2,141 research outputs found

    Implementation of JPEG compression and motion estimation on FPGA hardware

    Full text link
    A hardware implementation of JPEG allows for real-time compression in data intensivve applications, such as high speed scanning, medical imaging and satellite image transmission. Implementation options include dedicated DSP or media processors, FPGA boards, and ASICs. Factors that affect the choice of platform selection involve cost, speed, memory, size, power consumption, and case of reconfiguration. The proposed hardware solution is based on a Very high speed integrated circuit Hardware Description Language (VHDL) implememtation of the codec with prefered realization using an FPGA board due to speed, cost and flexibility factors; The VHDL language is commonly used to model hardware impletations from a top down perspective. The VHDL code may be simulated to correct mistakes and subsequently synthesized into hardware using a synthesis tool, such as the xilinx ise suite. The same VHDL code may be synthesized into a number of sifferent hardware architetcures based on constraints given. For example speed was the major constraint when synthesizing the pipeline of jpeg encoding and decoding, while chip area and power consumption were primary constraints when synthesizing the on-die memory because of large area. Thus, there is a trade off between area and speed in logic synthesis

    System level modeling methodology of NoC design from UML-MARTE to VHDL

    Get PDF
    International audienceThe evolution of the semiconductor technology caters for the increase in the System-on-Chip (SoC) complexity. In particular, this complexity appears in the communication infrastructures like the Network-on-Chips (NoCs). However many complex SoCs are becoming increasingly hard to manage. In fact, the design space, which represents all the concepts that need to be explored during the SoC design, is becoming dramatically large and difficult to explore. In addition, the manipulation of SoCs at low levels, like the Register Transfer Level (RTL), is based on manual approaches. This has resulted in the increase of both time-to-market and the development costs. Thus, there is a need for developing some automated high level modeling environments for computer aided design in order to handle the design complexity and meet tight time-to-market requirements. The extension of the UML language called UML profile for MARTE (Modeling and Analysis of Real-Time and Embedded systems) allows the modeling of repetitive structures such as the NoC topologies which are based on specific concepts. This paper presents a new methodology for modeling concepts of NoC-based architectures, especially the modeling of topology of the interconnections with the help of the repetitive structure modeling (RSM) package of MARTE profile. This work deals with the ways of improving the effectiveness of the MARTE standard by clarifying and extending some notations in order to model complex NoC topologies. Our contribution includes a description of how these concepts may be mapped into VHDL. The generated code has been successfully evaluated and validated for several NoC topologies

    Towards a field configurable non-homogeneous multiprocessors architecture

    Get PDF
    Standard microprocessors are generally designed to deal efficiently with different types of tasks; their general purpose architecture can lead to misuse of resources, creating a large gap between the computational efficiency of microprocessors and custom silicon. The ever increasing complexity of Field Programmable Logic devices is driving the industry to look for innovative System on a Chip solutions; using programmable logic, the whole design can be tuned to the application requirements. In this paper, under the acronym MPOC (Multiprocessors On a Chip) we propose some applicable ideas on multiprocessing embedded configurable architectures, targeting System on a Programmable Chip (SOPC) cost-effective designs. Using heterogeneous medium or low performance soft-core processors instead of a single high performance processor, and some standardized communication schemes to link these multiple processors, the “best” core can be chosen for each subtask using a computational efficiency criteria, and therefore improving silicon usage. System-level design is also considered: models of tasks and links, parameterized soft-core processors, and the use of a standard HDL for system description can lead to automatic generation of the final design

    A framework for FPGA functional units in high performance computing

    Get PDF
    FPGAs make it practical to speed up a program by defining hardware functional units that perform calculations faster than can be achieved in software. Specialised digital circuits avoid the overhead of executing sequences of instructions, and they make available the massive parallelism of the components. The FPGA operates as a coprocessor controlled by a conventional computer. An application that combines software with hardware in this way needs an interface between a communications port to the processor and the signals connected to the functional units. We present a framework that supports the design of such systems. The framework consists of a generic controller circuit defined in VHDL that can be configured by the user according to the needs of the functional units and the I/O channel. The controller contains a register file and a pipelined programmable register transfer machine, and it supports the design of both stateless and stateful functional units. Two examples are described: the implementation of a set of basic stateless arithmetic functional units, and the implementation of a stateful algorithm that exploits circuit parallelism
    corecore