there exists a subsequence A′ of A such that A′ ∈
Ex(t) for some t ∈ τ ; furthermore, A′ is collectively
executed by every app in S, i.e., each app in S executes
at least one action in A′; and

– (d2): there exists a subsequence C ′ of A such that C ′ ∈
Ex(c) for some c ∈ com.

2 A sequence a1 . . . an is a subsequence of another one b1 . . . bm iff
a1 . . . an can be obtained from b1 . . . bm by deleting some elements
bi ’s.

123

420 H. K. Kalutarage et al.

3.2 Threat quantification

Asper our collusion definition inSect. 3.1, estimating the col-
lusion threat likelihood Lc(S) of a non-singleton set S of apps
involves two likelihood components Lτ (S) and Lcom(S),
where Lτ (S) denotes the likelihood of carrying out a threat
in τ by apps in S and Lcom(S) denotes the likelihood of
performing some inter-app communication in com between
apps in S. Using the multiplication rule of well-known basic
principles of counting:

Lc(S) = Lτ (S) × Lcom(S) (1)

We apply some basic machine learning techniques in
Sect. 4.1 to demonstrate the evaluation of Eq. 1.

4 Research questions

This section lists some important collusion related research
questions.

RQ1: Is “Permission” a relevant attribute to use in threat
quantification? The current security model of Android
depends on permissions. Hence it would be naturally
the first selection of features in any Android security
discussion. We investigate if permissions is a relevant
feature to use in our threat quantification model.

RQ2: Which permissions inform in the threat model? If
above RQ1 is true, we need to investigate which per-
missions would be far more informative in collusion
threat estimation than others. We use a simple graph-
ical technique for variable subset selection.

RQ3: Can critical permissions be considered as more infor-
mative in threat estimation than non-critical permis-
sions?Requesting amore critical permission increases
likelihood of being malicious than requesting a less
critical permission is a typical belief within the com-
munity. We will test this hypothesis using real data.

RQ4: What techniques/methods can be applied to estimate
the parameters of proposed threat quantification for-
mula? Here we investigate possible deterministic and
stochastic techniques.

RQ5: Is there a correlation between different measures and
collusion threat? We study the correlation between
number of permissions, types of apps and collusion
threat.

RQ6: What percentage of app sets have collusion potential?
In order to materialise a collusion, an app set has to
satisfy desideratum d1 and d2 in Eq. 1. We investigate
what percentage of app pairs satisfy d1 and d2.

RQ7: What is the most likely threat to materialise in collu-
sion context?

4.1 Methods

This section discusses some possible methods in estimating
Lτ and Lcom in order to evaluate Eq. 1.

4.1.1 Estimating Lτ

Three possible approaches is proposed in estimating Lτ :
policy based, data driven and modelling. Each approach
has inherent pros and cons. The sole purpose of present-
ing three different approaches in this work is to explore the
reader the ability to employ them in estimating Lτ under
different situations and constraints. An evaluation of which
approach is superior to others is out of the scope of this paper.
Such an evaluation depends on number of factors such as
domain knowledge, data availability, accuracy requirements
and computational cost.
Policy based:

A set of rules is defined utilising the knowledge about
aforementioned attributes in axiom A2. We use Kirin [8] rule
setK for the empirical analysis presented in this paper. Each
security rule r ∈ K is defined using permissions to enforce
a stated security policy. The following check was performed
in estimating Lτ (S):

θr (S) ≡
∧

S′⊂S

r �
⋃

a∈S′
pms(a) ∧ r ⊆

⋃

a∈S

pms(a)

Note that θr (S) is equal to unity of ability3 to pose a prede-
fined threat for single apps by the app set S, as any matching
rule is an indication of a malicious effect regardless of the
threat type. The ability to bypass a single rule ⇔ ability to
pose a predefined threat by the app set S. Assuming that num-
ber of rules defined for threat definitions in the database is
exclusive and exhaustive,

Lτ (S) =
∑

r∈K θr (S)

|K| (2)

Inherent weakness associated with this approach is its inabil-
ity to capture themotivation uncertainty behind an operation.
For example, SEND_SMS can be used maliciously as well
as legitimately needed by communication apps. The prob-
lem here is how to capture this kind of uncertainty by a rule
defined based on predefined policies? In fact context would
be the key for capturing the motivation, and extra ordinary
security canbe achievedonly through listening to all informa-
tion sources (including contextual parameters) on the device.
However defining finite number of white (or black) list rules
using large number of attributes to describe each and every

3 As each rule in the set defined to protect the device/user froma specific
predefined threat

123

Towards a threat assessment framework for apps collusion 421

possible state of the device with respect to the context is
not feasible. Defining rules requires expertise knowledge as
well as tedious human involvements, and on the other hand
context is dynamically evolving. Possibility to cover future
threats imagined by experts, but not yet executed by any
attacker, would be a strength of this approach.
Data driven:

In many classification problems, explicit rules do not exist
but examples can be obtained easily. Hence a classifier can-
not be constructed from known rules and therefore one tries
to infer a classifier from a (limited) set of training exam-
ples. The use of examples thus elevates the need to explicitly
state the rules for the classification by the user [37]. Here
we use Bayesian fusion - well known log likelihood model4

for this purpose. Bayesian fusion has been widely used in
intrusion detection [39,40]. The aim is to use only data,
instead of defining rules, in computing Lτ (S) while captur-
ing motivation uncertainty. Let H be the hypothesis that S
satisfies the condition d1 of definition 3.1 and assume mutu-
ally independent attributes in B. Then H can be tested using
log-likelihood model as follows.

ln
P(H/BS)

P(¬H/BS)
= ln

P(H)

P(¬H)
+

∑

k∈BS

ln
P(bk/H)

P(bk/¬H)
(3)

where BS denotes the set of permissions required by apps in
S, i.e., BS = ⋃

a∈S pms(A). Then, Lτ is defined as,

Lτ (S) =
⎧
⎨

⎩
ln P(H/BS)

P(¬H/BS)
if ln P(H/BS)

P(¬H/BS)
> 0

0 otherwise
(4)

Here, the term P(H/BS) explains how likely the app set
S satisfies required operations for producing threat in τ

given feature set BS . P(¬H/BS) denotes the negation of
P(H/BS). Note that even if our attack model is multiple
apps, d1 focuses only on operations required to execute a
threat (e.g. Detect, Record and Send in Fig. 1) by a single
app attack model. Hence it is possible to use known clean
and malicious single apps to train the classifier in estimating
Lτ as large collections of colluding apps found in the wild
are not available at present for training and testing purposes.
Obviously some additional operations (e.g. Read and Write
in Fig. 1) may require to execute the same threat in “multiple
colluding apps model”. But such operations are connected
to the inter-app communication element in our threat model,
and hence covered by Lcom and not affected on Lτ .

Since it learns both benign and malicious nature of
attributes in B from existing data (training data), no expert’s
effort needed for defining rules, and can simply adopt number

4 Neyman Pearson lemma demonstrates that such a test has the highest
power among all competitors when parameters are known [38].

of different features in B (e.g. category, developer informa-
tion and many other static attributes) to inform benign and
malicious nature even in different contexts. This likelihood
estimating strategy has two advantages. First, the malicious
nature in multiple attributes are combined not in an ad-hoc,
but rather in a data-drivenmanner. Secondly, it allows raising
alarms on malicious behaviours that are not by themselves
appearing to be malicious in any single attribute. However
any threat not in the training data will not be covered unless
explicitly incorporated them with the model.
Modelling approach:

In order to estimate Lτ , we employ a so-called Naive
Bayesian informative [41] model. Naive Bayesian informa-
tive is extensively used for modelling the knowledge which
is not available in data (e.g. semantic information such as
permissions’ critical level). To this end, we consider a multi-
variate random variable Y = (y1, . . . , yk). Here, k is the total
number of permissions in Android OS and y j ∈ {0, 1} are
independent Bernoulli random variables. A variable y j takes
the value 1 if permission j is found in S, 0 otherwise. With
this, P(Y) stands for the probability of obtaining S with per-
missions as described by Y . Our probabilistic model is then
given by Eq. (5):

P(Y) =
k∏

j=1

λ
y j
j (1 − λ j)

1−y j (5)

where λ j ∈ [0, 1] is the Bernoulli parameter.
In order to compute Lτ for a given set S, we average out

the function ln{(P(Y))−1} using number of permissions in
set S and scale down it to the range [0,1] for comparisons. The
desired goal is to make requesting a more critical permission
to increase likelihood of “being malicious” than requesting a
less critical one even though the two permissions have similar
frequencies. Therefore, any monotonically decreasing func-
tion can be chosen [41].

To complete our modelling, we need to estimate values λ̂ j

that replaceλ j in the computationof Lτ .To this end– to avoid
over fitting P(Y) – we estimate λ j using informative beta
prior distributions [42] and define the maximum posterior
estimation

λ̂ j =
∑

y j + α j

N + α j + β j
(6)

where N is the number of apps in the training data set and
α j , β j are the penalty effects. In this work we set α j = 1.
The values for β j depend on the critical level of permissions
as given in [41,43]. β j can take either the value 2N (most
critical), N (critical) or 1 (non-critical).

123

422 H. K. Kalutarage et al.

4.1.2 Estimating Lcom

In order to materialise a collusion, desideratum d2 defini-
tion 1 should also be satisfied - there should be an inter app
communication closely related to the threat mentioned in d1.
To establish this association we need to consider number of
factors including the contextual parameters. At this stage of
the research we do not focus on estimating the strength of
connection (association) between d2 and d1. In this work we
investigate what percentage of communication channels can
be detected through static code analysis, and simply assume
these channels can be used for malicious purpose by apps in
set S. Hence we consider Lcom to be a binary function such
that Lcom ∈ {1, 0} which takes the value 1 if there is inter
app communication within S using either intents or external
storage (we do not investigate other channels in this work).

4.2 Filtering for collusion candidates

The search space posed by possible app combinations is very
large. Therefore it is not computationally cheap doing deep
analysis on each and every app pairs. Effective methods are
needed to narrow down the search space to collusion candi-
dates of interest.

Our filtering mechanism consists of two sub filters: inner
and outer. Inner filter applies on top of the outer filter. Outer
filter is based on Lτ value which can be computed using per-
missions only. Permissions are very easy and cheap to extract
from APKs - no decompilation, reverse engineering, com-
plex code or data flow analysis is required. Hence outer filter
is computationally efficient. Majority of non-colluding app
pairs in an average app set can be pruned out using this filter
(see Fig. 2). Hence it avoids doing expensive static/dynamics
analysis on these pairs. Inner filter is based on Lcom value
which should be computed using static code analysis. A third
party research prototype tool Didfail [19] was employed in
finding intent based inter app communications. A set of per-
mission based rules was defined to find communication using
external storage. Algorithm 1 presents the proposed app fil-
tering mechanism for colluding candidates of interests.

5 Dataset description

The malicious app set uses in this paper is significantly a
larger than many studies in the literature [44]. In this work
we perform our analysis using a 29k+ size app set which
includes “malicious”, “potentially malicious” and “ clean”
apps carefully classified experts in Intel Security5. That sam-
ple prduces 420+ millions app pairs for pairwise analysis in

5 http://www.mcafee.com/us/index.html.

Algorithm 1: App filtering in finding collusion candi-
dates of interest. The outer filter is based on Lτ while
the inner filter is based on Lcom .

Λ: Set of individual apps;
Ω: Set of pairs of colluding candidates of interest;
input : Λ={app1, app2, app3,…, appn}
output: Ω={pair1, pair2, pair3,…, pairm}
if |Λ| ≥ 2 then

Let Θ = set of all possible app pairs in Λ;
foreach pair j in Θ do

Compute Lτ using a method in Sect. 4.1.1;
/* outer filter */
if Lτ ≥ threshold then

Compute Lcom as described in Sect. 4.1.2 ;
/* inner filter */
if Lcom == 1 then

Return (pair j);
end

end
end

end

Table 1 Descriptive statistics - “number of permissions” is the variable

Potentially Clean Malicious Whole

Num.apps 9976 9476 9770 29222

Minimum 0 0 0 0

Maximum 76 94 99 99

Median 11 10 10 10

Mean 11.76 12.77 12.38 12.30

Variance 38.39 139.05 84.04 86.46

this work. With a huge sample it is possible to know com-
puted statistics with a lot of precision even the data is very
scattered, and hence more accurate inferences about the pop-
ulation. Table 1 presents the descriptive statistics which tells
us each app category has different permission distribution.

5.1 Dataset vs global trend

Table 2 presents a comparison of top 10 most used permis-
sions between each app category as a percent of apps that
requested those permissions and rankwithin the group. These
statistics are similar to the other works in the literature which
have been used different data sets for computing the same
(e.g. [43]).

6 Experimental setup and results

Algorithm 1 was automated using R6 and Bash scripts. It
also includes calls to a third party research prototype [19] to

6 http://www.r-project.org/.

123

http://www.mcafee.com/us/index.html
http://www.r-project.org/

Towards a threat assessment framework for apps collusion 423

Table 2 Top 10 most used
permissions in each app
category

Permission name Malicious (Rank) Potentially (Rank) Clean (Rank)

INTERNET 98 (1) 100 (1) 82 (1)

ACCESS_NETWORK_STATE 95 (2) 98 (2) 76 (2)

WRITE_EXTERNAL_STORAGE 75 (4) 69 (5) 66 (3)

WAKE_LOCK 49 (6) 47 (9) 55 (4)

READ_PHONE_STATE 85 (3) 93 (3) 48 (5)

ACCESS_WIFI_STATE 70 (5) 73 (4) 43 (6)

GET_ACCOUNTS 29 (12) 40 (11) 43 (7)

VIBRATE 38 (10) 44 (10) 40 (8)

RECEIVE_BOOT_COMPLETED 41 (9) 62 (7) 33 (9)

ACCESS_FINE_LOCATION 42 (8) 55 (8) 28 (10)

ACCESS_COARSE_LOCATION 48 (7) 62 (6) 26 (11)

Nine permissions occurred in all three top 10 lists in common. A total of 11 permissions are included.
Percentages and rank within the group is presented

Table 3 Confusion matrix for log likelihood method

n=240 Actual
colluding

Actual
non-colluding

Predicted colluding 92 44

Predicted non-colluding 28 76

find intent based communications in computing Lcom . A set
of permission based security rules was defined to find com-
munication using external storage. The likelihood (P(bk/H),
P(bk/¬H)) and prior (P(H), P(¬H)) distributions in Eq. 3
were estimated using the “clean” and “malicious” app sets.
Model parameter in Eq. 5 was also estimated using the same
data set. Average processing time per app pair was recorded
as 80s - outer filter (≤ 1s) and inner filter (79s). Average time
was calculated on a mobile workstation with an Intel Core
i7-4810MQ 2.8GHz CPU and 32GB of RAM.

6.1 Validation

Our validation data set consists of 240 app pairs in which
half (120) of them are known colluding pairs while the other
half non-colluding pairs. In order to prevent over fitting, app
pairs in the validation and testing sets were not included in
the training set. Table 3 presents the confusion matrix for the
log-likelihoodmethod.Different performancemeasures such
as sensitivity = 0.77, specificity = 0.63, precision = 0.68 and
F-score7 = 0.72 were computed for log-likelihood method.
As shown in Fig. 2 proposed naive Bayesian method assigns
higher threat scores (in fact Lτ , assuming communication,
i.e. Lcom = 1, for each pair) for colluding pairs than clean
pairs. Table 4 presents the confusion matrix obtained for the
naive Bayesian method by fitting a linear discriminant line

7 A measure of accuracy of a method.

Fig. 2 Validation: threat score obtained by each pair in the validation
data set

Table 4 Confusion matrix for naive Bayesian method

n=240 Actual
colluding

Actual
non-colluding

Predicted colluding 114 7

Predicted non-colluding 6 113

(blue dotted) in Fig. 2. Sensitivity = 0.95, specificity = 0.94,
precision = 0.94 and the F-score = 0.95 for the naiveBayesian
method. Error rates obtained by this method against the vali-
dation dataset are encouraging, 3% false positives and 2.5%
false negatives. These error rates are a big improvement but
still too high for practical use. However policy based method
detected only two colluding pairs (true positives) in the val-
idation set. This may be due to the limitations of the rule set
which is not exhaustive.

6.2 Testing

We tested our filtering mechanism with a different sample
consists of 91 app pairs. Table 5 presents the outcome. Each
cell denotes the Lτ value for the corresponding pair. To min-
imise false negatives, we use the lower bound (=0.50) gained

123

424 H. K. Kalutarage et al.

Table 5 Testing the proposed
filter

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.51 1.61 0.97 1 0.8 1 0.81 0.77 0.77 0.77 0.44 0.44 0.95

2 0.48 0.62 0.55 0.49 0.55 0.58 0.51 0.51 0.58 0.31 0.31 0.49

3 0.69 0.64 0.56 0.64 0.48 0.61 0.61 0.72 0.41 0.41 0.58

4 1 0.84 1 0.85 0.71 0.71 0.82 0.56 0.56 0.95

5 0.84 1 0.86 0.67 0.67 0.82 0.47 0.47 1

6 0.84 0.68 0.58 0.58 0.65 0.43 0.43 0.78

7 0.86 0.67 0.67 0.82 0.47 0.47 1

8 0.51 0.51 0.58 0.31 0.31 0.77

9 0.77 0.77 0.44 0.44 0.61

10 0.77 0.44 0.44 0.61

11 0.47 0.47 0.73

12 0.47 0.41

13 0.41

14

For readability – we leave the lower half empty since the table is symmetric. Underlined values shows true
positives, Bolditalic values shows false positives, Italic values shows true negatives, and Bold values shows
false negatives

from the validation data set for the discriminant line as thresh-
old for Lτ . We report possible collusion if Lτ ≥ 0.5 and
Lcom = 1, otherwise we report non-collusion. This yields
symmetric data – for readability we leave the lower half of
the matrix empty. Underlined values shows true positives,
Bolditalic values shows false positives, Italic values shows
true negatives, and Bold values shows false negatives.

With regards to false alarms, app pair (1,2) was not
detected by our analysis due to the third party tool does not
detect communication using SharedPreferences. Since we do
only pairwise analysis, app pair (7,9) was not reported. That
pair depends on transitive communication. Pair (12,13) was
not reported since Lτ is less than the chosen threshold. It is
possible to reduce false alarms by changing the threshold.
For example either setting the best possible discriminat line
or its upper bound (or even higher, see Fig. 2) as the thresh-
old will produce zero false positves or vice versa. But as a
result it will increase false negative rate that will affect on the
F-score - the performance meassure of the classifier. Hence
it would be a trade-off between a class accuracy and overall
performance. However since the base rate of colluding apps
in the wild is close to zero as far as anyone knows, the false
positive rate of this method would have to be vanishingly
small to be useful.

Precise estimation of Lcom would be useful to reduce false
alarms in our analysis. But it should be noted that existence
of a communication is only a necessary condition to happen
a collusion, but not a sufficient condition to detect it. In this
context it is worth to mention that a recent study [45] shows
that 84.4% of non-colluding apps in the market place can
communicate with other apps either using explicit (11.3%)
or implicit (73.1%) intent calls. Therefore the threat element

Fig. 3 Permission distributions: variable “permission” has three dif-
ferent distributions in each category (top). Dissimilarity scores for
malicious and potentially malicious classes against the clean set (bot-
tom)

(i.e. Lτ) is far more informative in collusion estimation than
the communication element (Lcom) in our model.

Both validation and testing samples are blind samples and
we have not properly investigated them for the biasednes or
realisticity.

6.3 RQ1. Is “Permission” a relevant attribute to use in
threat quantification?

As shown in Fig. 3, each app category has different distribu-
tions over all permissions in Android. Therefore permissions
can be used as an indicator to classify malicious and benign

123

Towards a threat assessment framework for apps collusion 425

Table 6 Most requested permissions: the top 10 dissimilarity scores

Permission name Malicious (Rank) Potentially (Rank) Most Critical

READ_PHONE_STATE 36.85 (1) 44.82 (1) N

ACCESS_WIFI_STATE 26.97 (2) 30.25 (3) N

ACCESS_COARSE_LOCATION 22.34 (3) 36.43 (2) Y

ACCESS_NETWORK_STATE 19.32 (4) 21.96 (8) N

INTERNET 15.82 (5) 17.59 (9) N

READ_HISTORY_BOOKMARKS 14.03 (6) 22.65 (7) N

ACCESS_FINE_LOCATION 13.96 (7) 26.65 (5) Y

SYSTEM_ALERT_WINDOW 13.72 (8) 12.36 (13) N

MOUNT_UNMOUNT_FILESYSTEMS 11.53 (9) 5.70 (16) N

GET_TASKS 11.23 (10) 8.49 (15) N

Table 7 Least requested
permissions: the bottom 10
dissimilarity scores

Permission name Malicious (Rank) Potentially (Rank) Critical

MANAGE_ACCOUNTS −13.76 (1) −15.71 (1) N

GET_ACCOUNTS −13.75 (2) −2.58 (26) Y

USE_CREDENTIALS −13.59 (3) −15.22 (2) N

READ_SYNC_SETTINGS −11.65 (4) −12.66 (4) N

READ_CONTACTS −10.96 (5) −13.71 (3) Y

WRITE_SYNC_SETTINGS −10.37 (6) −11.50 (5) N

AUTHENTICATE_ACCOUNTS −8.97 (7) −10.01 (7) N

NFC −6.06 (8) −6.30 (12) Y

WAKE_LOCK −5.93 (9) −7.77 (9) N

BIND_REMOTEVIEWS −5.77 (10) −5.89 (13) N

nature of apps, and hence as an element in B. The bottom
graph in Fig. 3 presents the dissimilarity scores - the amount
of deviations of distributions of malicious and potentially
malicious groups from the clean set.

6.4 RQ2. Which permissions inform in the threat
model?

As in left and right tails of the bottom graph of Fig. 3, there
are some certain group of permissions which malicious apps
are most and least likely requested than clean apps. Tables 6
and 7 list names of top 10 such permissions from each group
respectively. Only those (i.e. most and least likely) permis-
sions help in threat estimation or app classification as other
permissions are used in a similar manner by both malicious
and clean apps.

6.5 RQ3. Can critical permissions be considered as
more informative in threat estimation than
non-critical permissions?

Requesting a more critical permission increases likelihood
of being malicious than requesting a less critical permission

is a typical assumption in many permission based security
solutions (e.g. [41,43]). In [43], requesting a critical permis-
sion is viewed as a signal that the app is risky. Tables 6 and 7
compare top 10 most and least likely requested permissions
with critical permissions listed in [41,43]. Only two overlaps
are in the most requested list (see third column of Table 6).
Three least requested permissions by malicious apps have
been included in the critical permission list as well (see third
column in table 7). So, it is essential to incorporate seman-
tic information in classification model to classify apps using
critical permissions. Otherwise they might not be a useful
feature in classifying apps between malicious and benign as
they are equally requested by both categories. Instead, most
and least likely requested permissions would inform more in
the classification model.

6.6 RQ4. What techniques/methods can be applied to
estimate the parameters of proposed threat
quantification formula?

This question was answered in Sects. 4.1, 6.1 and 6.2. Three
different methods proposed, validated and tested.

123

426 H. K. Kalutarage et al.

Fig. 4 Correlation: number of permissions vs threat estimated using
policy based model

Fig. 5 Correlation: number of permissions vs threat estimated using
naive Bayesian model

6.7 RQ5. Is there a correlation between different
measures and collusion threat?

6.7.1 Number of permissions vs threat

Correlation between number of permissions in S and Lc

is investigated. The idea is to investigate the feasibility of
using number of permissions as a risk signal for the collu-
sion threat. Figures 4, 4 and 6 show plots of threat scores
of each approach. ρ denotes the Pearson correlation coef-
ficients. As shown in Fig. 5 threat estimation using naive
Bayesian model exhibits a higher correlation with number of
permissions in S than other two methods. There is no corre-
lation in policy based method. This might be due to the rule
set is not exhaustive. A weak correlation can be found in log
likelihood method. However it should be noted that a strong
correlation does not mean the goodness of fit of the model
for the purpose.

6.7.2 Type of apps vs threat

Table 8 presents the distribution of risky pairs against the
type of individual apps in a pair. Three types of classifica-
tion is considered as shown in table 8. As per the table 8,
including a malicious or a potentially malicious app in a
pair increases the collusion potentially. However since apps
detected as malicious are quickly removed from app stores,

Fig. 6 Correlation: number of permissions vs threat estimated using
log likelihood model

Table 8 Distribution of percentage (%) of risky pairs over each risk
estimation methods and app type

App pair consists of Policy
based

Naive
Bayesian

Log
likelihood

Two clean apps 11 9 24

At least one
potentially app

33 33 36

At least one
malicious app

56 58 40

At least one
potentially or
malicious app

78 77 54

collusion in practice may not manifest as such in the real
world.

6.8 RQ6. What percentage of app sets have collusion
potential?

6.8.1 Possible channels

What are possible channels for satisfying d2, and what
percentage of them can be detected through static code
(including permissions) analysis is investigated. Possible
channels to communicate between two apps would be:

– Intents (static code analysis needed)
– External storage (permission analysis sufficient), only
READ and WRITE permissions are needed

– Content providers (static code analysis needed)
– Shared Preferences (static code analysis needed)
– Sockets (static code analysis needed)

As we found in this analysis 45.7% of app pairs can commu-
nicate through external storage, and 3.2%of app pairs (within
the clean set) can communicate through explicit intents.
These figures are not surprising as recent study [3] shows
that 84.4% of clean apps in the market place can communi-
cate with other third party apps either using explicit (11.3%)
or implicit (73.1%) external intent calls.

123

Towards a threat assessment framework for apps collusion 427

Table 9 Top 5 matching rules
Rule %

ACCESS_COARSE_LOCATION, INTERNET, RECEIVE_BOOT_COMPLETED 32.01

ACCESS_FINE_LOCATION, INTERNET, RECEIVE_BOOT_COMPLETED 30.81

INSTALL_SHORTCUT, UNINSTALL_SHORTCUT 13.94

READ_PHONE_STATE, RECORD_AUDIO, INTERNET 13.28

SEND_SMS, WRITE_SMS 5.00

6.8.2 Collusion potentially

Policy basedmodel classified as 7%of apppairs has collusion
potentially. Log likelihood ratio classified as 16%of app pairs
has that ability.NaiveBayesian assigned a threat score greater
than 0.8 for 20% of app pairs. These figures may include
some false positives as we don’t estimate Lcom preciously as
mentioned above.

6.9 RQ7. What is the most likely threat to materialise in
collusion context?

A rule in the policy based model describes a possible threat.
Hence it is possible to compute the most likely threat to be
materialised in the collusion context by counting the num-
ber of app pairs matched against each rule. Table 9 presents
the top 5 matching rules. As it is obvious, 76% of matching
accounts for 1st, 2nd and 4th rules in the table. The main
purpose of those three rules to prevent information leakage.
Hence the most likely threat to be materialised through col-
lusion would be information leakage.

7 Discussion

There is a gap for a better risk communication model in the
current PBSM of Android [41,43]. It presents the risk of
“to be installed apps” in the form of “dangerous permis-
sions combinations”, but underestimates the associated risk
of app collusion. We argue any future model needs to take
into account possible app collusion and should communicate
the risk in a way users can easily understand and compare
with other competitive apps providing similar functions. In
this work we quantify the threat using Eq. 1, by taking into
account possible app collusion, and present that threat in
numerical forms. We believe that only then users can com-
pare, limit and ultimately better manage the risks associated
with installing un-trusted apps.

The evaluation of the proposed threat quantification
method depends on a mix of speculative reasoning and an
empirical analysis. This is mainly due to lack of large num-
ber of known colluding app samples are available for training
and testing purposes. This is a major constraint for advances

in this research topic. Dividing the likelihood Lc in Eq. 1 into
two parts, i.e. Lτ and Lcom , helps to overcome this issue.
Loosely speaking, most threats are common in single and
multiple apps attack models, and some additional operations
are required to establish communication channels to execute
the same threat in multiple apps attack model (see Fig. 1).
Operations required to establish communication channels are
covered by Lcom in our threat quantificationmodel,while rest
of operations are covered by Lτ . Hence Lτ can be trained
using existing datasets for single apps. However there may
be threats applicable only for collusion scenarios and cannot
execute under single app attack model. Such cases may need
to identify and explicitly train in the models.

Overwhelming number of possible app pairs available in
an app market presents a huge challenge to a fully automated
collusion detection system; collusion across three or more
apps makes this problem worse. Therefore computationally
efficient methods are required to reduce the size of target sets
for details analysis. Proposed method useful herein reducing
search space as it looking for interesting collusion candi-
dates, eliminating apps that are unlikely to be malicious, and
focusing on those with a higher probability. For example, it
reduces the sample size of 29k apps by 93% using the pol-
icy based method and 84% using log likelihood method (see
Sect. 6.8.2). Given a overwhelming number of possible app
pairs in an app market such a reduction is very welcome.

Threat probability calculationusingNaiveBayesianmodel
reduces false alarms substantially. For example, against the
set of 240 colluding and non-colluding app pairs, it reported
3% false positives and 2.5% false negatives (see Table 4).
Though these error rates are a big improvement, still may be
a too high for a practical usage given that huge number of
app pairs in an app market. Further reduction is needed.

Since the base rate of colluding apps in the wild is close to
zero as far as anyone knows, the outer filter (see algorithm 1)
itself can filter out most of innocent app pairs form a large
app set for a minimal computational cost (processing time
per app pair ≤ 1s). Hence proposed filter is relatively an
efficient.

8 Conclusion

App collusion is possible because the current security mech-
anism on Android is not focused on controlling inter-app

123

428 H. K. Kalutarage et al.

communications (IACs). Instead it has been designed based
on intra and inter app communications. IAC plays a vital
role in enabling legitimate functions for an app. However
the same can be used for malicious purposes as well. The
technical challenges associated with any proposal for col-
lusion detection is to tackle this uncertainty. Inability to
solve this problem may result in a high number of false
alarm rates. For example, as shown in [3], XManDroid [46]
has a very high false positive rate (55%) which defines
classification policies based on certain permissions com-
binations. As shown in our work, employing probabilistic
techniques provides a promise, but further reduction is
needed in false alarms. Our hypothesis - taking some coun-
termeasures such as contextual anomaly detection (more
attributes in B) and estimating Lcom preciously will reduce
false alarms further. Some possible attributes for this task
would be type of data on the channel (e.g. image, binary,
text), payload size and type of the channel (e.g. HTTP
GET requests vs. POST or content provider reads vs.
writes), developer information (e.g. same developer, high-
visibility developers such as Google and Facebook), app
category (e.g. game, weather) and presence of encryption.
An extensive study is needed this regard and left as a future
work.

Finally, app collusion on the PBSM is a consequence of
the basic assumption on which the permission based model
relies that apps can be independently restricted in accessing
resources and then safely composed on a single platform.
As discussed in this paper this assumption is incorrect and
app collusion can be exploited to break the permission based
model. Therefore permissions should be granted and man-
aged under the assumption that apps can aggregate their
permissions by colluding over communication channels.Any
future model needs to take into account possible app collu-
sion and should communicate the risk in a way users can
easily understand and compare with other competitive apps
providing similar functions. Proposed threat quantification
mechanism in this paper provides a promise towards this
direction.

Acknowledgements This work is as a result of the App Collusion
Detection (ACiD) (http://cs.swan.ac.uk/~csmarkus/ACID/) project
funded by the Engineering and Physical Sciences Research Council
(EPSRC) of the UK under the grant EP/L022656/1 (http://gow.epsrc.
ac.uk/NGBOViewGrant.aspx?GrantRef=EP/L022656/1). We are also
grateful to Tom Chen, Markus Roggenbach, Igor Muttik, Alex Hinch-
liffe, JorgeBlasco, IrinaMariucaAsăvoae andRoganCreswick for their
helpful comments.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Asavoae, I. M., Blasco, J., Chen, T. M., Kalutarage, H. K., Mut-
tik, I., Nguyen, H. N., Roggenbach, M., & Shaikh, S. A. (2016).
Towards automated android app collusion detection. In Aspinall,
D., Cavallaro, L., Seghir, M. N., & M. Volkamer (Eds.), Proceed-
ings of international workshop on innovations in mobile privacy
and security 2016, CEUR Workshop Proceedings (pp. 29–37).

2. Marforio, C., Francillon, A., Capkun, S., Capkun, S., & Capkun,
S. (2011). Application collusion attack on the permission-based
security model and its implications for modern smartphone sys-
tems. ETH Zurich: Department of Computer Science.

3. Elish, K. O., Yao, D. D., & Ryder, B. G. (2015). On the need of
precise inter-app icc classification for detecting android malware
collusions. In Proceedings of IEEE mobile security technologies
(MoST), in conjunction with the IEEE symposium on security and
privacy.

4. Elish, K. O., Shu, X., Yao, D. D., Ryder, B. G., & Jiang, X. (2015).
Profiling user-trigger dependence for android malware detection.
Computers & Security, 49, 255–273.

5. La Polla, M., Martinelli, F., & Sgandurra, D. (2013). A survey
on security for mobile devices. Communications Surveys Tutorials
IEEE, 15(1), 446–471.

6. Marforio, C., Ritzdorf, H., Francillon, A., & Capkun, S. (2012).
Analysis of the communication between colluding applications on
modern smartphones. In Proceedings of the 28th annual computer
security applications conference, ACM (pp. 51–60).

7. Schlegel, R., Zhang, K., Zhou, X. Y., Intwala, M., Kapadia, A.,
& Wang, X. (2011). Soundcomber: A stealthy and context-aware
sound trojan for smartphones. In NDSS (Vol. 11, pp. 17–33).

8. Enck, W., Ongtang, M., & McDaniel, P. (2009). On lightweight
mobile phone application certification. In Proceedings of the 16th
ACM conference on Computer and communications security, ACM
(pp. 235–245).

9. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., & Rieck, K.
(2014). DREBIN: effective and explainable detection of android
malware in your pocket. In 21st annual network and distributed
system security symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014, The Internet Society.

10. Canfora, G., Lorenzo, A. D., Medvet, E., Mercaldo, F., & Visag-
gio, C. A. (2015) Effectiveness of opcode ngrams for detection of
multi family androidmalware. In 10th International Conference on
Availability, Reliability and Security, ARES 2015, (pp. 333–340).
Toulouse, France.

11. Dai, G., Ge, J., Cai, M., Xu, D., & Li, W. (2015). Svm-based mal-
ware detection for android applications. In Proceedings of the 8th
ACM conference on security & privacy in wireless and mobile net-
works (PP. 33:1–33:2), New York, NY.

12. Kate, P. M., & Dhavale, S. V. (2015). Two phase static analysis
technique for android malware detection. In Proceedings of the
Third International Symposium on Women in Computing and Infor-
matics, WCI 2015, co-located with ICACCI 2015 (PP. 650–655),
Kochi.

13. Li, Q., & Li, X. (2015). Android malware detection based on static
analysis of characteristic tree. In 2015 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery,
CyberC 2015 (PP. 84–91), Xi’an, China.

14. Wang, Z., Li, C., Guan, Y., & Xue, Y. (2015). Droidchain: A novel
malware detection method for android based on behavior chain. In:
2015 IEEE Conference on Communications and Network Security,
CNS 2015 (PP. 727–728). Florence, Italy.

15. Han, H., Chen, Z., Yan, Q., Peng, L., & Zhang, L. (2015). A real-
time android malware detection system based on network traffic
analysis. In Algorithms and architectures for parallel processing-
15th international conference, ICA3PP 2015, Zhangjiajie, China,

123

http://cs.swan.ac.uk/~csmarkus/ACID/
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/L022656/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/L022656/1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Towards a threat assessment framework for apps collusion 429

November 18–20, 2015. Proceedings, Part III. (2015) (pp. 504–
516).

16. Kim, K., & Choi, M. (2015). Android malware detection using
multivariate time-series technique. In 17th Asia-Pacific network
operations and management symposium, APNOMS 2015 (pp. 198–
202). Busan, South Korea.

17. Song, F., & Touili, T. (2014). Model-checking for android mal-
ware detection. In Garrigue, J., (ed.) Programming Languages and
Systems - 12th Asian Symposium, APLAS 2014 Singapore, Novem-
ber 17-19, 2014, Proceedings. Volume 8858 of Lecture notes in
computer science (pp. 216–235). Springer.

18. Beaucamps, P., Gnaedig, I., & Marion, J. (2012). Abstraction-
based malware analysis using rewriting and model checking. In
Foresti, S., Yung, M., & Martinelli, F., (Eds.), Computer security
- ESORICS 2012 - 17th European symposium on research in com-
puter security, Pisa, Italy, September 10–12, 2012. Proceedings.
Volume 7459 of Lecture Notes in Computer Science (pp. 806–823).
Springer.

19. Burket, J., Flynn, L., Klieber, W., Lim, J., & Snavely, W. (2015).
Making didfail succeed: Enhancing the cert static taint analyzer
for android app sets. Technical Report MSU-CSE-00-2, Software
Engineering Institute,CarnegieMellonUniversity, Pittsburgh,USA
(March 2015).

20. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein,
J., Le Traon, Y., Octeau, D., & McDaniel, P. (2014). Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In Proceedings of the 35th ACM
SIGPLAN conference on programming language design and imple-
mentation, ACM (p. 29).

21. Fritz, C., Arzt, S., Rasthofer, S., Bodden, E., Bartel, A., Klein, J., &
et al. (2013).Highly precise taint analysis for android applications.
EC SPRIDE, TU Darmstadt: Tech. Rep.

22. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J.,
& Le Traon, Y. (2013). Effective inter-component communication
mapping in android with epicc: An essential step towards holistic
security analysis. In: USENIX Security 2013.

23. Li, L., Bartel, A., Bissyand, T., Klein, J., Le Traon, Y., Arzt, S.,
Siegfried, R., Bodden, E., Octeau, D., & Mcdaniel, P. (2015).
IccTA: Detecting inter-component privacy leaks in android apps.
In: Proceedings of the 37th International Conference on Software
Engineering (ICSE 2015).

24. Ravitch, T., Creswick, E. R., Tomb, A., Foltzer, A., Elliott, T., Cas-
burn, L. (2014). Multi-app security analysis with fuse: Statically
detecting android app collusion. In Proceedings of the 4th program
protection and reverse engineering workshop, ACM (p. 4)

25. Gordon, M. I., Kim, D., Perkins, J. H., Gilham, L., Nguyen, N.,&
Rinard, M. C. (2015). Information flow analysis of android appli-
cations in droidsafe. In NDSS.

26. Chin, E., Felt, A. P., Greenwood, K., &Wagner, D. (2011). Analyz-
ing inter-application communication in android. In Proceedings of
the 9th international conference on Mobile systems, applications,
and services, ACM (2011) (pp. 239–252).

27. Sbirlea, D., Burke, M., Guarnieri, S., Pistoia, M., & Sarkar, V.
(2013). Automatic detection of inter-application permission leaks
in android applications. IBM Journal of Research and Develop-
ment, 57(6), 10:1–10:12.

28. Maji, A. K., Arshad, F., Bagchi, S., Rellermeyer, J. S., & et al.
(2012). An empirical study of the robustness of inter-component
communication in android. In Dependable systems and networks
(DSN), 2012 42nd annual IEEE/IFIP international conference on
(pp. 1–12). IEEE.

29. Gasior, W., & Yang, L. (2011). Network covert channels on the
android platform. In Proceedings of the seventh annual workshop
on cyber security and information intelligence research, ACM (p.
61).

30. Gasior,W., &Yang, L. (2012). Exploring covert channel in android
platform. In: Cyber Security (CyberSecurity), 2012 International
Conference on (pp. 173–177).

31. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A. R., &
Shastry, B. (2012). Towards taming privilege-escalation attacks on
android. In NDSS.

32. Ritzdorf, H. (2012). Analyzing covert channels on mobile devices.
PhD thesis, ETH Zürich, Department of Computer Science.

33. Bagheri, H., Sadeghi, A., Garcia, J., & Malek, S. (2015). Covert:
Compositional analysis of android inter-app vulnerabilities. Tech-
nical report, Tech. Rep. GMU-CS-TR-2015-1, Department of
Computer Science, George Mason University, 4400 University
Drive MSN 4A5, Fairfax, VA 22030-4444 USA.

34. Enck,W.,Gilbert, P., Han, S., Tendulkar,V., Chun,B.G., Cox, L. P.,
et al. (2014). Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Transactions
on Computer Systems (TOCS), 32(2), 5.

35. Rasthofer, S., Arzt, S., Lovat, E., & Bodden, E. (2014). Droidforce:
Enforcing complex, data-centric, system-wide policies in android.
In Availability, Reliability and Security (ARES), 2014 Ninth Inter-
national Conference on (pp. 40–49). IEEE.

36. Klieber, W., Flynn, L., Bhosale, A., Jia, L., & Bauer, L. (2014).
Android taint flow analysis for app sets. In Proceedings of the 3rd
ACM SIGPLAN international workshop on the state of the art in
java program analysis, ACM (pp. 1–6).

37. Tax, D.M. (2001).One-class classification. Delft: Delft University
of Technology.

38. Neyman, J., & Pearson, E. S. (1992). On the problem of the most
efficient tests of statistical hypotheses. New York: Springer.

39. Kalutarage, H.K., Lee, C., Shaikh, S.A., Sung, F.L.B.: Towards an
early warning system for network attacks using bayesian inference.
In Cyber security and cloud computing (CSCloud), 2015 IEEE 2nd
international conference on. (pp. 399–404).

40. Kalutarage, H. K., Shaikh, S. A., Wickramasinghe, I. P., Zhou, Q.,
& James, A. E. (2015). Detecting stealthy attacks: Efficient mon-
itoring of suspicious activities on computer networks. Computers
and Electrical Engineering, 47, 327–344.

41. Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-
Rotaru, C., & Molloy, I. (2012) Using probabilistic generative
models for ranking risks of android apps. In: Proceedings of the
2012 ACM conference on Computer and communications security,
ACM (pp. 241–252)

42. Krishnamoorthy, K. (2015). Handbook of statistical distributions
with applications. Boca Raton: CRC Press.

43. Sarma, B. P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., &
Molloy, I. (2012) Android permissions: A perspective combining
risks and benefits. In: Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies, ACM (pp. 13–22).

44. Haris, M., Haddadi, H., & Hui, P. (2014) Privacy leakage in mobile
computing: Tools, methods, and characteristics. arXiv preprint
arXiv:1410.4978

45. Elish, K. O., Yao, D., & Ryder, B. G. (2015) On the need of pre-
cise inter-app ICC classification for detecting Android malware
collusions. In: MoST.

46. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., & Sadeghi, A. R.
(2011) Xmandroid: A new android evolution to mitigate privilege
escalation attacks. Technische Universität Darmstadt, Technical
Report TR-2011-04.

123

http://arxiv.org/abs/1410.4978

430 H. K. Kalutarage et al.

Harsha Kumara Kalutarage
is currently a Senior Research
Engineer of Security Data Ana-
lytic at Centre for Secure Infor-
mation Technologies, Queen’s
University of Belfast, UK. His
research interests include mach-
ine learning, stochastic modeling
and bayesian inference in secu-
rity and safety of critical systems.
He has been producingmore than
15 research articles in this area
during the last couple of years.
Harsha holds a Ph.D. in Comput-
ing (Cyber Security), an M.Phil.

in Computer Science (Speech Synthesis) and a B.Sc. Special degree
(Statistics and Computing).

Hoang Nga Nguyen received
his Ph.D. degree in Computer
Science from the University of
Nottingham in 2011. Dr Nguyen
is currently a research associate
at CMT with research inter-
ests focused in formal methods
for analysing safety and secu-
rity. He has more than 10-year
experience of research in theory
and tool support for verification
of autonomous systems, formal
modelling of railway networks
with inherent domain abstrac-
tions for safety analysis, and soft-

ware modelling for security analysis.

Siraj Ahmed Shaikh is cur-
rently a Reader in Cyber Security
at Coventry University, where he
leads the transport cyber security
theme at the Centre for Mobil-
ity and Transport Research. He
has over 17 years of experi-
ence in cyber security research
and policy engagement, and has
published over 75 papers. He
is a Chartered Fellow of BCS
and a Chartered Scientist (CSci).
His work has been funded by
EPSRC, MoD, RAEng, RSSB,
British Council and Government

Office of Science.

123

	Towards
	10.1007%2Fs11235-017-0296-1 (1)
	Towards a threat assessment framework for apps collusion
	Abstract
	1 Introduction
	1.1 Rest of this paper

	2 Related work
	2.1 Detecting malicious applications
	2.2 Detecting malicious inter-app communication

	3 Collusion threat intelligence
	3.1 Formal definition
	3.2 Threat quantification

	4 Research questions
	4.1 Methods
	4.1.1 Estimating Lτ
	4.1.2 Estimating Lcom

	4.2 Filtering for collusion candidates

	5 Dataset description
	5.1 Dataset vs global trend

	6 Experimental setup and results
	6.1 Validation
	6.2 Testing
	6.3 RQ1. Is ``Permission'' a relevant attribute to use in threat quantification?
	6.4 RQ2. Which permissions inform in the threat model?
	6.5 RQ3. Can critical permissions be considered as more informative in threat estimation than non-critical permissions?
	6.6 RQ4. What techniques/methods can be applied to estimate the parameters of proposed threat quantification formula?
	6.7 RQ5. Is there a correlation between different measures and collusion threat?
	6.7.1 Number of permissions vs threat
	6.7.2 Type of apps vs threat

	6.8 RQ6. What percentage of app sets have collusion potential?
	6.8.1 Possible channels
	6.8.2 Collusion potentially

	6.9 RQ7. What is the most likely threat to materialise in collusion context?

	7 Discussion
	8 Conclusion
	Acknowledgements
	References

