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Abstract 

During the development of HD-MAC decoder I Cs for HDTV, an ASIC design flow was 
developed: the PCALE Design Flow. Since this design flow does not capture all a spects of 
system design, a system design flow is developed: the Advanced PCALE Design Flow. 

Part of the Advanced PCALE Design Flow is emulation: the bread board implementation 
of a design through mapping of the VHDL description of the design to programmabie 
logic devices. One of the steps for deriving this implementation is synthesis by means of 
synthesis tools. However, synthesis of designs containing large registers with programma
bie logic devices as back end tums out to be problematic, since very little memory is avail
able in programmabie logic devices. This large register problem was solved by using a 
RAM for implementation of a large register. 

The solution consists of a conversion of the VHDL description of a design containing a 
large register to a VHDL description of a design containing a RAM while preserving 
design functionality. This conversion is feasible under certain restrictions and a tool was 
written to automate the conversion. Also, templates that guarantee that the restrictions are 
met, have been devised. Template checking is incorporated in the tool, prior to design con
version. 

So through register reptacement emulation of designs with large memory requirements has 
become possible within the Advanced PCALE Design Flow. 

Emulation flow for designs with large memory requirements 
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Summary 

During the development ofHD-MAC decoder ICs for HDTV, an ASIC design flow was 
developed: the PCALE Design Flow. Since this design flow does not capture allaspects of 
system design, a system design flow is developed: the Advanced PCALE Design Flow. 

One of the new parts in the Advanced PCALE Design Flow is a flexible hardware route. 
This flexible hardware route bas to enable the quick development of hardware with the 
same functionality as the final ASIC before ASIC design has even started. This hardware, 
also known as bread boards, can then be used for emulation: a combination of the advan
tages of a flexible software simulation with the advantages of real time (and consequently 
fast) hardware.The reasons for emulation are fourfold: 

1. Fast-prototyping 

2. Start-up production 

3. Field-test 

4. Reai-time simulation 

Yet building bread boards in the usual way is time-consuming and not very flexible. Fortu
nately the quick development of bread boards comes within reach due to the emergence of 
flexible hardware modules. 

One of the steps for deriving bread boards is synthesis by means of synthesis tools. How
ever, synthesis of designs containing large registers with programmabie logic devices as 
back end tums out to be problematic, since very little memory is available in programma
bie logic devices. This large register problem was solved by using a RAM for implementa
tion of a large register. 

Two solutions have been investigated, namely: 

1. Synthesis libraries 

The three synthesis tools available at PCALE are reviewed with respect to their ability 
to add designer defined VHDL descriptions as new building blocks to their synthesis 
libraries. lf it is possible to add a VHDL description of an existing memory IC to the 
synthesis libraries, then it might be possible to instruct the synthesis tool to automati
cally use this description instead of synthesizing the register. 

However, none of the reviewed synthesis tools support VHDL models as a basis for 
building blocks. The support that exists is not sufficient for application within the 
Advanced PCALE Design Flow. Therefore the condusion is drawn that synthesis 
libraries cannot solve the large register problem. 

2. Register reptacement 

This solution consists of a conversion of the VHDL description of a design containing a 
large register to a VHDL description of a design containing a RAM while preserving 
design functionality. As it tums out, this conversion is feasible under certain restric
tions. 

Emulation flow for designs with large memory requirements 111 
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Hence register replacement is the developed solution to the large register problem. A tool 
was written to automate the conversion. Also, templates that guarantee that the restrictions 
are met, have been devised. Template checking is incorporated in the tool, prior to design 
conversion. 

So through register reptacement emulation of designs with large memory requirements has 
become possible within the Ad vaneed PCALE Design Flow. 

iv Emulation flow for designs with large memory requirements 
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1. Introduetion 

When developing new systems, it is necessary to verify their performance prior to imple
mentation in Application .S.pecific Integrated Circuits (ASICs). For instance, in the case of 
digital video applications, simulations can be used to inspeet and evaluate video images 
before such a digital video application is implemented in an Integrated Circuit (IC). This 
offers the possibility to critically evaluate systems prior to their implementation. In this 
stage of system design changes in system specifications can still be easily made since soft
ware can be adapted quickly, while changes in dedicated I Cs (ASICs) are costly and much 
more time-consuming. This strategy is incorporated in the ASIC design flow currently at 
use at the .froduct Concept and Application Laboratory Eindhoven (PCALE). This ASIC 
design flow is called the PCALE Design Flow. 

The PC ALE Design Flow prescribes the consecutive steps to be taken in dedicated IC 
design. However, system design involves more than the development of dedicated hard
ware only. For instance, most systems consist of both hardware and software. Also miss
ing in the PCALE Design Flow is a flexible hardware route. This flexible hardware route 
has to enable the quick development of hardware with the same functionality as the final 
ASIC before ASIC design has even started. This hardware, also known as bread boards, 
can then be used for emulation: a combination of the advantages of a flexible software 
simulation with the advantages of real time (and consequently fast) hardware. In fact, the 
reasoos for integrating hardware emulation in the PCALE Design Flow are fourfold: 

1. Fast-prototyping 

Through emulation a customer can quickly be provided with a "prototype" of the final 
ASIC (in fact emulation does notprovide a prototype but a bread board with the same 
functionality as the final ASIC). The availability of a prototype enables the customer to 
verify his specification through testing the functionality of the bread board. This allows 
tracing desirabie changes in the specification in an early stage of the ASIC design. Fur
thermore, the customer can start writing software for his application (in case software is 
part of the system) and build a prototype-system. In general, a total of some tens of pro
totype copies can be expected since prototypes are usually small in number. 

2. Production 

A second possibility is to map a description of the design to gate arrays in order to use 
these gate arrays in the beginning of system production. Gate arrays are half-fabricated 
ICs: the logic cells are already fabricated but the interconnections (wiring) still have to 
be made through two final IC masks. 

The use of gate arrays in start-up production is faster and less expensive and therefore 
more desirabie than fabricating a dedicated IC. In this case less than a 100,000 gate 
array copies can be expected. Later on, an optimal and more expensive dedicated IC 
can be designed for mass production. 

3. Field-test 

The prototype can be used fora so-called field-test. This means that incompletepartsof 
the specification can be tested by the designer and that some parts can be evaluated with 
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respecttotheir functionality. The incompletepartsof the specification can usually be 
completed after such a field~test. 

4. Reai-time simulation 

Through emulation, the designer has the opportunity for reai-time simulation. This way 
"simulations" (by means of emulations) can be carried out much faster than traditional 
simulations. In particular for simulations at system level, a large reduction in simula
tion time is to be expected. Emulation does not mean that simulation has become out
dated: through simulation a description of a design must be checked for correctness; 
after that, by emulation, the design becomes rapidly available in hardware without hav
ing to wait until the ASIC design has been completed. 

Yet building bread boards in the usual way is time-consuming and not very flexible. Fortu
nately the quick development of bread boards comes within reach due to the emergence of 
flexible hardware modules. But the bread board development speed is not the only require
ment that is imposed on a flexible hardware route ( emulation flow). 

Another requirement is that the emulation flow starts with a description of a design in a 
Hardware Description Language (HDL), a language especially developed and suited for 
the description of hardware designs. Several of such HDLs exist, but the HDL that is used 
for this purpose at PCALE is the VHS IC Hardware Description Language (VHDL). This 
HDL is defined by the Institute ofElectrical and Electtonics .Engineers (IEEE) and is used 
in the industry for the description of designs during development (see [2]). This require
ment is imposed on the emulation flow, since the basis of the dedicated hardware route, an 
HDL design description, must be the basis of the flexible hardware route also, in order to 
ensure identical functional behaviour of the ASIC and bread board. 

Forthermore theemulation flow must fit into the PCALE Design Flow. This means that 
the mandatory functional verification at alllevels of the PCALE Design Flow must also be 
applicable to the levels of the emulation flow. 

A fourth requirement on the emulation flow is that the application of the emulation flow 
has to be kept in mind: the emulation flow is to be used for designs that involve video 
applications, so very stringent speed requirements have to be taken into account. 

Finally, a choice has to be made what flexible hardware modules to use. There are several 
choices for flexible hardware modules since a number of such devices are available on the 
market: gate arrays from different vendors (Altera, Xilinx, Actel, etcetera) and .Erasable 
~ogrammable Logic Devices (EPLDs) from Altera. The Digital Video !J-ocessing (DVP) 
group at PCALE has chosen to use EPLDs from Altera as their flexible hardware modules 
for several reasons: 

1. Only for large amounts of bread boards (for instanee when emulation is to be applied 
for production start), gate arrays are cheaper than EPLDs. Since the first applications of 
the emulation flow apply to fast-prototyping and field-testing (hence a small amount of 
bread boards), EPLDs are considered as back end of theemulation flow. 

2 Emulation flow for designs with large memory requirements 
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2. EPLDs are reprograrnrnable while gate arrayscan only be given a certain logic function 
once. With EPLDs as flexible hardware, this flexible hardware is re-usable when a 
bread board is no longer needed. But the fact that EPLDs can be quickly reprograrnrned 
bas an additional advantage. As with all developrnents, the emulation flow too bas to be 
tested several tirnes during its developrnent. Using gate arrays for such tests is too 
expensive and takes too rnuch time. EPLDs on the other hand can be used for several 
tests and their prograrnrning takes little time. On top of that, the EPLDs can even be 
used fora bread board after theemulation flow bas been developed: when testing the 
emulation flow with EPLDs, no money is lost on flexible hardware. Of course, after the 
emulation flow has been developed, the extension to gate arrays can then still be made. 

3. Altera EPLDs are the fastest devices according to cornparisons with other flexible hard
ware modules. These cornparisons arebasedon benchrnarks (well-known and well
defined designs used as standard testcase) and have been performed by the Programma
bie ,Electronic _eerformance Corporation (PREP), a consortium of 13 prominent suppli
ers of programrnabie logic and tools. 

4. Altera EPLDs have been used before by the DVP group. Very satisfactory performance 
was experienced on those occasions. So there is no reason for changing to new and 
unknown devices unless they prove to be better. 

The developrnent of a standard emulation flow is the subject of the Master's Thesis of 
L.P.M. van Lieshout (see [16]). He encountered several synthesis problerns in the synthe
sis tools that can be used in the emulation flow for synthesizing a VHDL design descrip
tion. Most of these problerns were solved by defining a VHDL subset that is included in 
the (synthesizable) tool supported VHDL subset. But this subset could not solve all syn
thesis problerns. One synthesis problern, the problern of large registers in the description 
of a design, still rernained. 

The reason that this synthesis problern cannot be solved by defining a VHDL subset is that 
this problern is nota question of "bad" VHDL statements but rnerely a question of register 
size. The size of a register becornes a problern when it exceeds the memory capacity of an 
EPLD: preferably the design is rnapped into one EPLD and when more EPLDs have to be 
used, it is desirabie in terms of timing not to di vide the register arnongst several EPLDs. 
Since the memory capacity of an EPLD is in the order of magnitude of 200 flip-flops, any 
register of that size or larger is a candidate problern register. 

Therefore another solution bas to be found for this synthesis problern. Hence the subject of 
this Master's Thesis, the developrnent of an emulation flow for designs with large memory 
requirernents. 

Basic idea bebind this emulation flow is the use of an existing memory IC (RAM) for the 
irnplernentation of the large register. Then the large register no longer bas to be irnple
rnented in flexible hardware; only the rest of the design bas to be irnplernented in flexible 
hardware. This way the need for large memory capacity in flexible hardware would be 
taken care of. 

Emulation flow for designs with large memory requirements 3 
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The only way to solve the large register problem is to change the input for the synthesis 
tool, since the synthesis tool itself cannot be altered. The input for a synthesis tool are the 
description of the design that is synthesized and the synthesis libraries. Synthesis libraries 
provide the synthesis tool with the building blocks needed to synthesize the design. Both 
inputs are investigated in this Master's Thesis as possible solutions: 

• First the possibilities to change the synthesis libraries of synthesis tools are evaluated. 
The three synthesis tools available at PCALE are reviewed with respect to their ability 
to add designer defined VHDL descriptions as new building blocks to their synthesis 
libraries. lf it is possible to add a VHDL description of an existing memory IC to the 
synthesis libraries, it might be possible to instruct the synthesis tool to automatically 
use this description insteadof synthesizing the register. Since the memory IC does not 
have to be synthesized (remember that it is an existing IC), only the rest of the design 
has to be implemented in flexible hardware. 

• Secondly, the possibilities to change the VHDL description of the design are evaluated. 
It might be possible to change the VHDL description of a design in such a way that the 
register is replaced by (a VHDL model of) a memory IC, while preserving design func
tionality. In that case the standard emulation flow would have to be adapted in a way 
that the design itself is synthesized while the memory IC is not synthesized. The mem
ory requirements imposed by the register are then no longer a problem. Of course the 
conditions under which the reptacement can take place have to be investigated and 
preferably a tool is developed for this replacement. 

The next chapter discusses the PCALE Design Flow in its present form (the Existing 
PCALE Design Flow) and in its successor form (the Advanced PCALE Design Flow), fol
Iowed by an etaboration of the standard emulation flow. Chapters 3 and 4 involve the 
development of the emulation flow for designs with large memory requirements itself: 
chapter 3 is about three synthesis tools and their synthesis libraries and chapter 4 reviews 
the conversion of a design with a register to a design with a memory IC. The templates 
that guarantee successful register reptacement are discussed in chapter 5. Readers unfa
miliar with the syntax and semantics of VHDL may experience some difficulties reading 
chapters 4 and 5. They are referred to the IEEE Standard VHDL Language Reference 
Manual (see [2]). The testcase and the tests that have been performed are the subjects of 
chapters 6 and 7. The features of the tool that performs the register reptacement are also 
reviewed in chapter 8. The final chapter is concerned with conclusions regarding the 
development of an emulation flow for designs with large memory requirements. 

4 Emulation flow for designs with large memory requirements 
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2. The PCALE Design Flow 

As already stated in the introduction, the PCALE Design Flow in its present form does not 
capture all elements of system design. The DVP group has set out to extend this design 
flow toa design flow that covers more and hopefully allaspects involved in system design. 
One of the extensions is the emulation of designs, including the emulation of designs with 
large memory requirements. However, before the emulation flow for designs with large 
memory requirements is developed, it is important to have a good notion of the PCALE 
Design Flow in its present and in its envisioned form and of the standard emulation flow 
developed for designs in generaL They are discussed in this chapter. 

2.1. Existing PCALE Design Flow 

The PCALE Design Flow, depicted in figure 1 on page 6, is a top-down hierarcbic al 
design flow. It prescribes a trajectory from algorithm to evaluated silicon and is based on 
two basic principles: specification and verification. As for the first principle, the paper 
specification of a design is the input for the design flow and must be very accurate since 
the functionality of the flow input highly deterrnines the functionality of the flow output, 
the final ASIC. The second basic principle, the functional verification at alllevels of the 
flow, is to eosure design correctness at every moment during design development includ
ing the flow output. The combination of the two basic principles is the philosophy bebind 
the PCALE Design Flow, which yields a lot of advantages over non-hierarchical design 
flows. The most important advantages are: 

• A reduced risk of functional design errors 

This is the most important benefit of mandatory functional verification at alllevels in 
the flow. 

• An integrated design environment for system development 

This allows for straightforward data exchange between tool sets and between consecu
tive design levels. 

• A short throughput time 

A direct result of a short throughput time is a short Time-To-Market. 

• The possibility to join forces of multiple design teams in the development of a chip-set 

• The possibility to limit simulation run times 

Through abstract functional descriptions of individual I Cs system behaviour is matebed 
with the algorithm specification and simulation at high abstraction levels becomes pos
sible, resulting in limited simulation run times. 

The PCALE Design Flow has been successfully applied during the development of the 
first generation ofHD-MAC Bandwidth Restoration Decoders (BRDs) in the Eureka-95 
project, which involved the development of High Definition Ieleyision (HDTV). It proved 
to be very effective and is now being used for digital design at PCALE. Por a more exten
sive description on this design flow, see [1]. 

Emulation flow for designs with large memory requirements 5 
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The PCALE Design Flow 

The PCALE Design Flow starts at the Algorithm Level (AL). In this 
stage of the design flow a system's functional behaviour is recorded 
in an abstract software description. This description is known as the 
reference software, or algorithm. An algorithm is the principal func
tional reference for the development of a system in the PCALE 
Design Flow. 

Once an algorithm has been frozen, IC-partitioning is performed. For 
each IC in an IC-partitioning, its behaviour is described in a High 
Level (HL) description. An HL is used as functional reference for the 
development of an individual IC. IC interfaces and functional behav
iour must be in exact accordance with the HL. The combined behav
iours of all HLs must be equivalent to the algorithm's behaviour. 

To capture anIC's proposed interior architecture and hierarchy, a 
Medium Level(ML) description can be written which is less abstract 
than an HL. Functional correctnessof an ML is verified through bit
by-bit comparison with the HL description; bit-by-bit comparison is 
performed through simulations. An ML is written in a Hardware 
Description Language (HDL) at Register Iransfer Level (RTL). 

The lowest level symbolic description of an IC, the Library Level 
(LL) description, is created by implementing the ML by means of 
library elements. Such an LL contains both symbolic representations 
of VLSI library blocks and their symbolic interconnections. Func
tional correctness of an LL is verified through bit-by-bit comparison 
with (parts of) the ML. Timing verification is performed also. 

Through placement and routing, the IC layout is generated from an 
LL description. This layout is checked during factory finishing, for 
instanee to find possible design rule errors . 

In this stage of the PCALE Design Flow, the IC layout is transferred 
to a foundry. At the foundry the design is implemented on silicon 
wafers and the fust IC prototypes are delivered to the design team for 
testing . 

When the fust IC prototypes return from the foundry, silicon evalua
tion can start. Silicon evaluation includes both functional and electri
cal evaluation. In addition to IC-only evaluation, (sub)system 
evaluation, including other ICs in the chip-set, is performed. 

FIGURE 1. Existing PCALE Design Flow 

Emulation flow for designs with large memory requirements 



The PCALE Design Flow February 18, 1994 

2.2. Advanced PCALE Design Flow 

U ntil now systern developrnent has been separated into the developrnent of the hardware 
part of the systern, foliowed by the developrnent of the software part (provided that the 
systern incorporates both hardware and software); on top of that the two developrnents 
were cast in a different rnould. The PCALE Design Flow in its present form as described 
in the preceding section, prescribes the consecutive design steps to take in dedicated hard
ware design. However, due to a growing understanding of systern design and all the 
aspects of systern design over the years, the idea was formed that a complete design flow 
should cover all the aspectsof designing and not rnerely dedicated hardware design. 
Hence, the DVP group at PCALE set out to extend the Existing PCALE Design Flow. The 
PCALE Design Flow in its envisioned extended form, called the Advanced PCALE 
Design Flow, is shown in figure 2. 

Paper specification 

~ Function based on 
• Ç, ustomer requirements (proprietary) 
• Q verall development cost 
• S:. ilicon area, package, etcetera 
• I. ime-To-Market 

FIGURE 2. Advanced PCALE Design Flow 
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It is important to realize that the philosophy behind the Existing PCALE Design Flow 
remains intact in the Advanced PCALE Design Flow. The difference is that this philoso
phy is applied to other aspects of system design also (for example to the development of a 
system's software). Another important notice is that the Existing PCALE Design Flow in 
tigure 1 is really a design flow in the sense that it identities the various levels and the con
secutive steps involved in dedicated hardware design. The diagram of the Advanced 
PCALE Design Flow in tigure 2 is conceptually different since it merely identities possi
bie target implementations. The concept of different levels during system development 
still applies although these levels are not depicted in tigure 2. 

The blocks in the Advanced PCALE Design Flow are: 

• Paper specification 

8 

Completely analogue to the Existing PCALE Design Flow, the Advanced PCALE 
Design Flow starts with the paper specitication of the system. Basedon this specitica
tion, the system is developed. A system can consist of both hardware and software. 
Insteadof separating the development of a system's hardware and software in two con
secutive and conceptual different steps, the co-design of the two has a lot of advan
tages, namely: 

1. The hardware-software combination can be tested in an early stage of system devel
opment. This in turn offers the possibility to check the specitication of the complete 
system at an early hour against customer wishes. This system evaluation can then be 
used to adjust or complete the specitication. Most likely this leadstobetter designs 
and largely reduces the possibility of redesigns. 

2. Furthermore, simultaneous hardware and software design decreases the total Time
To-Market. The total Time-To-Market is IC development time plus software devel
opment time. The Time-To-Market (IC development time) in the Existing PCALE 
Design Flow is already much shorter than the Time-To-Marketof non-hierarchical 
design flows. However, if a system also incorporates software, then the software 
development time is not accounted for in this Time-To-Market. The total Time-To
Market decreases due to the co-design of hardware and software in the Advanced 
PCALE Design Flow. 

3. At some stage in system design, the system has to be partitioned in hardware and 
software. With a growing knowledge of the system during development, this parti
tioning can be adjusted on the basis of an estimation of costs. This estimation can be 
thought of as a function taking into account Customer requirements, Overall devel
opment co st, Silicon area & package and Time-To-Market (COST). The partitioning 
adjustment can be made in almost every stage of the design flow since both hard
ware and software are described in the same description language, for example 
VHDL. 

The combination of hardware and software development, Hardware-Software Co
design, is therefore captured in the Advanced PC ALE Design Flow, starting with the 
paper specitication. 

Emulation flow for designs with large memory requirements 
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It is important to observe that both hardware and software are based on VHDL descrip
tions. VHDL was developed for the description of hardware as the name already sug
gests, VHS IC Hardware Description Language. Buttakinga closer look at VHDL, it is 
observed that it incorporates certain constrocts that can be used for the de scription of 
software also. This in fact makes the smooth hardware-software integration feasible 
and worthwhile; otherwise Hardware-Software Co-design becomes much more com
plex and perhapsnot even feasible within the PCALE Design Flow. 

• Functional model 

Also completely analogue to the Existing PCALE Design Flow is recordinga system's 
behaviour in an abstract software description. Again this de scription ( or algorithm) is 
the principal functional reference for the development of a system. The only difference 
with the Existing PCALE Design Flow is that a system involves both system hardware 
and system software in the Advanced PCALE Design Flow. Therefore the algorithm 
incorporates the combined functionality of a system's hardware and software. 

• Software 

Basedon the evaluation of the COST function, some parts of the system are selected to 
be implemented in software. A distinction can be made between firmware and micro
controller (JlC) software. Firmware is fixed software, which means that this software 
possesses little or no fiexibility (for instanee software in a ROM). Software imple
mented on a micro-controller is much more fiexible, but on the other hand takes more 
chip area. Por some designs firmware suffices while other designs need the micro-con
troller implementation; sometimes even, the designer has to evaluate the pros and cons 
of the two before making a choice. 

• Micro-controller (JlC) software 

Just like all target implementations, the final implementation in micro-controller soft
ware is basedon a VHDL description. But VHDLis not suited for programming a 
micro-controller. Hence a translation from VHDL to some programming language is 
necessary for implementation in a micro-controller: a tool translating sequentia! VHDL 
to the C programming language has already been developed at PCALE. 

• Firmware 

Firmware, being the fixed implementation of software, is already indicated as part of 
the Advanced PCALE Design Flow. Yet the design flow for firmware is still to be 
developed. 

• Hardware 

Basedon the evaluation of the COST function, some parts of the system are selected to 
be implemented in hardware. Final implementation usually means development of ded
icated hardware (implementation in ASICs). However, besides dedicated hardware also 
the implementation in fiexible hardware is possible. This implementation is usually of a 
more temporary nature since it is used for emulation purposes. 
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The fact that both dedicated as well as flexible implementations can be derived for 
hardware, has an additional advantage. It is possible to implement ICs from a chip-set 
via the dedicated route one by one. The others can be emulated until an IC has been 
implemented in dedicated hardware. Then another IC follows the dedicated path until 
the whole chip-set is available in dedicated hardware. 

• Flexible hardware 

As mentioned in the introduction, emulation can be very useful. The blockcalled flexi
ble hardware indicates the route that leads toemulation boards (bread boards). A flexi
ble hardware route for designs in general has been developed by L.P.M. van Lieshout. 
However, designs with large memory requirements cannot be emulated with that flexi
ble hardware route. Hence this Master's Thesis subject of a flexible hardware route for 
such designs. 

• Dedicated hardware 

Dedicated hardware is the development of AS I Cs: selecting the dedicated path for parts 
of the system means that these parts are implemented in ASICs. The path Paper specifi
cation - Functional model -Hardware - Dedicated in the Advanced PCALE Design 
Flow indicates the target technologies of the Existing PCALE Design Flow. This 
means that all dedicated hardware is developed according to the Existing PCALE 
Design Flow. Por dedicated hardware, two blocks in the Advanced PCALE Design 
Flow are distinguished: full-custom and synthesis. 

• Full-custom 

Dedicated full-custom hardware design means development of ASICs that are as opti
mal as can be. The design team exerts itself to the utmost to optimize the final ASICs. 
The consecutive steps to take in full-custom hardware design are prescribed by the 
Existing PCALE Design Flow. 

• Synthesis 

The block synthesis in the Advanced PCALE Design Flow indicates the development 
of all dedicated hardware except full-custom hardware design. Final target implementa
tions are standard cell or datapath designs. The denvation of these implementations is 
prescribed by the Existing PCALE Design Flow. 

2.3. Standard emulation flow 

Now that the reasans for emulation and the place of emulation in the PCALE Design Flow 
have been determined, it is time to take a closer look at the emulation flow itself. As men
tioned in section 2.2, emulation is the implementation of an HL description of an IC in 
flexible hardware. This implementation is of use when the final ASIC has not yet been 
developed through dedicated design. Only by using synthesis tools the flexible hardware 
implementation can be generated quickly (which is an essential demand on the emulation 
flow). After synthesis, a mapping has to be generated by a mapping tool and finally the 
generated mapping can be transferred to flexible hardware. These are the main steps in the 
emulation flow. 
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However, emulation is to be part of the PCALE Design Flow and must therefore comply 
with the philosophy behind the PCALE Design Flow. So every next step in theemulation 
flow can only be taken if the functional correctness of the preceding step has been estab
lished. In figure 3 the concept emulation flow is illustrated along with the three bit-by-bit 
comparisons that have to be performed to verify functional correctness. The first two are 
based on simulation results; establishment of functional correctness of the programmed 
flexible hardware is in fact bit-by-bit comparison of simulation results with emulation 
results. 
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Network 
Description 

Configuration 
Description 

+ 

FIGURE 3. Concept emulation flow 
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D Description 
level 
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However, the synthesis of a design by means of a synthesis tool turns out to be the most 
critical step in the emulation flow due to the fact that the available synthesis tools demon
strate several problems when synthesizing an HL description written in VHDL. These 
problems have been thoroughly described by L.P.M. van Lieshout in his Master's Thesis 
(see [16]). He describes various subsets of the VHDL language (see figure 4) and con
cludes that many of the synthesis problems stem from the fact that these subsets have non
overlapping parts and that even VHDL descriptions written according to the tool sup
ported subset are possibly synthesized inefficiently. 
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Synthesizable VHDL PCALEVHDL 

FIGURE 4. VHDL subsets 

As a solution to the synthesis problems he defines the Design .S.tyle Assistant (DSA) 
VHDL subset, a VHDL subset that contains those VHDL statements of the tooi supported 
VHDL subset that are synthesized in a satisfactory way. Figure 5 illustrates the position of 
the DSA VHDL subset with respect to the other VHDL subsets. 

Tool supported VHDL 

Synthesizable VHDL PCALEVHDL 

FIGURE 5. DSA VHDL subset 

By making sure that an HL description not only complies with the PCALE design VHDL 
subset but also with the DSA VHDL subset, most of the synthesis problems can be solved 
except for the large register problem, since this problem is nota question of "bad" VHDL 
statements (registers are allowed within the DSA VHDL subset) but merely a question of 
memory size. 

A DSA tooi has been developed by L.P.M. van Lieshout to help the designer to ensure that 
an HL complies with the DSA VHDL subset. This DSA tooi can be used to aid in translat
ing VHDL constructsin the PCALE design VHDL subset, but not in the DSA VHDL sub
set to equivalent VHDL constructsin the DSA VHDL subset. This DSA tooi is to be 
applied before synthesis is attempted. The emulation flow incorporating this tooi is 
depicted in figure 6. 
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This emulation flow is called the standard emulation flow since it applies to almost every 
design and concerns most of the synthesis problems. Whether or not this emulation flow 
also holds for designs with large registers, is to be investigated. 
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3. Synthesis libraries 

When synthesizing an IC description, synthesis tools use so-called synthesis libraries to 
map the de scription to a technology. These synthesis libraries provide the synthesis tooi 
with the building blocks and their characteristics needed to perfonn synthesis and to be 
able to meet constraints. Constraints may have been imposed on the design in order to 
achieve speed or memory requirements. For every technology another synthesis library is 
available since building blocks and their characteristics can differ from technology to 
technology. 

When synthesis libraries can be expanded with designer defined building blocks, this pro
vides a powerlul way to perfonn more efficient mapping. Since the synthesis tooi can 
choose between the original building blocks and added optimized building blocks, the 
mapping is likely to improve: inefficient mappingscan be avoided and previously impos
sibie mappings become available. In fact, effort that has previously been invested into cer
tain designs, is not lost. Also, if existing I Cs are added as building blocks, implementation 
of a building block by an existing IC and copying (parts of) layouts of existing ICs are 
possibilities that come within reach. So chip design becomes more efficient and faster. 

But the fact that (parts of) designs can be mapped to added building blocks offers the pos
sibility to emulate designs containing one or more large registers. If a RAM is added as 
building block to the synthesis libraries and if the synthesis tooi can map a register to such 
a RAM, then the register can be implemented by a RAM instead of by ftexible hardware. 
This way the emulation flow can be extended to cover designs with large registers. 

In the next sections three synthesis tools are discussed. They are evaluated in tenns of 
their ability to add designer defined building blocks to their synthesis libraries. The evalu
ation concerns designer defined building blocks in generaL This is done because a general 
solution not only enables emulation of designs with large registers but also upgrades chip 
design. A solution merely aimed at the actdition of a RAM as building block would only 
enable the emulation and would not improve chip design. Since all design descriptions at 
PCALE are written in VHDL, the synthesis tools are evaluated on their possibility to add 
VHDL descriptions of building blocks to their synthesis libraries; descriptions that are 
written in a format other than VHDL are not of interest. And, of course, all results must fit 
into and comply with the Advanced PCALE Design Flow and especially the Flexible 
Hardware route, since the synthesis tools are applied in that context. 

3.1. Antologie 

The synthesis tooi from the Mentor Graphics Corporation is called Autologic. It is the first 
synthesis tooi that has been evaluated with respect to its ability to add designer defined 
building blocks to its synthesis library. The manuals that go along with the synthesis tooi 
(see [6] and [7]) fonn the basis of this evaluation. 

An Antologie synthesis library can be developed through a library development process. 
This development process involves a number of steps, starting with the creation of aso-
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called AMP-library. Only from such an AMP-library, Autologic synthesis libraries can be 
developed. 

The only way to add a component to an AMP-library is to provide a functional model of 
that component. Three AMP functional model types are supported: 

1. AMP built-in model 

An AMP built-in model is a logical model that operates with simulators and synthesis 
tools and provides good run time performance and high memory capacity in the tools. 

2. QuickPart table model 

A QuickPart table model is a formatted table description of a functional model which 
offers specification ftexibility for the creation of accurate models. 

3. Schematic model 

A schematic model is a coneetion of smaller models (such as built-in models and 
QuickPart Table models) which accurately represents the internal composition of the 
model. 

VHDL models, however, are not supported, so an alternate model must be provided for 
such VHDL models or the unsupported VHDL models must be marked as "blackbox". 

A. Providing an alternate model for the VHDL model 

16 

This means that the designer has to supply an extra model for synthesis with the same 
functionality as the original VHDL model. This means that the same objective can be 
achieved with the altemate model; the VHDL model is superftuous. Moreover, "model
ling the VHDL model" is not wanted: you are performing the same task, namely 
descrihing the functionality of a design, twice. The only remaining possibility is gener
ating a schematic from the VHDL model. Then this schematic could be used as a func
tional model for the AMP-library. However, schematics that can be used as a functional 
model for the AMP-library are restricted: 

• Schematicscan only consist of built-in models, QuickPart Table models or other 
schematic models. VHDL models cannot be part of schematics. 

• Asynchronous feedback cannot be included in a schematic model. 

• Restrictions are present for the components that can and/or should be used in a sche
matic model. That is: some components are not supported and some components are 
mapped in a logically correct, but inefficient manner. Since there is no guarantee that 
such unwanted components are introduced when generating the schematic, there is 
also no guarantee that the schematic can be used as a functional model for the AMP
library. 

Looking at the above restrictions, it is evident that no guarantee can be given in 
advance whether or nota schematic generated from a VHDL model can be used as a 
functional model for the AMP-library. Therefore schematics do not qualify as a possi
bie solution. 
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B. Marking the VHDL model as blackbox 

Marking the VHDL model as blackbox means that no logic is generated during synthe
sis. The designer or the library developer must create a replacement rule to map the 
blackbox cell to a target library. By means of areplacement rule Autologic can be 
instructed to use a specific building block from the library for implementation of a cer
tain component. 

In case of VHDL models of existing I Cs, no optimization should be performed, so 
marking of the blackbox cell with Syn_donttouch or Syn_dontuse is necessary. 

• Syn_donttouch: Autologic does not remove or introduce this component during opti
mization, but it can still be replaced by means of a replacement rule. 

• Syn_dontuse: Autologic does not introduce this cell during optimization, but it can 
be introduced by means of a replacement rule. 

So marking the VHDL model as blackbox and replacing it through a replacement rule 
boils down to instantiating a netlist from the synthesis library. Since timing is not 
included in the netlist, the timing of the total IC can only be synthesized and optimized 
correctly if the designer tells Autologic what the timing of the blackbox is. On top of 
that, in the case of EPLDs as back end synthesis tools cannot guarantee that the timing 
will be correct after synthesis and mapping. 

This is not a straightforward and transparent use of synthesis libraties since nothing is 
done by the synthesis tooi: what to replace, how to replace it and the timing have to be 
entered by the designer. So marking the VHDL model as blackbox is useless. 

Since there is no way to use VHDL models in the envisaged fashion as a basis for compo
nentsof the synthesis libraties of Autologic, the Autologic synthesis libraties cannot solve 
the problem of large registers in a design. 

3.2. CORE 

Another synthesis tooi is the Complete Optimization and Retargeting Environment 
(CORE) from Exemplar Logic. It is the second synthesis tooi that was reviewed. In CORE 
there is a distinction between input synthesis libraties and output synthesis libraties. 
Figure 7 illustrates this distinction. 

Input I I Output 
~-de_s_ig_n~~------~•~~~-c_o~r_E __ ~~------~•~~--de_s_ig_n~ 

t t 
D Output 

Synthesis 
Library 

FIGURE 7. CORE and synthesis libraries 
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CORE uses input synthesis libraries to allow mapping out of a technology, that is to pro
vide an input for CORE. Output synthesis libraries are used for mapping into a technol
ogy. 

Conceming synthesis libraries, CORE has two tools available for the creation of synthesis 
libraries: !Build for the creation of libraries that are used for input synthesis only and !Gen 
for the creation of libraries that are used for input and output synthesis. The restrictions of 
these tools and particularly the restrictions on the synthesis libraries are listed below. Note 
that on top of these restrictions, every library element has to be described by hand. Auto
matic creation of library elements is not supported so VHDL models cannot be automati
cally transformed to library elements. 

!Build: 

lf a library is built for input synthesis only, the area and electrical properties of the gates 
are not needed, and the globallibrary properties arealso not needed. Only gate functional
ity descriptions are required. Gate functionality can be described as a set of boolean equa
tions, as a set of predefined primitives or a combination of both. The following restrictions 
for input synthesis libraries are listed in the !Build manual (see [9]): 

• Supply voltage with the name VCC and ground with the name GND are added when 
the synthesis library is built, unless those functions are specified with other names. 

• Gate and pin narnes are case insensitive. 

• No loops in combinatoriallogic are allowed. Most loop situations can be specified by 
using one of the predefined primitives. 

• Gate, pin and node narnes which are also keywords or contain non-alphanumeric char
acters, should be quoted. For example: gate "DELAY". 

!Gen is the tooi to use for libraries that are built for output synthesis also. 

In addition to the restrictions for input synthesis libraries listed in the !Build manual, the 
!Gen manual (see [10]) lists the following restrictions for output synthesis libraries: 

• !Gen requires at least a 2-input NAND-gate and an inverter to be included in the library. 

• Complex combinatorial cells with more than one output are allowed for input only. 
Therefore these cells must be designated as NOMAP when the library is used for output 
synthesis also. 

• For mappable gates, !Gen supports at most a single predefined primitive (such as flip
flops, latches, tri-states) per gate. There is no limitation to the combinatoriallogic that 
can accompany that primitive. 

• When mapping into a technology, CORE performs automatic selection of gates in a 
class to get the best performance out of the circuit. Gates are members of the same class 
if they have the same functionality and the same pin names. 
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The synthesis libraries are used as output synthesis libraries in the PCALE Design Flow. 
Since it is far frorn realistic that library elernents (and in particular RAMs) contain at the 
most one prirnitive and have only one output, and since VHDL rnodels cannot be used as a 
basis for library elernents, the CORE synthesis tooi is unfit as a solution to the memory 
problern that large registers cause in the flexible hardware route. 

3.3. VHDLSyn 

The last synthesis tooi that was evaluated, is VHDLSyn frorn PhilipsElecttonic Design & 
Tools. According to the VHDLSyn rnanual (see (11]), it is possible to add your own para
rnetrized VHDL rnodels to the synthesis library. Since VHDLSyn can produce output in 
the .S.prite Input Language (SIL) format, the SIL-format of the library is nota problern. 

VHDLSyn uses an irnplernentation frorn the synthesis library whenever a VHDL opera
tion is translatedor when an entity or subprogram is instantiated that has the so-called 
lv _primitive attribute (see (11]). This rneans that by giving an entity or a subprogram the 
lv _primitive attribute, VHDLSyn can be told toskip the architecture/subprogram body and 
to use a predefined irnplernentation frorn the synthesis library. 

Autornatic selection of an irnplernentation is only possible for standard building blocks 
(such as AND-gates, flip-flops, etcetera) or for standard operations (such as counters, 
shifters, etcetera). This rneans that you can add your own cornponents to the synthesis 
library without any problern, but the autornatic selection only takes place if the added 
component is an alternative for already existing standard building blocks or standard oper
ations. 

Cornbining the memory problern with the possibilities of VHDLSyn, two problerns are 
noticed: 

1. RAMs and registers are cornpletely different hardware cornponents. A RAM does not 
qualify as an alternative for a register. That makes autornatic selection irnpossible in 
VHDLSyn. 

2. A register can be modelled in VHDLas a VARIABLE or as a SIGNAL. VARIABLES 
and SIONALS are part of an entity or subprograrn. So the lv _primitive attribute is also 
useless since that attribute can only be applied to entities or subprograms as a whole. 

Apparently VHDLSyn does not incorporate capabilities that allow autornatic irnplernenta
tion of a register by a RAM. Therefore it is evident that the memory problern cannot be 
solved by the synthesis libraries of VHDLSyn. 

3.4. Conclusions 

A large register in a design requires a large memory capacity to be available in flexible 
hardware when a bread board is developed for the design. Flexible hardware elernents in 
contrast have very little memory capacity. Therefore synthesis tools have to use a lot of 
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fiexible hardware elements when mapping a design which contains large registers to fiexi
ble hardware. This means that a design has to be partitioned among multiple elements. 

Partitioning implies an increase in wiring and in wiring complexity, which leads to ineffi
cient mappings, which in turn cause a decrease in clock frequency. Remember that for 
video applications the speed requirements are very stringent. Also it is preferred to keep 
the number of fiexible hardware elements as small as possible in order to keep the bread 
board simple, small and as cheap as possible. Besides this, the synthesis tools crash during 
synthesis of such designs, probably because such large registers cause an overflow in the 
intemal format used by the synthesis tools. 

To overcome the memory problem, several synthesis tools have been reviewed on their 
synthesis libraties. The idea bebind the use of synthesis libraties is quite simple: if it is 
possible to add a VHDL model of a RAM to these libraties as new building block, then it 
might be possible that the synthesis tooi can perform an automatic mapping of the register 
to this new building block. 

But the reviewed synthesis tools have either no support for VHDL modelsas a basis for 
their synthesis libraties, or such support has too many and too severe restrictions. Hence 
none of the reviewed synthesis tools can provide a solution to the memory problem in 
terms of synthesis libraties. 
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4. Changing the design description 

Besides the synthesis libraties of synthesis tools, another solution is looked into: perhaps 
the description of a design containing a large register can be altered in such a way that the 
large register problem can be overcome. The basic idea is still that the large register is 
implemented in an existing RAM IC while the rest of the design is implemented in ftexible 
hardware. The bread board for emulation can thus be built from this RAM and ftexible 
hardware. The emulation flow descrihing the approach of this solution is shown in 
figure 8. 
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FIGURE 8. Emulation flow for designs with large memory requirements 
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In this emulation flow the consecutive steps to take, starring with an HL description of a 
design, are: 

1. Conversion of the design description 

The first step in the emulation flow is the conversion of the HL description of the 
design to a new HL description. During this conversion the large register has to be 
completely replaced by a RAM. The tooi that performs the replacement is part of the 
Design S,tyle Assistant (DSA) tooi that already was present in the standard emulation 
flow of figure 6. 

The new description still has to be simulatable of course for functional verification of 
the design after conversion. Reeall that functional verification is an essential part of 
the PCALE Design Flow and that theemulation flow must comply with the PCALE 
Design Flow. 

However, the new design description does not have to be synthesizable. The RAM, 
actually a VHDL model of the RAM, only has to be simulatable since it is not synthe
sized. The rest of the design description on the other hand must be completely synthe
sizable since it has to be synthesized by means of a synthesis tooi. 

2. Splitting the design description 

The second step is splitting up the new HL description into a part containing the RAM 
and a part containing the rest of the design. This has to be done since the RAM is not 
synthesized. 

3a. Acquisition of a suitable RAM 

Evidently, a suitable RAM must be acquired for implementation of the register unless 
it is available. A suitable RAM is a RAM that suffices the speed, memory and voltage 
requirements. 

3b. Synthesis and mapping 

Parallel to the acquisition of a suitable RAM is synthesis. Synthesis is performed on 
the new HL description without the part that describes the RAM. After synthesis, map
ping on flexible hardware (EPLDs) is performed by means of a mapping tooi. 

4. Bread board building 

After RAM acquisition and synthesis, it is time to build the bread board. On this bread 
board the flexible hardware and the RAM are connected. Finally the bread board is 
emulated and theemulation results are verified through bit-by-bit comparison with the 
simulation results that are obtained after conversion of the design description. 

The first two steps in this emulation flow still have to be developed; the other steps can 
already be performed. But before these two stepscan be developed, the differences 
between registers and RAMs must be inventorised. Since RAMs and registers differ in 
behaviour, it is very likely that there are some restrictions on the conversion of the design 
description. After these restrictions have been determined, conversion and splitting of the 
design can be developed, thus completing the emulation flow for designs with large mem
ory requirements. 
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4.1. Differences between RAMs and registers 

For the reptacement of a register by a RAM the most general case is considered: registers 
with full random access and assignment. Afterwards it is atways possible to investigate the 
reptacement of other registers such as shift registers. Perhaps the restrictions for reptace
ment and the reptacement itsetf are different for such other registers. 

Preferably there are no restrictions for the register replacement, of course. This means that 
full random register access and assignment have to be replaced by full random RAM 
access and assignment. But that is an illusion since the behaviour of a RAM is very differ
ent from the behaviour of a register. Due to the differences between RAMs and registers 
there are most tikely some restrictions for descrihing a register in a design when such a 
register is to be replaced by a RAM. The main differences between RAMs and registers 
are: 

1. Response time 

Every operadon on a RAM takes a certain amount of time namely the response time of 
that RAM. A register in contrast has no response time. The time needed to perform a 
register operation is negligible compared with the time needed fora RAM operation. 

2. Accessible amount of data 

Only one word at a time can be read from a RAM or written toa RAM. This means that 
for a RAM the accessible amount of data is equal to the wordlength of the words of the 
RAM. The accessibte amount of data for the register on the other hand is equal to the 
registersize since the register is completely accessible. 

3. Control signals 

Besides the doek signal the register does not need any control signals for its operation. 
A RAM however does not need a doek signal but some other control signals, namely a 
read_ write signal, an enable signal and an acknowtedge signal. 

The read_ write signal indicates the RAM what kind of operation it has to perform: a 
read operation or a write operation. With the enabling signal the RAM can be tumed on 
and off. Usually tuming the RAM offresults in a low power consumption. The RAM 
has to be enabled before data is read from the RAM or written to the RAM. The third 
control signal, the acknowledge signal, is used by the RAM to indicate that an opera
tion is completed. 

These differences clearly indicate that the conversion of the HL description is not trivial. 
But besides the differences between registers and RAMs, there are more aspects involved 
in the conversion. For instance, the HL description has to be simulatable after the conver
sion and the design without the RAM has to be synthesizable. 

The complexity of the conversion is depicted in figures 9 and 10. In figure 9 the position of 
the design in the various VHDL subsets before reptacement is reflected. 
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FIGURE 9. Place of design description in VHDL subsets before conversion 

Figure 10 shows the position of the design with the RAM in the VHDL subsets after the 
replacement. 
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FIGURE 10. Place of design description in VHDL subsets after conversion 

As tigure 10 clearly shows, the RAM is in the PCALE VHDL subset but is not synthesiz
able. The rest of the design is in the DSA VHDL subset after treatment by the DSA tooi. 
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4.2. Replacement restrictions 

As stated in the previous sectien it is most likely that the reptacement of a register by a 
RAM is restricted. Before the restrictions for reptacement can be stated there are a number 
of considerations that must be paid attention to. These considerations that are listed below 
lead to the restrictions under which the reptacement can take place and thus they lead to 
the VHDL model of the RAM. 

Considerations: 

1. A RAM consists of two parts: the memory itself and an addressgenerator which is used 
to address the RAM correctly. This is illustrated in tigure 11. Also indicated in the tig
ure are the signals that control the memory and the addressgenerator. 
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FIGURE 11. Schematic model of a RAM 

The memory consists of a eertaio number of words, each with the same wordlength. 
The total memory capacity of the RAM is the wordlength multiplied with the number 
ofwords. 

A register can be modelled as a one-dimensional and as a two-dimensional array as 
shown in tigure 12. More dimensional arrays are not supported by synthesis tools. 
Therefore registers are assumed to be one-dimensional or two-dimensional since the 
result of a reptacement of a more dimensional register cannot be veritied. 
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FIGURE 12. Schematic modelsof a one-dimensional and a two-dimensional register 

Registers are indexed with integer values. In contrast, RAMs are addressed with so
called std_(u)logic_ vectors. Hence type conversion is necessary. This type conversion 
has to take place in the addressgenerator. Note that the memory of a RAM is always 
two-dimensional. A different dimensionality between the register and the memory 
requires a more complex address conversion of course. 

2. For the memory of the RAM an existing IC is used while on the other hand the address
generator has to be synthesized. Therefore it is necessary that they have separate 
VHDL models. The VHDL model of the addressgenerator must be both simulatable 
and synthesizable whereas the VHDL model of the memory only needs to be simulata
ble. 

3. In the design various partsof the register (slices) can be indexed. It is possible that 
these slices vary in size or differ from the wordlength of the memory. This has to be 
accounted for in the addressgenerator also. For simplicity only slices of a size equal to 
the wordlengthare considered (see figure 12). Afterwards extensions can be added. 

4. Another consideration is that constraints have to be put on the various signals. Every 
RAM has its own specific response time: every read-operation and every write-opera
tion takes this time to complete. This time can be accounted for in the simulatable 
model of the RAM memory; however, this time is not accounted for when synthesizing 
the design and the addressgenerator. Therefore constraints have to be put on various 
signals (such as the read_ write signal, the data signal, etcetera), in order to synthesize a 
functionally correct design and addressgenerator. These constraints are parameters for 
the synthesis tool when it performs synthesis. 
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There are two types of constraints: input constraints and output constraints: 

• With input constraints the arrival times at input ports can be defined. An arrival time 
for an input port defines the maximum delay relative to the clock to that input 
through logic extemal to the synthesized design. 
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• With output constraints the required times at output ports can be defined. The 
required time for an output port defines the longest allowable path from any input 
port to the output port. Paths start at primary inputs and at register outputs. Paths end 
at primary outputs and at register inputs. 

Constraints are relative to the lastor to the next active clock edge (see figures 13 
and 14). 

------~~~~--------------'x clock signa! 

zzzX5_(~~~ _______ s_ign_ai_a_t_I;_o_p_o_rt 

FIGURE 13. Constraint relative to last active clock edge 

________ X ...... ___________ --!'1>< clock signa] 

XX><><X~~ constrrunt .; 
signa! at 1/0 port 

FIGURE 14. Constraint relative to next active clock edge 

Note that when signals are constrained, there is no guarantee that the synthesis tool is 
able to synthesize a network that meets the constraints imposed on the input/output sig
nals of the design and addressgenerator. Even if the synthesis tool reports successful 
synthesis, it is still not guaranteed that the constraints are indeed met, since the exact 
timing of the final EPLD(s) is not known before the mapping is completed (see [16]). 

5. In VHDL the signals that control the RAM can be modelled as VARIABLES or as SIO
N ALS. Preferably the RAM that replaces a large register has the same possibilities that 
the register has: full random access for write and for read operations. This implies the 
use of VARIABLES. 

It is already established that the signals have to be constrained. Since only SIONALS 
can be constrained, the use of VARIABLES is impossible. A direct consequence of the 
use of SIONALS is that the number of operations per clock cycle is limited to the max
imum of one. This is due tothefact that SIONALS can only be updated once per clock 
cycle in VHDL. 

Another consequence of the usage of SIONALS is that re ad operations have to be anti
cipated at least one clock cycle. Suppose some data is needed in the middle of a PROC
ESS. That implies that the signals have to be updated in the middle of the PROCESS. 
On the contrary, during simulation SIONALS areupdatedat the end of a PROCESS. 
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The only way in VHDL to update SIGNALS in the middle of a PROCESS is by using a 
WAlT-statement. However, WAlT-statements are not synthesizable. So when data is 
needed in a clock cycle, the data has to be retrieved before that clock cycle. 

6. The reptacement of a register by a RAM alone is complex enough, so the tool that 
eventually has to carry out the reptacement does not try to ensure that the register com
plies with the restrictions for replacement. lnstead, the restrictions under which the 
reptacement can be done are captured in templates (see chapter 5) and the tool checks 
the design before reptacement for compliance with these templates. 

If the templates are violated, the reptacement is not guaranteed to be correct. In that 
case interaction with the designer rules the decision whether or not a register has to be 
replaced by a RAM. This means that the designer takes responsibility for the restrietion 
that the register complies with the restrictions. 

7. A nother important aspect is the timing. The timing of a RAM is shown in the diagram 
of figure 15. Normally when actdressing a RAM, all the needed signals (read_write, 
data, address) are made valid. After that the RAM is enabled by means of an enable sig
nal. When the read or write operation has completed, the RAM sends an acknowledge 
signal to indicate this completion. Next the enable signal is disabled. In case of a read 
operation data is notsent to the RAM but data is received from the RAM, of course. 
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FIGURE 15. Timing diagram of a RAM 

The VHDL code that corresponds with the above timing diagram and that handles the 
acknowledge correctly, is: 

valid_mm_in; -- in case of a write operation 

valid_address; 
valid_read_ write; 

enable_ram; 

WAlT UNTIL ram_acknowledge; 
disable_ram; 

Yet such a construct, to be implemented in the addressgenerator, is not synthesizable 
due to the fact that the WAlT UNTIL statement is not synthesizable for signals other 
than the clock signal (see [16]). 
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Another solution one might think of is to use a WAlT POR statement in the VHDL 
model of the memory: 

WAlT FOR access_time; 
disable_ram; 

Since the memory is not synthesized, the unsynthesizability of this statement is not a 
problem. But the enabling and disabling of the enable signal is a problem. Because the 
addressgenerator "knows" when the various signals are valid, the enabling has to be 
done by the addressgenerator. Disabling on the other hand is done by the memory, since 
only the memory can determine when the operation has been completed. 

However, there are three reasoos why this approach cannot be applied. 

1. It is functionally incorrect that a RAM disables itself. The RAM is controlled by the 
addressgenerator so the addressgenerator has to enable and disable the RAM. 

2. The logic needed to disable the RAM is not synthesized since the memory of the 
RAM is not synthesized. 

3. The enable signal now has multiple drivers: both the memory and the addressgenera
tor assign the enable signal. Multiple drivers imply a WIRED_OR or a 
WIRED _AND in hardware and such hardware elements are notpresent in EPLDs. A 
separate process for disabling the RAM, triggered by an EVENT on the acknowl
edge signal, is also impossible due to multiple drivers. 

The only remaining possibility is that an enable VARIABLE is used insteadof an ena
ble SIGNAL, but since constraints cannot be applied to VARIABLES, this cannot be 
correct either. 

Apparently the enable signa/ must always be enabled, since there is no way of imple
menring correct disabling. 

8. Since the RAM is always enabled, the RAM is continuously working. However, the 
design does not continuously access the RAM, and the data and/or address signal may 
change after an access. In case the last performed operation was a read operation, a 
change in the data and/or address signal does not matter. But if the last performed 
action was a write operation, any change in the data and/or address signal bas a disas
trous effect: the RAM contents are unintentionally overwritten. The only way to avoid 
this effect is to be always reading the RAM, unless explicitly a write operation has to be 
carried out. So aftera write operation, the read_ write signal is irnrnediately adjusted so 
that the writing of the RAM only takes place when correct data and address signals are 
present. 

9. Let us consider the read operation. Several casescan be distinguished for the read oper
ation: 

• Only a read operation is performed. 

• The read operation is performed after eertaio conditions have been met. The deter
mination of these conditions is implemented in hardware as a boolean network. This 
network evidently takes some arnount of time before the read operation can start. 
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• Furthermore, it is possible that a decision is made on which data is read, whereas 
every read operation can be preceded by some decision. Since every decision 
implies another boolean network, it is most likely that the read-operations are pre
ceded by different amounts of time. 

• It is also not unlikely that a read operation is foliowed by some sort of calculation on 
the read data. This calculation also takes time in hardware and again different 
amounts of time can be expected. 

Now two problems arise: 

1. There is no way of predicting the amount of time a synthesized network (boolean 
network, network for calculation) takes. 

2. Every signal (read_ write, data, address, enable) can have only one constraint, while 
the preceding indicates that all the different cases ask for different constraints (meet
ing one constraint most likely violates other constraints). 

To solve these problems, the constraints could be determined iteratively. This iterative 
determination starts by giving the various output signals an output constraint of 0 ns 
after the last active edge of the clock; the input signal (data coming from the RAM) is 
given an input constraint of 0 ns before the next active edge of the clock. In fact this 
means that the determination starts with the assumption that there is no preceding 
boolean network before a read operation and no following calculation after the read 
operation. The start of the constraint determination is depicted in figure 16. 

____ _,)<]~~------------~~>< clock signa! 

~Ons Ons~ 
output input 

constramts constraints 

FIGURE 16. Start of iterative constraint determination 

Starting with constraints of 0 ns, the synthesis tool could issue an error about the times 
minimally needed for the boolean network and for the calculation. These times are then 
the new constraints in the iterative process of constraint determination. The correct 
constraints can thus be found. Note that the time between the output constraints and the 
input constraints must be at least equal to the response time of the RAM, otherwise 
there is not enough time to perform an operation on the RAM. The end of the constraint 
determination is shown in figure 17. 

____ _,)<]~~------------~~><~cl_o_ck_si_gn_ru_ 
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FIGURE 17. End of iterative constraint determination 
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It is not known whether there is a synthesis tooi that reports such a warning. It is also 
unknown whether the synthesis tools report the time minimally needed for each and 
every read operation or only for the first read operation that cannot be successfully 
implemented with the given constraint. This could mean that the designer is iteratively 
determining the constraints, while in the end the condusion might be that the needed 
input and output constraints cannot be met. 

Note that the constraints on the signals for write operations coincide with the con
straints for read operations; the constraints would have been adversary if the read oper
ation is implemented in the same clock cycle when it is needed. Actually this is another 
reason for anticipating the read operations. 

10. The memory part of the RAM has to modelled but is not synthesized. Ho wever, there 
must be an EVENT that triggers the VHDL model of the memory during simulation. 
(Actually, this is another reason for using SIONALS and notVARIABLES since only 
SIONALS have EVENTS defined on them in VHDL.) 

Normally theEVENT to use as a trigger would be an EVENTon the enable signal (see 
also [14] and [15]): 

IF enable'EVENT AND enable = '0' THEN 
-- memory model 

ENDIF; 

Since the enable signal is always enabled, this can no longer be the case. An EVENTon 
another signal must be the triggering EVENT for the memory. Let us review all other 
possibilities: 

• Read _ write signal 

For this signal EVENTS take place when no operation on the RAM is needed (see 
consideration 9). Also, more seriously, there could be a need fora new operation on 
the RAM when no EVENT occurs on the read_ write signal. For instance, when dur
ing some subsequent clock cycles the design is continuously reading (writing). 
Therefore the read_ write signal cannot be used for triggering the memory. 

• Data signal 

Data is only offered to the RAM in case of a write operation. Using the datasignalas 
trigger makes read operations unsimulatable. So the data signal cannot be used for 
triggering also. 

• Address signal 

U sing the address signal for triggering implies a restriction: an operation on the 
same position in the register (and thus in the RAM) can only be implemented when 
at least one operation on another position is in between the two operations. This 
however does not present the behaviour of a real RAM. So the address signal can be 
used for triggering as long as the design does not violate the restriction. 

• A combination of signals 

A combination of several of the above signals could be used for triggering the mem
ory. All these signals are simultaneously updated during simulation. Since there is 
no guarantee about the order of updating, there is no way to predict the order of the 
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EVENTS. Since there is no way to predict the order of the EVENTS, the simulation 
order of processes is undetermined. Simulations consequently become unreliable. 
This violates the PCALE Design Flow philosophy severely and is therefore useless. 

• Clocked RAM 

Another possibility is the use of a docked RAM instead of an asynchronous RAM. 
Here the problem arises that data is sampled at the active edge of the doek, which 
means that it is not possible to generate a write or read operation halfway the doek 
cycle in order to write data into the RAM or read data from the RAM in that doek 
cyde. When an operation is needed, the read_write (and data signal possibly) must 
be generated so that the docked RAM copies or delivers the data in the next doek 
cyde. This implies two restrictions. 

1. Since every read operation already had to be anticipated one doek cyde, every 
write operation foliowed by a read operation must a least be separated by three 
doek cydes in order to perform the operations. 

2. Write operations must be delayed one doek cyde. Read operations must be com
pleted one extra doek cyde earlier to a total of two doek cydes. 

As both restrictions are unacceptable, the RAM cannot be modelled as a doeked 
RAM. 

Apparently, the only useful solution is the use of theEVENTS on the address signa! as 
the triggering EVENTS for the memory model during simulation. This means that the 
design must comply with the restrietion for separating operations on the same position. 

However, this restrietion can be relaxed a little. Since data is read before the doek 
cyde in which the data is needed, this data has to be retained during the active edge of 
the doek. This is done by sampling the data in a sampling register. This register has a 
size equal to the wordlength of the RAM. This sampling register allows for two read 
operations on the same address aftereach other. No EVENT occurs for the address sig
nal, but the needed value is still present in the sampling register. 

From the above considerations, the following restrictions are deducted: 

• The number of operations per doek cyde is limited to one. 

• Read operations are anticipated one doek cyde at least. Write operations are not antici
pated. 

• A read (write) operation aftera write (read) operation or vice versa ortwowrite opera
tions after each other on the same address, are separated by at least one operation on 
another address. Two read operations after each other on the same address are allowed. 

These restrictions are further referred to as the repfacement restrictions. Only if a design 
complies with these replacement restrictions, can the design be converted while preserv
ing design functionality. 

The considerations of this chapter form the basis for the VHDL models of the memory and 
the addressgenerator. The VHDL model of the memory is listed in appendix E. An exam
ple of the VHDL model of the addressgenerator is listed in appendix F since the address
conversion in the addressgenerator is different for every design and RAM. 
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4.3. Adjustments for simulation 

When the replacernent tool performs the register replacernent, the HL VHDL description 
has to be changed in several ways. The following adjustrnents are needed to obtain the 
descriptions that can be sirnulated to verify functional correctness after replacernent: 

• Insertion of package declaration and package creation 

Type conversion functions frorn integer to std_(u)logic and vice versa are needed for 
the replacernent. These conversion functions are defined in a package. Sorne syrnbolic 
constants also are defined in this package; the constants are used in the inserted VHDL 
code because they enhance readability. This package has to be made "visible" to the 
entity in which the register has been replaced through a package declaration. The pack
age itself has to be created with the correct contents, for instanee the correct constant 
value for the response time of the RAM has to be defined in the package. 

• Insertion of component declarations and configurations 

The VHDL descriptions of the RAM and of the addressgenerator are defined in a sepa
rate file. Since these descriptions are referred to as cornponents in the new HL descrip
tion, both declaration and contiguration of these cornponents have to be inserted at the 
correct position in the altered entity. 

• Insertion of signals for communication with RAM 

The signals that stern frorn the design and that control the RAM ( which is added as a 
component in the design), must be declared inside the entity. 

• Insertion of component instantiations 

The declarations and configurations of the RAM and the addressgenerator are defined 
in the entity header. The actual instantiations of these cornponents are also added as 
VHDL statements to the entity. The instantiations are concurrent statements and are 
added right after the beginning of the entity body. 

• Adjustment of register declaration 

The original register including the declaration is rernoved frorn the entity. A new regis
ter is needed due to the replacernent. This new register samples the RAM output. So the 
register declaration of the large register is replaced by another register declaration for 
the new and rnuch smaller register. 

• Contiguration of the addressgenerator 

Perhaps the RAM is larger than the register. This rneans that not all bits of the address 
signal are used. During contiguration of the addressgenerator the unused address bits 
are assigned a value of '0'. Furthermore in case of a one-dirnensional register the index 
variabie has to be divided by the wordlength to obtain the correct word address for the 
RAM. Actually this division consists of leaving the least significant register address 
bits unused after conversion to std_(u)logic: a total of 2log(wordlength) bits is not used. 

• lnsertion of default value for read _ write signa I 

The read_ write signal is default set for reading since the RAM is always enabled. The 
code that assigns this default value is inserted after the active edge statement. 
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• Insertion of sampling statement 

The code for assigning the output of the RAM to the sampling register is also inserted. 
This sampling statement is inserted af ter the code for the default value of the read_ write 
signal. 

The above stated alterations only need to be performed once. But there are other VHDL 
statements in which the register occurs and they can occur multiple times in the entity 
body. These VHDL statements are register assignment, register access, procedure calls 
and function calls. They are the most important VHDL statements to replace because they 
describe the functionality of the design. The next sections discuss these VHDL statements 
and their equivalents for the RAM. 

4.3.1. Register assignment 

When the reptacement tool encounters VHDL codefora register assignment (when a part 
of the register is assigned a value), then this code has to be replaced by equivalent code 
that stores the data in the RAM. Pirst of all it is important to know what the code fora reg
ister assignment looks like for one-dimensional and for two-dimensional registers. Only 
then it is possible to recognize theessenrial partsof such an assignment after which the 
equivalent code can be constructed. 

An assignment to a one-dimensional register is a VHDL statement of the form: 

repl_reg(index+wordlength-1 DOWNTO index):= some_value; 

Por a two-dimensional register an assignment is in a slightly different form: 

repl_reg(index) := some_ value; 

The essential parts of such assignments are: 

• The name of the register 

The fact that the name of the register (repl_reg) occurs in a statement and the fact that 
the name of the register occurs before the variabie assignment symbol (:=), tells the 
reptacement tool that this statement is a register assignment. Thus this statement has to 
be replaced by equivalent code for data storage in the RAM. In this way the name of the 
register to replace is only used for recognition of the register assignment. 

• What part of the register is being assigned 
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Por the second essential part of a one-dimensional register assignment, what part of the 
register is being assigned, a choice has to be made whether to use the upper index 
(index+wordlength-1) or the lower index (index), since only one of them can be used as 
an address for the RAM. The most logical choice is the lower index since this implies a 
more direct address translation in the addressgenerator: the index value of 0 corre
sponds with address 0 of the RAM. 

This index has to be sent to the addressgenerator for translation from linear indexing to 
indexing on word basis. Therefore the following code is inserted (assuming that 
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address is the name of the signal that is used as address input signal for the addressge
nerator): 

address <= index; 

For a two-dimensional register no choice has to be made of course. The index is sent to 
the addressgenerator with the same VHDL statement as for a one-dimensional register. 

• The value that is assigned 

The last essential part of a register assignment is the value (some_ value) that is 
assigned. This value mustbesent to the RAM as data to store. Assuming that the name 
of the signal that is used to this end, is data_ram_in, the following code is inserted: 

data_ram_in <= some_ value; 

Besides the above two VHDL statements, another statement has to be inserted. Since a 
write opera ti on has to be performed, the read_ write signal must be set accordingly: 

r_ w <= WRITE; 

So the equivalent RAM code for a register assignment is nothing more than three state
ments: one statement for the data itself, one statement for the address to store the data and 
one statement to signal the RAM to perform a write operation. 

4.3.2. Register access 

Similar to register assignment is the case of register access: when the reptacement tooi 
encounters VHDL codefora register access (when a part of the register is accessed), then 
this code has to be replaced by equivalent code that retrieves the data from the RAM. 

The VHDL code for accessing a one-dimensional register can be in one of the two follow
ing forms: 

some_signal <= repl_reg(index+wordlength-1 DOWNTO index); 

or: 

some_ variabie := repl_reg(index+wordlength-1 DOWNTO index); 

In case of a two-dimensional register the equivalent statements are: 

some_signal <= repl_reg(index); 

or: 

some_ variabie := repl_reg(index); 

Note that the first statements of the above pairs are NOT concurrent signal assignments. 
As stated insection 4.2, the register is assumed to be a VARIABLE. Hence they are to be 
interpreled as a sequential statements and not as concurrent statements. 

For a register access there are only two essential parts that determine how the reptacement 
is to be performed: 
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• The name of the register 

It does not matter whether the register value is assigned to a signal or a variable: when 
the name of the register (repl_reg) is encountered after a signal assignment symbol 
( <=) or aftera variabie assignment symbol (:=), the tooi decides that a register access 
has been found. 

• What part of the register is being accessed 

Register access means that a read operation is performed on the RAM. As already has 
been mentioned insection 4.1, read operations have to be anticipated at least one doek 
cyde. This is done by updating the index variabie in the doek cyde before the data is 
needed. This way the RAM starts retrieving the correct data before the doek cyde in 
which the data is needed; at the start of a new doek cyde, the data is available on the 
output of the RAM and is stored in the sampling register. Assurning that the original 
VHDL code complies with those rules, only one the statement is needed to replace the 
register access. This statement only concerns retrieving from the sampling register. The 
sampling itself is perforrned every doek cyde. 

Therefore the following code replaces the register access (assuming that the sampling 
register is named sample_reg): 

data_read <= sample_reg; 

VHDL code for the read_write signal to indicate the RAM to performa read operation, 
does not have to be inserted since the default value for the read_ write signal is set to read
ing (see sections 4.1 and 4.3). 

So the equivalent RAM code for a register access is nothing more than one statement: the 
statement for assigning the read data that is stored in a sampling register. 

4.3.3. Procedure calls 

It is of course possible that the register to replace does not occur in a direct assignment or 
access, but as parameter in a procedure call. Replacing the original register code with 
equivalent RAM code becomes somewhat more complex in this case. 

The following aspects have to be considered in case of a procedure call, namely: 

• The total register can be parameter in the procedure call. However, an operation on the 
RAM involves one word in the RAM which corresponds with part of the register. So 
reptacement implies figuring out a couple of things: 
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1. It has to be determined what part of the register is involved in the procedure call. It 
might even be impossible to determine this, for instanee when this part is determined 
on basis of incoming data. 

2. Possibly that part is larger than the wordlengthof any available RAM. This means 
that the restrietion of one operation per doek cyde is violated. Hence, replacement 
is useless since it leads to erroneous results. 
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3. The design description can contain several procedure calls to the same procedure. In 
that case it bas to be determined whether every procedure call involves the same part 
of the register and if every procedure call has the register to replace as parameter. lf 
not every procedure call contains the register to replace and the same part of that 
register, then separate procedures have to be created for every individual case. 

• Wh en the parameter mode of the register is IN, the value of the register that samples the 
output of the RAM every clock cycle is needed inside the procedure body. So this regis
ter must become an IN parameter. 

• When the parameter mode of the register is OUT, the data_ram_in signal and the r_ w 
signal must become SIGNAL parameters of the procedure. An alternative is that the 
values forthese signals are assigned to variables in the procedure body and that the val
ues of these variables are assigned to the signals after the procedure call. 

• When the parameter mode of the register is IN OUT, this means a combination of both 
IN andOUT. 

• The index variabie is needed as index for the register and must be assigned a new value 
for the next clock period in case a register access occurs in the next clock period. 
Hence, the index variabie must become an IN OUT parameter in case a register access it 
to take place in the next clock period. 

From the above list can be concluded that conversion of procedure calls and correspond
ing procedures is not impossible but that it is very difficult and laborious, while removing 
the procedure call and inserting the procedure body is much easier. 

Therefore the corresponding procedure body is inserted in case a procedure call with the 
register to replace as parameter is encountered. However, a procedure may have local dec
larations, such as VARIABLE declarations. These declarations cannot be copied to the 
position of the procedure call, since declarations cannot be done in the statement part of a 
process. They must be done inside the declarative part of the calling process. This problem 
is solved by inserting the declaration part of the inserted procedure in the declarative part 
of the calling process. And finally, of course, the register replacement has to be redone for 
inserted procedure bodies. 

4.3.4. Function calls 

The same observations that were made for procedure calls can be made for function calls; 
however, since in VHDL all parameters of a function are of mode IN, it is impossible to 
change the parameter list of a function in the sense that the parameter list is adjusted to 
support the replacement. Thus function calls with the register to replace as parameter are 
not allowed. In case the replacement tooi detects a function call with the register to replace 
as parameter, the replacement is not performed and an error message is generated. 
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4.4. Adjustments for synthesis 

Insection 4.3 all the adjustments that have to bemadein the original HL description to 
obtain simulatable files have been discussed. However, before synthesis can be attempted 
with a synthesis tooi, the RAM has to be removed from the description since this part of 
the description is not synthesized: an existing IC is used for the RAM component in the 
entity. The tooi actions needed to remove the RAM from the description and to obtain a 
synthesizable description of the rest of the design are reviewed in this section. 

The tooi actions needed to create the obtain the description to be synthesized by a synthe
sis tooi are: 

• Commenting out RAM component declaration, contiguration and instantiation 

Of course, the RAM component has to be removed completely from the entity. This 
means that component declaration, contiguration and instantiation have to be removed. 
To allow for the designer to be able to trace the actions of the replacement tooi, the 
removal is done by mak:ing these VHDL lines comment. 

• Removal of signal deelara ti ons of signals for communication with RAM 

The signals that control the RAM are not local signals of the entity anymore since the 
RAM component is removed; consequently their declarations have to be removed. 

• Addition of signals to port interface for communication with RAM 

The RAM is added as a component inside the original design ENTITY. This means that 
the port interface of the ENTITY remains unaltered. As a consequence the testbench 
that is used for simulation can be used both before and after replacement. 

lf the RAM is added as a component outside the original design ENTITY, then the port 
interface of the ENTITY has to be altered: all signals for communication with the RAM 
have to become port SIGNALS. Since then the testbench has to be altered too, compar
ison of simulation results before and after replacement becomes more difficult and 
laborious. Therefore the first approach of adding the RAM inside the original design is 
taken. 

But before synthesis the RAM is removed as component from the design. The RAM 
control signals are also removed from the entity. These signals must become interface 
parameters of the entity. Hence the entity header must be extended with these signals. 

4.5. Conclusions 

A large register in a design requires a large memory capacity to be available in flexible 
hardware when a bread board is developed for the design. Flexible hardware elements in 
contrast have very little memory capacity. Therefore synthesis tools have to use a lot of 
flexible hardware elements when mapping a design containing large registers to flexible 
hardware. This means that a design has to be partitioned among multiple elements. 

Partitioning implies an increase in wiring and in wiring complexity which leads to ineffi
cient mappings, which in turn cause a decrease in doek frequency. Also it is preferabie to 
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keep the number of flexible hardware elements as small as possible in order to keep the 
bread board simple, small and as cheap as possible. Besides this the synthesis tools crash 
during synthesis of such designs, probably because such large registers eau se an overflow 
in the internal format used by the synthesis tools. 

To overcome this problem the possibilities to change a design containing a large register 
into design containing a RAM have been investigated. As it turns out, the replacement of a 
register by a RAM while preserving the functionality of the original design can be done if 
the register complies with eertaio restrictions. 

These restrictions, called the repfacement restrictions, are: 

• The number of operations per clock cycle is limited to one. 

• Read operations are anticipated one clock cycle at least. Write operations are not antici
pated. 

• A read (write) operation aftera write (read) operation or vice versa ortwowrite opera
tions after each other on the same address are separated by at least one operation on 
another address. Two read operations after each other on the same address are allowed. 

The replacement changes theemulation flow. After the replacement and functional verifi
cation of the result of the replacement, the RAM part of the design is removed to enable 
implementation of the rest of the design in flexible hardware. At the end of the emulation 
flow a bread board is built from the flexible hardware and an existing RAM IC. Emulation 
of this bread board bas to establish functional correctness of the final result. 
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S. Templates 

Register replacement by a RAM can only be performed under eertaio restrictions, as has 
been discussed in the previous chapter. In genera!, register specifications do not comply 
with the restrictions since they are quite severe and differ a lot from the normal, instinctive 
use of registers. Also VHDL code can be so complex that a register might comply with the 
restrictions, but writing a tooi capable of checking the restrictions is much too complex in 
the general case (for instanee in case of concurrent statements). However, it is desirabie to 
know in advance whether the restrictions are met; that is, to knowhow to describe a regis
ter in a way that it is guaranteed that the replacement can be done. To this end templates 
are written so that, when these templates are used in a correct manner, the replacement 
under preservation of design functionality is then guaranteed. The replacement tooi has to 
check the design for compliance with these templates. 

In chapter 4 the differences in behaviour between registers and RAMs have been investi
gated. The evaluation of those differences lead to the restrictions under which the replace
ment can be performed under preservalion of design functionality. Several templates are 
needed to guarantee compliance with the replacement restrictions. In short the templates 
and their relation to the replacement restrictions are: 

1. Templates for register declaration 

The templates that involve the deelaratien of the register are needed since there are sev
eral ways to describe a register in VHDL and only two of them are supported by the 
replacement tooi: one template for one-dimensional registers and another template for 
two-dimensional registers. 

In conneetion with the register, an index variabie is needed. The deelaratien of this 
index variabie is also described in the templates. Furthermore, the replacement tooi 
needs two constauts that indicate the length of the register and the size of the slices that 
are indexed. Both constants enhance readability of inserted code, and they are 
described in the templates, too. 

2. Templates for register assignment and access 

These templates describe the correct manoer of register assignment and access. On top 
of that, the templates guarantee that the index value of the register is known one clock 
period ( or more) in advance in case of register access. 

3. Templates for IF -statements and for CASE-statements 

These templates eosure one register operation maximally during one clock cycle. Veri
fication of this restrietion is very complex in generaL Such a verification involves data
flow analysis, and it is doubtful whether dataflow analysis is possible for VHDL 
concurrency. The best that can be done is stating templates for which verification is 
realizable. Correct use of these templates guarantee that the restrietion is met, but the 
templates do not cover every possible way to describe a register correctly. 

4. Other guidelines 

The restrietion that two operations (except two read operations) on the same address are 
separated by an operation on another address, cannot in general be captured in tem-
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plates. Verification of the restrietion is comparable with the verification of at most one 
register operation during one elock cyele. Therefore some informal guidelines are 
given to help the designer in descrihing a large register in a design. The designer takes 
responsibility for compliance with the replacement restrictions. The templates are 
intended as an aid to the designer. 

The templates and the guidelines are discussed in more detail in the next sections. 

5.1. Templates for register declaration 

Since there are several ways to describe a register in VHDLand only two of them are sup
ported by the replacement tooi, the deelaratien of the register to replace has to be pre
scribed by templates. The replacement tooi supports one-dimensional registers that 
comply with the following template: 

Template for deelaratien of one-dimensional re~ister 

CONSTANT wordlength :INTEGER:= any_positive_constant_value; 

CONSTANT registerlength :INTEGER:= any_positive_constant_value; 

VARIABLE repl_reg : std_ulogic_ vector(registerlength-1 DOWNTO 0); 

VARIABLE index :INTEGER RANGE 0 TO registerlength-1; 

FIGURE 18. Template for declaration of one-dimensional register 

Two-dimensional registers that are supported by the replacement tooi are prescribed by the 
following template: 

Template for deelaratien of two-dimensional re~ister 

CONSTANT wordlength :INTEGER:= any_positive_constant_value; 

CONSTANT registerlength : INTEGER := any_positive_constant_ value; 

TYPE reg_type IS ARRAY(O TO registerlength-1) OF std_ulogic_vector(wordlength-1 DOWNTO 0); 

VARIABLE repl_reg 

VARIABLE index 
: reg_type; 
:INTEGER RANGE 0 TO registerlength-1; 

FIGURE 19. Template for declaration oftwo-dimensional register 

Replacement of registers of type SION AL is not supported. SIONALS in VHDL offer the 
system designer usage of the register in multiple en ti ties. Replacement of the register over 
multiple entities is not supported, therefore the restrietion on registers of type V ARIA
BLE. Also, entities describe concurrent behaviour. Verification of concurrent behaviour 
for compliance with the replacement restrictions is very complex and perhaps even impos
sible. Furthermore, registers are usually described in VHDL by means of V ARIABLES 
and not by SION ALS, since registers by nature possess full random access and assignment 
that only can be modelled in VHDL by VARIABLES. 
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The variabie that is used as index fortheregister is ( trivially) an integer with val u es within 
the total range of the register. This variabie is denoted in the templates. 

In the register and index variabie declarations the constant value indicating the register
length is needed; also the size of the part of the register that is indexed at a time is needed 
as a constant. Therefore these two constants must be stated before the declarations in the 
templates. These constants are also used in some VHDL code that is inserted during 
replacement, for instanee in the VHDL modelsof the addressgenerator and the memory. 

5.2. Templates for register assignment 

To make sure that every register assignment that is performed on the register complies 
with the replacement restrictions, the following template must be used whenever a one
dimensional register is being assigned: 

Template for one-dimensional re~ister assi~nment 

index ;:::: new _index_ value; 
repl_reg(index +wordlength-1 DOWNTO index) := new _register_ value; 
-- do not state a new value for the index variabie here 

FIGURE 20. Template for one-dimensional register assignment 

Key elements of this template are that the size of the part of the register that is indexed is 
equal to wordlength and that the indexing variabie is updated immediately befare a regis
ter assignment. The latter is necessary to makesure that theEVENT on the address signal 
that triggers the memory during simulation coincides with the new register value. 

For two-dimensional registers the equivalent template is: 

Template for two-dimensional re~ister assi~nment 

index := new _index_ value; 
repl_reg(index) := new _register_ value; 
-- do not state a new value for the index variabie he re 

FIGURE 21. Template for two-dimensional register assignment 

The size of the part of the register that is indexed is equal to wordlength due to the decla
ration of the two-dimensional register. Hence the only key element of this template is that 
the indexing variabie is updated immediately befare a register assignment similar to the 
template for one-dimensional register assignment. 
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5.3. Templates for register access 

Every register access that is performed on the register has to comply with the restrictions. 
Therefore the following template must be used for one-dimensional register access: 

Template for one-dimensional register access 

--do notstate a new valuefor the index variabie here 
... <= repl_reg(index+wordlength-1 DOWNTO index); 

-- state a new index value with the next statement ONLY if the next register operation is a register acces 
index:= new_index_value; 

FIGURE 22. Template for one-dimensional register access 

Key elements of this template are that the size of the part of the register that is indexed is 
equal to wordlength and that the indexing variabie is updated immediately aftera register 
access if the next operation on the register is also a register access. 

For a two-dimensional register the equivalent template is: 

Template for two-dimensional register access 

-- do notstate a new value for the index variabie here 
... <= repl_reg(index); 

-- state a new index value with the next statement ONLY if the next register operation is a register acces 
index:= new_index_value; 

FIGURE 23. Template for two-dimensional register access 

The size of the part of the register that is indexed is equal to wordlength due to the decla
ration of the two-dimensional register. That leaves only one key element for this template 
namely that the indexing variabie is updated immediately aftera register access similar to 
the template for one-dimensional register access. 

In case there is not a register access in a clock cycle while the next clock cycle comains a 
register access, the above templates cannot be used. In fact the only statement that is 
needed in this case is the updating of the indexing variable. The template for this situation 
is shown in figure 24. It applies to both one-dimensional and two-dimensional registers. 

Template to use when the next clock cycle comains a register access 

index := new _index_ value; -- set index variabie for register access in next clock cycle 

FIGURE 24. Template when the next clock cycle contains a register access 

The indexing is not part of template checking. This gives the designer a maximum of free
dom for updating the index variable. Any vialation in providing the index at least one 
clock period before register access is noticed during simulation of the converted design. 
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5.4. Templates for IF -statements 

The previous sections involved templates for register dedaration, access and assignment. 
Basically these templatescan only guarantee that the register is of the correct type and that 
the read operations on the RAM can be anticipated one doek cyde. They do not guarantee 
that at the most one operation is performed per doek cyde. 

The simplest way to guarantee that this restrietion is met, is limiting the number of register 
operations to one. However, writing to the register without reading or reading from the 
register when nothing has been written, is useless: the number of register operations can
not be limited to one. Still it is desirabie to be able to guarantee that the restrietion is met. 

As already stated, verification of the restrietion in the general case is too complex. But 
there are some VHDL statements for which mutual exclusiveness is guaranteed. The state
ments for which mutual exclusiveness is guaranteed are rF-statements and CASE-state
ments. This section involves the templates for rF-statements; in the next section the 
templates for CASE-statements are reviewed. 

The register can occur in the conditions of the (ELS)IF-clauses of an lP-statement. Also, 
the register can occur in any THEN-dause. lf the register occurs in a condition and in a 
THEN -dause, then two opera ti ons per doek cyde are indicated: one for the condition and 
one for the THEN-dause. So the templates must ensure that this is not the case. 

Two templates can be given for lP-statements. The first is based on the occurrence of the 
register in at least one THEN-dause. This implies that the conditions of the IF-statement 
do not contain the register. Of course the register may not occur more than once inside one 
single THEN-dause. This first template is stated in figure 25. 

IF-template 1: conditions do not contain register 

IF condition_l THEN sequential_statements 
ELSIF condition_2 THEN sequential_statements 

ELSIF condition_n THEN sequential_statements 
ELSE sequential_statements 
ENDIF; 

--index may (optionally) be stated herefor resourcesharing reasons 

-- at most one register operation 
-- at most one register operation 

-- at most one register operation 
-- at most one register operation 

FIGURE 25. Template 1 for IF -statements 

If the register is needed in at least one condition, then another template has to be used. The 
template for this situation is stated in figure 26. Occurrence of the register in a condition 
implies register access; register assignment is impossible. Since register replacement 
involves several statements that cannot be inserted in a condition, the register access has to 
be performed before the IF-statement: a register value is assigned to a temporary variable. 
At that position the replacement can be performed. The updating of the index variabie 
when the next register operation is a register access is denoted in the template, too. This 
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updating is done in the THEN-clauses or after the IF-statement for resourcesharing rea
soos. 

IF-template 2: register value is needed in condition(s) 

VARIABLE tmp_var: std_ulogic_vector(wordlength-1 DOWNTO 0); 

tmp_var := repl_reg(index+wordlength-1 DOWNTO index); 

IF condition_l_with_tmp_var THEN sequential_statements 

index:= new_value 

ELSIF condition_2a_ without_tmp_ var THEN sequential_statements 

index := new _ value 

ELSIF condition_2b_ with_tmp_ var THEN sequential_statements 

index := new _ value 

ELSIF condition_n_ without_tmp _var THEN sequential_statements 

ELSIF condition_n_ with_tmp_ var 

ELSE sequential_statements 

index := new _ value 
ENDIF; 

index := new _ value 

THEN sequential_statements 

index:= new_value 

-- no use ofrepl_reg; 
-- tmp _var can be used 
-- if next operation is access 

--index may (optionally) bestaled herefor resourcesharing reasons 

FIGURE 26. Template 2 for IF-statements 

-- no use ofrepl_reg; 
-- tmp _var can be used 
-- if next operation is acces 
-- no use ofrepl_reg; 
-- tmp _var can be used 
-- if next operation is acces 
-- no use ofrepl_reg; 
-- tmp _var can be used 
-- if next operation is acces 

-- no use of repl_ reg; 
-- tmp _var can be used 

ij next operation is acces 
-- no use ofrepl_reg; 
-- tmp _var can be used 
-- if next operation is acces 

The fact that the temporary variabie may or may not occur in any condition is symboli
cally denoted in the temp late. Also any THEN -clause can contain the temporary variable, 
even multiple times. This is denoted as comment in the template. Of course none of the 
conditions and THEN-clauses contain the register. 

There is a restrietion for the usage of the IF-templates discussed in this section and the 
CASE-templates stated in the next section. Unnested the total of all templates cannot be 
more than one. Otherwise the replacement tooi cannot verify the replacement restrictions 
by means of template checking. There is no restrietion on the nested usage of the tem
plates. lf the temptates are viotated, the reptacement tooi asks the designer if the reptace
ment still has to be perfonned. In that case, the designer takes responsibility for the 
reptacement and forthefact that the reptacement restrictions have to be met. lt is then 
NOT guaranteed that the reptacement resutts in pre servation of design functionality. 
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5.5. Templates for CASE-statements 

The templates for CASE-statements in this section are completely analogue to the tem
plates for lP-statements of the previous section. The fi.rst CASE-template, shown in figure 
27, is when the register statements occur in the WHEN-clauses and not in the expression. 

CASE-template 1: expressiondoes not contain re~ister 

CASE expression IS 

WHEN expression_ values_1 => sequential_statements 

WHEN expression_ values_2 => sequential_statements 

WHEN expression_ values_n => sequential_statements 

WHEN OTHERS => sequential_statements 

END CASE; 

--index may (optionally) be stated herefor resourcesharing reasans 

-- at most one register operation 
-- at most one register operation 

-- at most one register operation 
-- at most one register operation 

FIGURE 27. Template 1 for CASE-statements 

The second CASE-template, depicted in figure 28, is when a register value is needed in the 
expression. Identical to the second IF-template, the register value is assigned to a tempo
rary variabie and this variabie can be used in the expression and in the WHEN -clauses. 

CASE-template 2: re~ister value is needed in expression 

VARIABLE tmp_ var: std_ulogic_ vector(wordlength-1 DOWNTO 0); 

tmp_var := repl_reg(index+wordlength-1 DOWNTO index); 

CASE expression_ with_tmp_ var IS 

WHEN expression_ values_1 => sequential_statements 

index := new _ value 

WHEN expression_ values_2 => sequential_statements 

index:= new_value 

WHEN expression_ values_n => sequential_statements 

WHENOTHERS 

END CASE; 

index := new _ value 

=> sequential_statements 

index := new _ value 

-- index may ( optionally) be stated here for resource s haring reasans 

-- no use ofrepl_reg; 
-- tmp _var can be used 
-- if next operation is access 
-- no use ofrepl _reg; 
-- tmp _var can be used 
-- if next operation is access 

-- no use ofrepl_reg; 
-- tmp _var can be used 
-- if next operation is access 
-- no use ofrepl_reg; 
-- tmp _var can be used 
-- if next operation is access 

FIGURE 28. Template 2 for CASE-statements 
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5.6. Guidelines for register replacement 

The templates that are defined in the previous sections cannot be used without some pre
caution. Furtherrnore, the defined templates involve only two of the three replacement 
restrictions. The third replacement restrietion that two operations (except two read opera
tions) on the same address have to be separated by another opera ti on on another address 
cannot in general be captured in a VHDL temp late. The verification of the restrietion 
involves dataflow analysis which cannot be captured in a VHDL template. On top of that, 
dataflow analysis is very complex in VHDL, if it is possible at all. 

Therefore some guidelines are stated in this section. These guidelines help the designer in 
writing a design description with a large register that can be replaced. The guidelines, 
which involve all three replacement restrictions, are: 

1. The templates for the declaration of register, for register assignment and for register 
access must ALWAYS be used. 

2. It is important to realise that the RAM, which is to replace the register, can only per
form one read or one write operation per clock period. This means that the register also 
can have one operation per clock period at the most. So the designer has to make sure 
that the design satisfies this restriction. The templates for lP-statements and for CASE
statements can help with this restriction. 

3. For simulation purposes, an EVENT is needed on the address signal that is sent to the 
RAM. So two operations on the same part of the register are to be separated by another 
operation on another part of the register. Only two read operations on the same part of 
the register do not need to be separated by another operation on another part of the reg
ister. 

4. Since read operations on the RAM have to be performed one clock cycle (or more) 
before the data is needed, it is expected that the index variabie is set to the correct value 
before the clock cycle in which the actual register operation takes place. Notice that in 
case of a one-dimensional register the value of the index variabie is assumed to be the 
lower index of the address; the upper index is determined by adding the wordlength to 
the lower index (see the templates for registeraccessin section 5.3). 
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6. Testcase 

Of course, the reptacement tool bas to be tested to check its functionality in daily life prac
tice. The reptacement tool is to be used for the first time in the current project of the Dig
ital Video }Yocessing (DVP) group at PCALE: a Dernultiplexer/Descrarnbler IC as part of 
Digital TV Receivers. Therefore the Dernultiplexer/Descrarnbler is used as the final test
case for the developrnent of the reptacement tool. 

In this chapter that testcase is discussed. Pirst the Dernultiplexer/Descrarnbler as part of 
Digital TV Receivers is reviewed, then the Dernultip lexer/Descrambler is looked into in 
sorne detail. The next chapter is involved with the tests thernselves, including the test that 
bas been performed with the Dernultiplexer/Descrarnbler. The interested reader is referred 
to [5] for a complete description of the Dernultiplexer/Descrarnbler. 

6.1. Digital TV Receiver 

Nowadays there is a worldwide race towards digital TV transmission systerns. This race 
was triggered by the developrnent of digital image cornpression standards. Arnong these 
standards are two standards defined by the Moving fictures .Expert Group (MPEG) frorn 
the !nternational.S.tandards Organization (ISO): the MPEG-1 standard and the MPEG-2 
standard. 

The MPEG-1 standard is a digital image cornpression algorithrn originally intended for 
digital storage media. MPEG-1 is capable of reproducing full motion video at bit rates 
around 1.5 Mbit/s. The MPEG-1 standard is airned at non-interlaced systerns. 

MPEG-2 is an extension to MPEG-1 in the sense that it enables full motion image repro
duetion at bit rates up to and including 15 Mbit/s (hence resulting in a higher image reso
lution). The MPEG-2 standard is airned at digital TV braadcast systerns. Since most 
braadcasting systerns are interlaced, MPEG-2 is better suited for braadcasting systerns 
than MPEG-1. 

Note that both the MPEG-1 and MPEG-2 standard do not define an irnplernentation. Only 
the syntax and the sernantics of digital image cornpression are defined by these standards. 
Por an extensive description of the MPEG-1 and MPEG-2 standards, see [3] and [4]. 

Apart frorn a reduction in bandwidth requirernents through image cornpression, a digital 
TV braadcast systern involves rnultiplexing and rnodulation. Por digital TV broadcasting, 
satellite, cable and terrestrial transmission are considered. Por the various transmission 
media, different rnodulation forms are envisaged. Purthermore, as each of the media bas 
its own specific error characteristics, various channel coding rnethods such as Reed-Solo
rnon or Viterbi, are considered. Multiplexing is the technique bebind the combination of 
video, audio and text services into a single bit strearn. In present day TV systerns .Ere
quency Division Multiplexing (PDM) techniques are being used for this purpose. How
ever, digital TV braadcasting has a tendency towards Iirne Division Multiplexing (TDM). 
Video, audio and text data are carried in fixed length packets. These packets are braadcast 
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in random succession. The transmission order of the packets largely depends on the 
amount of channel capacity each individual service requires. 

Testcase 

The combined Demultiplexer/Descrarnbler that is currently being developed by the DVP 
group at PCALE is intended for use in MPEG-2 based Digital TV Receivers, possibly 
incorporating conditional access. Such receivers can be implemented for instanee in a 
Digital Video Braadcasting (DVB) top set box or in an integrated Digital TV Receiver. To 
get an idea of such applications, an example of a Demultiplexer/Descrarnbler system con
tiguration is shown in tigure 29. 

Conditionat 1+------+1 jJ.C 
Access 

System 

Demodulator 

& 

Forward Error Corrector 

Souree Decoder 

A 

Teletext 

Decoder 

FIGURE 29. Example of a Demultiplexer/Descrambler system contiguration 

Apart from the Demultiplexer/Descrambler unit itself, this contiguration contains a chan
nel decoder module consisting of a demodulator and a forward error corrector, souree 
decoders A and B, a system micro-controller (jJ.C) and a conditional access system. The 
main function of the Demultiplexer/Descrambler is to separate relevant data from an 
incoming data stream and pass it on to both the individual souree decoders and the system 
micro-controller. In addition, parts of selected data streams can be descrambled, either 
intemally or extemally. For this purpose the Demultiplexer subsystem contains the 
descrambler part of a conditional access system. In the next section the Demultiplexer/ 
Descrarnbler is looked into in more detail. 

6.2. The Demultiplexer/Descrambler 

The intemal structure of the MPEG-2 Demultiplexer/Descrambler is shown in the func
tional block diagram in tigure 30. The block diagram indicates the main functional entities 
in the Demultiplexer/Descrambler. 
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FIGURE 30. Demultiplexer/Descrambler functional block diagram 

The functional entities and their meaning are: 

• MPEG-2 syntax parser 

The MPEG-2 syntax parser parses so-called transport streams that comply with the 
MPEG-2 Systems specification. 

• Error handling 

Error handling is invoked whenever an error is detected. 

• lnternal descrambler 

The internal descrambler descrambles the incoming data stream. 

• External descrambler interface 

The external descrambler interface is for the communication with an optional external 
de scrambler device. The throughput delay of the external descrambler is compensated 
for in the interface module. 

• Teletext filter 

The !eletext (TXT) filter generates a teletext doek and provides aserial TXT data 
stream. 

• High Speed data filter 

The High Speed (HS) data filter retrieves entire transport packets from the input stream; 
the filtered data is stored in a .Eirst In .Eirst Out (FIFO) buffer. 
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• Auxiliary data filter 

The auxiliary data filter derives data from the transport strearn. Auxiliary data is pro
tected by a Çyclic Redundancy Check (CRC) code, which is checked and removed by 
the filter. 

• Application Data Filter 2 

This data filter in fact does notfilter at all, it merely passes the entire transport stream 
on in byte format. In addition, a byte strobe signal (indicating consecutive bytes) and a 
header byte indicator signal are generated. 

• Application Data Filter 1 

This data filter is intended for video data and has a vendor specific interface. It selects 
f.acketized Elementary S.tream (PES) data and passes it to the video FIFO buffer. Time
stamps are also obtained from the PES stream. 

• Application Data Filter 0 

As Application Data Filter 1, except that this filter is for audio data. 

• Program Clock Reference processor 

The f.rograrn Clock Reference (PCR) processor is capable of regenerating a local sys
tem time clock. A local clock counter generates an absolute timing value which is used 
to verify the phase relationship between the local system time clock and the transmitter 
reference clock. 

• Two time-stamp processors 

The time-stamp processors are for synchronization of the attached souree decoders. 
These processors compare incoming time-stamps with the local absolute time value 
generated by the PCR processor. In case of equality an interrupt is generated and sent to 
the micro-controller (!lC) for further handling. 

• Two FIFO buffers with buffer control 

These buffers are intended for the interfacing between different clocking systems. 

• Micro-controller interface 

The micro-controller (!lC) interface provides protocol handling for the 1/0 bus and con
tains filters for retrieving f.rogram S.pecific !nformation (PSI) and entidement message 
data from the transport strearn. 

One or more blocks are used as testcase for DSA, for instanee the PSI filter, since it con
tains a large register that cannot be mapped effectively to flexible hardware. 
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7. Testing 

Evidently the tooi that performs the register replacement has to be tested afterits develop
ment. Testing DSA means that all the steps of the non-standard emulation flow described 
in figure 8 on page 21 are taken, with a suitable testcase as input for the first step. The test
case that is used to this end is the PSI filter in the micro-controller interface of the Demul
tiplexer/Descrambler. Correctness of the functionality of the tooi is shown by comparing 
the simulation results before and after the register replacement and theemulation results; 
these results must be identical. The testcase and its relevanee have been explained in 
chapter 6 and the test results are described in section 7 .2. 

However, before putting a lot of effort into the development of DSA, the principle of reg
ister replacement has to be tested first. In principle the parser of the Demultiplexer/ 
Descrambler could be used for such a test. But when the time had come totest the princi
ple of register replacement, there were a number of problems that inhibited the use of the 
parser of the Demultiplexer/Descrambler as testcase. The problems were: 

1. The parser had other synthesis problems than only a large unsynthesizable register. The 
DSA tooi of L.P.M. van Lieshout (see [16]) for solving those problems, was still under 
development and could not be used. Rewriting the complete design was too laborious. 

2. The register in the parser did not comply with the replacement restrictions. Again, 
rewriting the design was too laborious. 

3. The parser requires a high clock frequency (about 30 MHz) while the fastest RAMs 
available at that time were relatively slow (response time of 25 ns). This leaves about 8 
ns for design functionality. Looking at the complexity of the parser and especially at the 
data calculations before a write operation or after a read operation on the register, it is 
evident that it is impossible to create a bread board for the parser in combination with 
such a slow RAM. 

4. The only available synthesis tooi at that moment, Autologic, refused to synthesize con
straints. This means that the synthesis tooi could not be infl.uenced with regard to tim
ing. 

Hence a simple testcase requiring a relative low clock frequency had to be written so that 
this could serve as testcase for the principle of register replacement. This simple testcase 
and the testresults belonging to it are described in the next section. 

7 .1. Testing the principle 

As previously stated, there is a need for a simple testcase for testing the principle of regis
ter replacement prior to the development of the replacement tooi. The testcase for this pur
pose is a design containing a register and a design containing a RAM. Of course the regis
ter in the design fully complies with the replacement restrictions derived in section 4.2. 
The design containing the RAM is completely analogue to the design containing the regis
ter, except for the fact that the register replacement as described in chapter 4 is performed. 
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This is done by hand, since this test takes place before development of the reptacement 
tool. Fora complete description of the testcase please refer to appendix G. 

The main functionality of the design is formed by a state machine. In the design, in some 
states of the state machine the register is written, in other states the register is read. Very 
little time (about 8 ns) is available for design functionality. Also, constraints cannot be put 
on the design during synthesis since the synthesis tool does not synthesize designs with 
constraints. Therefore the most sensible thing to do is to make sure that the available time 
is not exceeded. This is done by performing no data calculations before a write operation 
or after a read operation. So this testcase cannot provide any guarantee about timing 
aspects; it can however indicate that thefunctionality of a register can be implemented in a 
RAM. 

Totest the principle of register reptacement both designs are simulated in a VHDL simula
tor to check design functionality. The comparison of the two simulations shows that the 
reptacement does not infiuence the functionality of the design: the two designs produce 
identical simulation results. 

In addition to the simulations, the design with the RAM is adapted for synthesis as 
described in section 4.4. Basically this means that the RAM component instantiation is 
removed from the design and that the port interface of the design is expanded with the sig
nals that are used for communication with the RAM. After this synthesis adaptation, the 
design is synthesized. Following synthesis, the synthesized design is mapped to EPLDs 
with the MAX +PLUS mapping tool of the Altera Corpora ti on (see [12]): the design can be 
successfully mapped to an EPM7032LC44-3 EPLD. With this EPLD and a CY7C171 
RAM from Cypress Semiconductor a bread board is built which is emulated. Comparison 
of this emulation with the previously conducted simulations shows that the bread board 
exhibits the same functionality as the design during the simulations. 

Since all three tests (the two simulations and the emulation) produce exactly the same 
results, the principle of register reptacement is established: the reptacement of a register 
by a RAM while preserving the functionality of the original design can be done if the reg
ister complies with eertaio restrictions. 

7.2. Testing the reptacement tooi 

After the principle of register reptacement was established, a tool was developed to auto
mate the register replacement. The tests that have been performed to test this reptacement 
tool are described in this section. 

1. PSI filter 
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The PSI filter as part of the micro-controller interface was the fi.rst testcase for the 
reptacement tool. The large, two-dimensional register in this PSI filter consistsof 512 
words of 16 bits. However there were no RAMs available with a 16 bit wordlength. 
This problem was reported by the reptacement tool and it was solved by changing the 
wordlength of the available RAMs in the RAM library to 16. This means that several 
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RAMs have to be used parallel on the bread board. All corresponding pins of all RAMs 
except the data pins have to be connected while the data pins of the RAMs are con
nected to a part of the data pins of the design. For example in case of RAMs with a 
wordlength of 8 bit, one RAM is used for the lower 8 bits of the data while the other 
RAM is used for the upper 8 bits of the data. 

After this change in the RAM library the reptacement was attempted again. The 
reptacement tool now reported that the active edge mark could not be found. Analysis 
of this problem showed that this error was due to concurrency. The register in the PSI 
filter was described as concurrent with the index variable. Since concurrency is not sup
ported by the reptacement tool, the reptacement cannot be performed. 

2. Other testcases 

To show that the reptacement tool performs a functionally correct reptacement pro
vided that the register is written compliant with the reptacement restrictions, the test
case that was used for testing the principle was used again. 

Besides the original testcase which contains a one-dimensional register, the testcase has 
also been described with a two-dirnensional register. Both testcases were simulated in a 
VHDL simulator and showed identical functionality. 

After simulation the two testcases were converted by the reptacement tool. The tool 
reported a successful conversion in both cases. To verify that the reptacement had not 
changed the functionality of the testcases, the testcases were simulated again in the 
VHDL simulator. These simulations showed that the functionality had not changed in 
either case due to the replacement. 

Next the testcases were synthesized with the CORE synthesis tool and subsequently 
mapped with the MAX+PLUS mapping tool. Both designscan be successfully mapped 
to an EPM7032LC44-3 EPLD. Two bread boards were built each with one such EPLD 
and a CY7C171 RAM from Cypress Semiconductor. Then the bread boards were emu
lated. Comparison of the emulations with the previously conducted simulations showed 
that the bread boards exhibit the same functionality as the designs during the sirnula
tions. 

Since all tests (the simulations and the emulations) produce exactly the same results, 
the functional correctness of the reptacement tool is established. The reptacement tool 
replaces one-dimensional and two-dimensional registers by a RAM while preserving 
the functionality of the original design (provided of course that the original design com
plies with the reptacement restrictions). 
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8. Features 

Besides the basic functionality of the tooi, which is the replacement of a register by a 
RAM, some features are added to increase usability and fiexibility of the tooi. All these 
features are discussed in this chapter. The features are: 

1. The tooi is controlled by means of a control file, in which parameters can be set that 
infiuence the effect of the tooi. Since the number of parameterscan be rather large, they 
are passed on to the tooi by means of a control file instead of by means of command 
line parameters. This control file is the first command line parameter. 

2. Also the replacement tooi must be provided with a library of RAMs. In this RAM 
library the data of the RAMs that can be used for the replacement is stored. 

However, storage of the necessary data of RAMsisnot the only function of the RAM 
library. The RAM library also makes automatic selection of a RAM possible: when the 
designer does not specify a specific RAM to use for the replacement, the replacement 
tooi attempts to select a RAM from the library. 

3. Another feature is template checking. The tooi automatically verifies the HL descrip
tion on its compliance with the templates that were composed in chapter 5. 

4. Furthermore the tooi incorporates some error checking. In case the tooi encounters 
VHDL constructs that make the register replacement impossible or that guarantee erro
neous results, the tooi issues an error message and ceases the replacement. 

5. The tooi also generates a transcript file that lists the actionsof the tooi. This transcript 
file contains the information. 

The replacement tooi is called by a command with the following syntax: 

r2r <Control file> <files file> 

The first argument, the control file, is thoroughly described in the next section. The second 
argument is aso-called files file. The files file lists all files among which a design can par
titioned. The order of listing these files is ascending in the sense that the top hierarchical 
level of a design is described in the last file. An example of a files file is listed in 
appendix I. 

8.1. Tooi control 

The effect of the tooi is determined by some essential data and by some extra, non-essen
tial data. The essenrial data is passed to the tooi by means of mandatory parameters. These 
mandatory parameters are discussed in section 8.1.1 in more detail. 

The extra, non-essential data does not need to be passed on to the tooi. If some non-essen
tial data is passed on to the tool, it is passed on as optional parameters. These optional 
parameters are explained insection 8.1.2 along with their infiuence on the effect of the 
tooi and their default values. 
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In appendix H an example of a control file is listed. All parameters, mandatory and 
optional, are embodied in this example. 

8.1.1. Mandatory parameters 

The register reptacement can only be performed when some essential data is known. Since 
this data differs from design to design, it cannot be assigned default values. Therefore this 
data must be passed to the tool as parameters in the control file every time it is called. This 
subsection explains these mandatory parameters and their meaning. In the next subsection 
the other, optional tool parameters are discussed. 

The mandatory parameters and their meaning are: 

• CLOCK_FREQUENCY 

The doek frequency (in MHz) on which the total design must function must be speci
fied in order for the tool to be able to check whether or not the RAM that is used for the 
reptacement meets the speed requirements. It is also used as a criterium for the auto
matic selection of a RAM. 

• REGISTER_TO_REPLACE 

With this parameter the designer can tell the tool the name of the register that has to be 
replaced; the reptacement is almost completely based on finding occurrences of this 
name in the VHDL files. 

• REGISTER_LENGTH 

This parameter specifies the length of the register indicated by the parameter REGIS
TER_TO_REPLACE. It must be specified in order for the tool to be able to check 
whether or not the RAM that is used for the reptacement meets the memory require
ments. It is also used as a criterium for the automatic selection of a RAM. 

It is of course possible that the tool automatically determines the length of the register 
by reading the range from its declaration. However, ranges in VHDL can be complex 
expressions that require a lot of tool complexity. Therefore the automatic determination 
of the length of the register is left out. 

• INDEX_ VARIABLE 

This parameter indicates the name of the variabie that is used for indexing the register 
that is being replaced. By demanding that the designer uses a variabie for indexing of 
the register instead of direct indexing it is guaranteed that the designer always indexes 
the same amount of data. Furthermore, through the use of a variable, it is always clear 
what address mustbesent to the RAM, namely the value of this variable. 

• INDEX_LENGTH 

58 

This parameter specifies the length of the indexed slices of the register. It must be spec
ified in order for the tool to be able to check whether the width of the RAM that is used 
for the reptacement suffices. It is also used as a criterium for the automatic selection of 
a RAM. 
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Por the same reason as with the parameter REGISTER_LENGTH, automatic determi
nation of the length of the index variabie is left out. 

• ACTIVE_EDGE_MARK 

A VHDL statement for the default value of the read_ write signal and a VHDL state
ment for assigning a value to the sampling register every clock cycle must be added 
when replacing the register. In order to eosure that these VHDL statements are exe
cuted every clock cycle, they are stated right after the VHDL code for detecting the 
active edge. This implies that the tool must know what VHDL code indicates the detec
tion of the active edge of the clock. Every synthesis tool uses its own specific definition 
of what VHDL code indicates the detection of the active edge of the clock. Therefore 
the string to u se for the detection of the active edge of the clock must be specified by 
means of this parameter. 

• 2D_TYPE 

In order forthereplacement tool to be able to check the deelaratien of a two-dimen
sional register, the name that is used for the type of the two-dimensional register bas to 
be specified. The 2D _TYPE parameter is used to this end. Por one-dimensional regis
ters this parameter is left out of course. 

8.1.2. Optional parameters 

Besides the mandatory parameters reviewed in the previous section, some optional param
eters can also be set in the control file. lf these parameters are not specified, they are given 
a default value. These parameters are intended to increase tool flexibility. 

The optional parameters, their meaning and default values are: 

• RAM_NAME 

This parameter is used to specify the name of the RAM to u se for replacement. The tool 
uses the data of this RAM for configuring the package file (see optional parameter 
PACKAGE_PILE) and for checking suitability of the RAM. When this parameter is not 
specified, the tool attempts automatic selection of a suitable RAM (see sectien 8.2.2). 

• SIMULATION_PILES_EXTENSION 

Running the tool results in output files which can be used for simulation, so the result of 
the replacement can be checked as prescribed in the PCALE Design Flow (see sectien 
2.1). These simulation output files have narnes equal to the original file narnes extended 
with an extension as indicated by this parameter. When this parameter is not set, a 
default value of ".sim.vhdl" is assumed. 

• SYNTHESIS_PILES_EXTENSION 

Besides the simulation output files, the tool also produces synthesis output files. These 
synthesis output files are used for synthesizing the design after replacement and after 
the result of the replacement has been verified through simulation. These synthesis out-
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put files have narnes equal to the original filenarnes extended with an extension as indi
cated by this parameter. Not setting this parameter results in a default value of 
".syn.vhdl". 

• TEMPORARY _FTI..,ES_EXTENSION 

When replacing the register by a RAM, the tool needs sorne ternporary result files. The 
narnes of these files are equal to the original files extended with an extension as indi
cated by this parameter. The default value for this parameter is ".r2r". The rnain pur
pose of this parameter is that the ternporary files of the tool can be recognized (for 
instanee in case of a tool crash) and that the extension can be in:fluenced so that 
unwanted filenarnes can be avoided. 

• PROCEDURE_BODY _FILES_EXTENSION 

In case of a procedure call, the procedure call has to be replaced by the procedure body. 
Since the procedure body can reside in the sarne file as the procedure call and since files 
cannot be used for two purposes at the sarne time (finding procedure calls and extract
ing procedure bodies), the tool makes a copy of the file containing the procedure body. 
This copy has a filename equal to the original files extended with an extension as indi
cated by this parameter. As with the parameter TEMPORARY_FILES_EXTENSION, 
the rnain purpose of this parameter is recognition of the files and avoiding unwanted 
filenarnes. The default value for this parameter is ".pbf'. 

• PACKAGE_FTI..,E 

The name of the package file that is created can be stated by rneans of this parameter. It 
has a default filename of "definitions.vhdl". 

• PACKAGE_FRAME_FILE 

Starting with a suitable frarnework, the needed package file is generated by the tool. 
The name of the file containing this frarnework can be entered through this parameter 
The default file name for this file is "definitions.vhdl.frarne". 

• ADDR_GEN_Fll.,E 

This parameter is used to state the name of the file to create the contigured addressgene
rator in. The default value for this parameter is "rarn.vhdl". 

• ADDR_GEN_FRAME_FILE 

Sirnilar to the frarnework file for the package, the name of the frarnework file for the 
addressgenerator can entered. The default name for this file is "rarn.vhdl.frarne". 

• RAM_LIBRARY _FTI..,E 

This parameter states the name of the file containing the RAMs that can be used for 
replacernent. This file comains the necessary data of the RAM that is used for the 
reptacement and this file is used for the autornatic selection of a RAM. Default this 
parameter takes on the value of "rarn.library". 

• TRANSCRIPT_FILE 
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The actions of the tool and possibly errors and warnings are written to a transcript file 
so that the behaviour of the tool can be still be viewed afterwards without rerunning the 
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tool. The name of this transcript file is indicated by this parameter and has as default 
value of "transcript.r2r". 

The above explained optional parameters influence the behaviour of the reptacement tool. 
The following optional parameters influence the VHDL code that is inserted. They can be 
used to alter the narnes ofthe CONSTANTS, VARIABLES and SIGNALS that are 
involved in the register replacement. These parameters should be set when the designer 
does not want to use the default narnes or when the default narnes already occur in the 
design before it is converted by the reptacement tool. 

• WORDLENGTH_CONSTANT_NAME 

The reptacement tool has to know the name of the constant that indicates the length of 
the words involved in register and RAM operations. This constant has a default name 
of "wordlength" which can be overwntten by setting WORDLENGTH_CONSTANT_
N AME. This parameter should be used when the default name has already been used in 
the design to another end. 

• NUMB_OF _ADDR_BITS_CONSTANT_NAME 

Similar to WORDLENGTH_CONSTANT_NAME, the name of the constant in the 
package file indicating the number of address bits of the RAM can be given a value dif
ferent from the default value of "numb_of_addr_bits" by means of this parameter. 

• NUMB_OF _ WORDS_CONSTANT_NAME 

A lso the name of the constant indicating the number of words of the RAM can be given 
a non-default value different from the value of "numb_of_ words". 

• REGISTERLENG TH_ CONSTANT _NAME 

The fourth constant in the package file whose name can be influenced, is the name of 
the constant indicating the length of the register. It has a default value of "register
length". 

• SAMPLING_REGISTER_NAME 

As with the above constants, the name of the sampling register that samples the output 
of the RAM every clock cycle can be explicitly stated by means of this parameter; 
default value for this parameter is "sample_reg". 

• ADDRESS_TO_ADDR_GEN_SIGNAL_NAME 

The name of the address signal that is an input of the addressgenerator can be set by 
means of this parameter. The default value for this parameter is "address". 

• DATA_RAM_IN_SIGNAL_NAME 

The name of the signal representing the data that must be stored in the RAM can also 
be set. The default signal name is "data_ram_in". 

• READ_ WRITE_SIGNAL_NAME 

The name of the read_ write signal indicating the RAM whether to read or write can be 
given another name than the default of"r_w". 
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• DATA_RAM_OUT_SIGNAL_NAME 

The name of the signal with the data that is read frorn the RAM can be entered through 
this parameter; otherwise it takes on the value of "data_rarn_out". 

• RAM_ENABLE_SIGNAL_NAME 

Every RAM must be enabled before an operation can be performed. The name of the 
signal that is used for the enabling of the RAM can be adjusted by rneans of this 
optional parameter; its default value is "ce". 

• ADDRESS_TO_RAM_SIGNAL_NAME 

This parameter states the name of the signal that represents the address of the data in 
the RAM, and it bas a default value of "address_to_rarn". 

8.2. RAM library 

When the reptacement of a register by a RAM is to be performed, the characteristics of the 
RAM that is used for this reptacement have to be known. Of course these characteristics 
could be made known to the tool in the control file. However, since specifying these char
acteristics in the control file is very disadvantageous, the characteristics are specified in a 
library of RAMs. The benefits of this approach are: 

• Maintenance 

While every design bas its own specific control file and while every designer rnay have 
its own control files, the characteristics of the RAMs are present in one file only which 
can be shared between rnany designers. This way rnaintenance of the characteristics is a 
one time change in the library. Besides not only the characteristics of RAMscan be eas
ily updated, but new RAMs and obsoleteRAMscan be added and rernoved very easily 
too. 

• Possibility of automatic selection 

When the characteristics of the RAM to use for the reptacement are specified in the 
control file, only the characteristics of one RAM are known to the tool, while a RAM 
library can contain the characteristics of rnany different RAMs. The presence of (the 
characteristics of) multiple RAMs offers the possibility of autornatically selecting a 
RAM frorn the RAM library: the designer only has to specify the doek frequency of the 
design and the size of the register after which a suitable RAM is extracted frorn the 
library (see section 8.2.2). 

• Ease ofuse 

The characteristics of every RAM only have to be inserted in the RAM library once. 
After that the designer only bas to know the name of the RAM when he wants to force 
the tool to use a specific RAM; or the designer can exploit the possibility of autornatic 
selection when the designer bas no knowledge of the RAMs. 

The structure of the library is discussed insection 8.2.1, while the autornatic selection 
frorn the library is reviewed in more detail in section 8.2.2. 
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8.2.1. Structure of the library 

The structure of the RAM library is simply a list of RAMs. An example of a RAM library 
is listed in appendix J. For every RAM in the library there are some characteristics that 
must or can be set. These characteristics are: 

• RAM_NAME 

In order to be able to distinguish between the characteristics of each RAM, every RAM 
must have its own unique name, for instanee the part number code that every IC has. 
This name must be the first characteristic of every RAM in the library: every line after 
the name of a RAM is assumed to state a characteristic of that RAM until the name of 
the next RAM in the library is encountered. All characteristics of a RAM other than 
RAM_NAME, can be statedinrandom order. 

Stating the name of a RAM in the control file forces the tool to use that RAM for the 
replacement; notstatinga name of a RAM in the control file results in automatic selec
tion of a suitable RAM. Any string can be used for this characteristic. 

• WORD_LENGTH 

The RAM is used to store words in. The lengthof thesewordsis indicated by the char
acteristic WORD_LENGTH. No default value is assumed for this characteristic since it 
differs from RAM to RAM. It is mandatory to specify this characteristic and it must be 
stated as an integer larger than zero. 

• NUMB_OF _ADDR_BITS 

Every word in the RAM has its own specific address. This address consists of as many 
bits as indicated by NUMB_OF _ADDR_BITS. The total number of wordsin the RAM 
is of course 2NUMB_OF_ADDR_BITs. Hence NUMB_OF _ADDR_BITS doesnothave to be 
specified as long as the parameter NUMB_OF _ WORDS is set for the RAM. When 
both are set, they must be consistent of course. All integers larger than zero are valid 
values for this characteristic. 

In the package a CONSTANT is declared with the value of NUMB_OF _ADDR_BITS. 
This CONSTANT is symbolically used in the inserted VHDL code, for instanee in the 
declaration of the address signal. The VHDL code for this declaration is of the follow
ing form: 

SIGNAL address_in: std_ulogic_vector(numb_of_addr_bits- 1 DOWNTO 0); 

Of course, the value of NUMB_OF _ADDR_BITS_CONSTANT_NAME (one of the 
optional parameters in the control file) is inserted in the above declaration insteadof 
"numb_of_addr_bits". 

• NUMB_OF_WORDS 

The number of words in the RAM is indicated by this characteristic. The total number 
of wordsin the RAM is of course equal to 2NUMB_OF_ADDR_BITs. Hence the characteristic 
NUMB_OF _ WORDS doesnothave to be specified as long as the above mentioned 
characteristic NUMB_OF _ADDR_BITS is set for the RAM. When bothare set, they 
must be consistent of course. 
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This characteristic is not used in the inserted VHDL code. It is used to verify or deduct 
the characteristic NUMB_OF _ADDR_BITS; valid values are positive powersof 2. 

• ENABLE_ VALUE 

The RAM can only perform an operation when it is enabled. The characteristic called 
ENABLE_ VALUE specifies whether enabling of the RAM is high active or low active. 
When this characteristic is not specified, it is assumed to be low active. Low activity is 
indicated by the value '0', high activity by the value '1 '. 

• RESPONSE_TIME 

This characteristic specifies the response time of the RAM, which is the time the RAM 
takes to perform one operation. It is mandatory that this characteristic is set for every 
RAM, since it is needed for the simulation of the HL description after the register 
replacement and since it differs from RAM to RAM. 

Any positive integer can be used to state the value for RESPONSE_ TIME in nanosec
onds. Stating 0 nanoseconds as the value for the response time of a RAM is allowed. 
However, simulations with this value are incorrect since in reality RAMs always take a 
certain amount of time for an operation. The reason for allowing this value is that the 
designer may want to use it for comparison with register simulations. Register opera
tions do not take time in simulations. 

• READ_ VALUE 

This characteristic indicates what value has to be assigned to the read_ write signal of 
the RAM in order for the RAM to performa read operation. READ_ VALUE can take 
on the value of '0' or '1 '. 

Note: it must be opposite to the value of the characteristic WRITE_ VALUE; when 
WRITE_ VALUE is specified, READ_ VALUE does not need to be specified; when both 
characteristics are not specified, READ _ VALUE assumes the default value of '1 '. 

• WRITE_ VALUE 

This characteristic indicates what value has to be assigned to the read_ write signal of 
the RAM in order for the RAM to performa write operation. Just like the characteristic 
READ_ VALUE, WRITE_ VALUE can take on the values '0' or '1'. 

Note: it must be opposite to the value of the characteristic READ_ VALUE; when 
READ_ VALUE is specified, WRITE_ VALUE does not need to be specified; when both 
characteristics are not specified, WRITE_ VALUE assumes the default value of '0'. 

• STATUS 
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This "characteristic" can take on three values: AVAILABLE, ON ORDER or NOT 
AVAILABLE. When it is notspecified fora RAM, it takes on the default value of 
AVAILABLE which simply means that the RAM is available. However, a RAM with a 
STATUS of ON ORDER causes a waming to appear for the designer that the RAM is 
currently not available but on order; a STATUS of NOT AVAILABLE causes a warning 
that the RAM is not available. The STATUS characteristic is also used for the automatic 
selection of a RAM (see section 8.2.2). 
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8.2.2. Automatic selection from the library 

When the designer does not specify a specific RAM to use for the reptacement in the con
trol file, DSA attempts automatic selection of a RAM in the RAM library that best 
matches the requirements imposed on an adequate RAM. To this end, DSA starts with the 
creation of a list of all the RAMsin the RAM library. Then the automatic selection starts. 
The five consecutive steps in the processof automatic selection are: 

1. All inadequate RAMs are removed from the list. Adequacy of a RAM is based on three 
relations. The first relation verifies whether a RAM is fast enough in relationship to the 
clock frequency: 

response time < 
clock Jrequency 
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The second relation is todetermine whether the wordlengthof the RAM equals the 
lengthof the index variabie since the tool is (partially) basedon this equality: 

word length :::: index _length 

The third relation that is used to determine adequacy involves the memory capacity. 
The memory capacity of the RAM must at least be equal to the memory capacity that is 
needed by the register. So for a one-dimensional register the following relation must 
hold: 

word_length x number _of_words ;;::: register _length 

In case of a two-dimensional register another relation is used: 

number _of_ words ;;::: register _length 

Only if a RAM suffices the first two relations and the appropriate third relation, the 
RAM is considered adequate. 

When this step leaves no RAMs in the list, this means that the reptacement cannot be 
performed since there is no adequate RAM. Wh en only one RAM remains after this 
selection step, this RAM is automatically selected since apparently this is the only 
RAM that suffices the requirements. When there is more than one RAM that meet the 
requirements, the next selection step is taken. 

2. The second step in the selection process is based on the response time of the RAMs. 
Since a large amount of the available time within a clock period is consumed by the 
RAM, and since it is desirabie that as much time as possible is available for design 
functionality (in order to get the highest chance of success for synthesis), the fastest 
RAM is selected. 

3. When there are more than one adequate and equally fast RAMs available in the RAM 
library, the next selection step is taken. The RAMs with the smallest memory capacity 
are selected since in general larger RAMs cost more area on the final bread board 
(which must be kept as smallas possible of course). 

Emulation flow for designs with large memory requirements 65 



February 18, 1994 Features 

4. The last criterium on which a RAM is automatically selected, is the STATUS of the 
RAM. The selection is made in the following fashion: available RAMs are preferred 
over RAMs that are on order which in turn are preferred over not available RAMs. So 
when either all the RAMs have the same status or when the status of every RAM is not 
set, this step results in no further selection. 

5. When after all the previous steps in the selection process, DSA still canrtot decide what 
RAM to use for the replacement, the designer is asked to enter what RAM to use for the 
register replacement. The RAM that is then indicated by the designer must meet the 
requirements. Otherwise the designer is asked to re-enter a RAM until an adequate 
RAM has been entered. 

Possibly this adequate RAM is not the most optimal RAM. In that case the designer is 
given the opportunity to change his mind. Having changed his mind or not, the register 
replacement then proceeds. 

8.3. Template checking 

A design is verified on its compliance with the stated templates in the sense that a check is 
performed whether or not it can be guaranteed that the register to replace does not have 
two operations within one doek period. lf this guarantee cannot be assured, then the 
replacement tooi asks the designer whether or not to replace the register since the designer 
might be able to provide the guarantee. The templates are not checked for the index varia
bie in order to give the designer complete freedom to determine the address of the next 
RAM operation. 

8.4. Error checking 

During a run of the replacement tooi VHDL code is parsed, and while this takes place 
some checks are performed. These checks can lead to warnings when something errone
ous is suspected; when the tooi is sure that the register replacement cannot be performed 
or leads to erroneous results, this results in an error message and then the tooi stops run
ning without performing the replacement. 

Wamings occur in the following situations: 

• Syntax errors in the RAM library 

When the replacement tooi encounters syntax errors in the RAM library this is reported 
to the designer. Syntax errors are ignored and have no effect on the replacement tooi. 
Correct syntax for the RAM library is: <Characteristic> <value>. 

• Syntax errors in the control file 
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Similar to syntax errors in the RAM library, syntax errors in the control file are reported 
to the designer. Again, syntax errors are ignored and have no effect. Correct syntax for 
the control file is: <parameter> <value>. 
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• Default values for RAM parameters 

When default values are assumed for optional RAM parameters a warning is issued on 
what value is assumed for which parameter. 

• Zero response time of RAM 

When the response time of a RAM is specified as zero the designer is warned that sim
ulation of the design after replacement is in conflict with reality. In reality, RAMs 
always need a eertaio (positive) amount of time to perform an opera ti on. 

• STATUS parameter of RAM 

When the STATUS parameter of a RAM indicates that the RAM is on order or not 
available a warning is issued, stating the value of the STATUS parameter. 

Errors occur in a situation of: 

• Missing mandatory parameters in the control file 

When mandatory parameters are missing in the control file the replacement cannot be 
performed. An error message is generated, indicating which parameters are missing. 

• Illegal values for parameters in the control file 

When a parameter is stated with an illegal value the parameter and the illegal value are 
reported in an error message. 

• Identical file extensions and file narnes in the control file 

Several file extensions and file narnes are optional parameters in the control file. The 
tool can only function correctly when these parameters do nothave identical values. 

• Incorrect active edge mark 

The tool scans the process that contains the register to replace for the occurrence of the 
active edge mark. When the specified active edge mark cannot be located the replace
ment is impossible. An error message reports this error. 

• Function call contains register 

When the register to replace is parameter in a function call the replacement is not per
formed. An error message staring the function call is generated. 

• Function call in procedure call 

Procedures bodies are inserted when a procedure call with the register to replace as 
parameter is encountered. This insertion is not supported when one of the parameters of 
the procedurecallis a function call. However, this situation is detected and reported. 

• Missing mandatory charaderistics in the RAM library 

When one or more mandatory characteristics are missing for a RAM in the RAM 
library this situation is reported to the designer. An error message is generated, indicat
ing which characteristics are missing. 

• Illegal values for charaderistics in the RAM library 

When a characteristic is stated with an illegal value the characteristic and the illegal 
value are reported in an error message. 
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• Inconsistently specified RAM characteristics 

The characteristics READ_ VALUE and WRITE_ VALUE and the characteristics 
NUMB_OF _ WORDS and NUMB_OF _ADDR_BITS must be specified consistently. 
When they are inconsistently specified, an error message is generated stating the incon
sistency. 

• Characteristic RAM_ NAME is oot the first specified characteristic 

When the fi.rst specified characteristic of a RAM in the RAM library is not the charac
teristic RAM_NAME, then the tooi reports this. 

• Empty RAM library 

The RAM library must at least contain one RAM. The replacement tooi verifies 
whether this is indeed the case. 

• lmpossible automatic selection due to insufficient RAMs 

During automatic selection of a RAM from the RAM library, every RAM is checked 
for compliance with the requirements imposed by the design. When none of the RAMs 
in the RAM library complies with the requirements, register replacement is impossible. 

• RAM stated in control file does oot exist in RAM library 

When the RAM specified by the designer in the control file cannot be located in the 
RAM library, the tooi notifies the designer of this error. 

• Incorrect declarations of register to replace and index variabie 

The declarations of the register to replace and of the index variabie must be according 
to the templates that were stated forthese declarations (see section 5.1). Any vialation 
of these templates results in an error. 

• Name of register occurs in more than one entity 

When the name of the register to replace occurs in several entities the tooi cannot 
decide which one of these registers has to be replaced. Therefore this situation is also 
recognized as error. 

In genera!, the errors or warnings do not occur. Only when the designer makes mistakes or 
when the RAM library file is adapted the stated errors or warnings appear. 

8.5. Transcript file 

All messages generated by the replacement tooi are written to a transcript file so that the 
designer can review the actions undertaken by the tooi. The name of this file can be stated 
in the control file (see section 8.1). When it is not stated in the control file the default name 
"transcript.r2r" is assumed by the tool. The messages generated by the tooi include: 

• error and warning messages 

• messages on the files that are opened 

• messages on automatic selection of a RAM from the library 

68 Emulation flow for designs with large memory requirements 



Features February 18, 1994 

• messages on template checking 

• messages on inserted VHDL code 

• messages on register assignments, register accesses, procedure calls and function calls 

• messages on insertion of procedure bodies and insertion of declaration lines 

The messages are self-explanatory. All these messages are also shown on screen while the 
tool is running and the reptacement takes place. 
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9. Conclusions and recommendations 

Various conclusions can be drawn and various recomrnendations can be given for the 
aspects involved in the development of an emulation flow for designs with large memory 
requirements. The conclusions and recommendations are discussed in this chapter in rela
tion to these aspects. 

The conclusions are: 

• VHDL 

Unfortunately, all VHDL constructs available for handling actions and reactions 
between entities (concurrent statements) are not synthesizable. Delay caused by an 
external device can only be accounted for in synthesis tools at the beginning or at the 
end of a clock cycle by means of constraints. Delay in the middle of a clock cycle 
( action andreaction between ports) is impossible in synthesizable VHDLand in con
straints. 

• Synthesis libraries 

VHDL is not suited as basis for synthesis library building blocks. One of the major 
causes for this is that the number of ways to describe the same functionality is almost 
infinite. 

• Register replacement 

Under severe restrictions the register reptacement can be performed. lf a register is 
described in a design according to the restrictions, then the reptacement can be per
formed while preserving design functionality. The restrictions are: 

1. One register operation during one clock cycle 

2. Read operations are anticipated 

3. Operations on the same address are separated by another operation on another 
address 

• Templates 

The templates that have been given cover the guarantee on one register operation at a 
time; that is correct u se of the templates guarantees that there is one register statement 
at the most during one clock cycle and that read operations are anticipated. The restrie
tion on separation of operations on the same address cannot be incorporated in the tem
plates since it requires dataflow analysis. This dataflow analysis is very complex and 
maybe even impossible in VHDL. 

• PCALE Design Flow 

Emulation is a useful extension to the Existing PCALE Design Flow. The fact that the 
mapping results cannot be verified through simulation is an acceptable deviation of the 
philosophy bebind the PCALE Design Flow, since the final verification through emula
tion is still present in the design flow. Also, between mapping and bread board building, 
no design actions take place so not simulating the mapping result but emulating the 
bread board is acceptable. 
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The recommendations are: 

• Synthesis libraries 

It is desirabie to have VHDL support for synthesis libraries. VHDL support makes re
evaluation of the synthesis tools worthwhile. 

• Reptacement tooi 

The tooi could be extended to support the reptacement of registers that are declared as 
SIGNAL too, insteadof only supporting the reptacement of registers that are declared 
as VARIABLE. This implies that register statementscan occur in multiple entities. 
Hence the tooi would have to be extended in a way that the reptacement is done not 
only within one entity, but over multiple entities. The fact of multiple entities has also 
implications with regard to the templates: the templates still hold inside one entity, but 
templates cannot be extended to cover the guarantee over multiple entities, since it is 
not feasible to exclude the concurrency that comes with multiple entities. 

The tooi currently supports indexing from 0 tosome positive value. The tooi can be 
extended to support any indexing range. Since the addresses for the RAM must start at 
0, the addressgenerator must be adapted because a direct translation is then no longer 
valid; the register addresses have to be linearly shifted in the addressgenerator over a 
di stance of the lowest index value. 

The tooi could be extended to support other RAMs too, for instanee RAMs with sepa
rate read and write signals. Also RAMs with a wordlength different from the lengthof 
the index variabie can be considered. In case the RAM wordlength is larger, the unused 
part of the words in the RAM can be stuffed with zeros. In case the RAM wordlength is 
smaller, several RAMs can be used parallel. 

The replacement, the reptacement restrictions, the reptacement tooi and the templates 
are all based on full random access since this is the most general case. However, in 
some occasions a FIFO might be sufficient insteadof a full random access RAM. Possi
bly the restrictions for reptacement then become less severe. So further investigation is 
needed for this kind of replacement. 

• Templates 

In principle, the reptacement tooi can be extended to support better template checking. 
At this moment the tooi only takes into consideration where register statements occur 
and tries to guarantee the reptacement restrietion from that evaluation, without looking 
at the conditions under which the statements occur. If these conditions are also taken 
into consideration, then the guarantee that the restrictions are met can be given for more 
designs. Furthermore, when the tooi also supports register of type SIGNAL, the "tem
plate" checking can be extended to check concurrency too. However, the concurrency 
makes this task very complex and it is not clear how this can be done. This kind of ver
ification, which in fact is dataflow analysis, might even be impossible within VHDL. 

• Synthesis tooi 
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Preferabie constraints are not entered by the designer when synthesis is performed, but 
are automatically derived from VHDL statements. When the synthesis tooi can be told 
to synthesize part of a design and to take into account the timing of the part of the 
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design that is not synthesized, then this is much more flexible than splitting the design 
description before synthesis. 

Also it is desirabie that the synthesis tooi has VHDL output, thus enabling functional 
verification after synthesis. 

• Mapping tooi 

Preferably the mapping tooi has VHDL output. Then functional verification is possible 
after the mapping step in the emulation flow. 

• PCALE Design Flow 

The philosophy behind the PCALE Design Flow is based on two principles: specifica
tion and verification. The latter principle is not fully incorporated in the developed 
emulation flow. Therefore it is most preferabie that all tools have VHDL output. Then 
the PCALE Design Flow philosophy can always be applied and no level ever has to be 
skipped with regard to verification. Currently the mapping result is simulatable, but 
only visual comparison with the other tooi output is possible. 
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Appendix C. Framework of definitions package 
-- de.finitions package framework; to be adapted by reptacement toot 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

PACKAGE definitions IS 

-- constantsjor symbolic use 
CONSTANT numb_of_addr_bits 

CONSTANT numb_of_ words 

CONSTANT ENABLED 

CONSTANT responsetime 

CONSTANT registerlength 

CONSTANT wordlength 

CONSTANT READ 

CONSTANT WRITE 

:INTEGER .

:INTEGER := 
:bit 

:TIME 

:INTEGER 

:INTEGER 

:bit 

:bit 

.-
·-.-

·-.-
.-

FUNCTION logictoint(x : std_ulogic_ vector) RETURN INTEGER; 

END definitions; 

PACKAGE BODY definitions IS 

FUNCTION logictoint(x: std_ulogic_vector) RETURN INTEGER IS 

VARIABLE y: INTEGER; 

BEGIN 

y :=0; 
FOR i IN x'LENGTH-1 DOWNTO 0 LOOP 

IF x(i) = '1' THEN 

y := y + 2**i; 

ENDIF; 

END LOOP; 

RETURNy; 

END logictoint; 

END definitions; 
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-- SIM-UNE 

-- SIM-UNE 

-- SIM-UNE 

-- SIM-UNE 

-- SIM-UNE 
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-- SIM-UNE 
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-- SIM-UNE 

-- SIM-UNE 
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Appendix D. Example of definitions package 
-- definitions package; created by rep/acement tooi 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

PACKAGE definitions IS 

-- constants for symbolic use 
CONSTANT numb_of_addr_bits : INTEGER := 12; 

CONSTANT numb_of_words 

CONSTANT ENABLED 

CONSTANT responsetime 

: INTEGER := 4096; 

CONSTANT registerlength 

CONSTANT wordlength 

CONSTANT READ 

CONSTANT WRI1E 

:bit 

:TIME 

:INTEGER 

:INTEGER 

:bit 

:bit 

:= '0'; 

:= 25 ns; 

:= 16; 

:=4; 

:= '1'; 

:= '0'; 

FUNCTION logictoint(x: std_ulogic_vector) RETURN INTEGER; 

END definitions; 

PACKAGE BODY definitions IS 

FUNCTION logictoint(x : std_ulogic_ vector) RETURN INTEGER IS 

VARIABLE y: INTEGER; 

BEGIN 

y:=O; 

FOR i IN x 'LENGTH-1 DOWNTO 0 LOOP 

IF x(i) = '1' THEN 

y := y + 2**i; 

ENDIF; 

END LOOP; 

RETURNy; 

END logictoint; 

END definitions; 
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Appendix E. VHDL model of memory 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE work.definitions.ALL; 

ENTITY memory IS 

PORT ( address : IN std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0); 

data_ram_in :IN std_ulogic_vector(wordlength-1 DOWNTO 0); 

r_w :IN bit; 

ce :IN bit; 

data_ram_out :OUT std_ulogic_vector(wordlength-1 DOWNTO 0) 

); 

END memory; 

ARCHITECTURE registerlevel OF memory IS 

SUBTYPE dataword_type IS std_ulogic_vector(wordlength-1 DOWNTO 0); 

TYPE memory_type IS ARRAY(O TO numb_of_words-1) OF dataword_type; 

SIGNAL mem: memory_type; 

BEGIN 

operation: PROCESS(address) 

BEGIN 

IF address'EVENT THEN -- RAM has to perform new action 

IF r_ w = WRITE THEN -- write operation 

mem(logictoint(address)) <= data_ram_in AFTER responsetime; 

ELSE -- read operation 

data_ram_out <= mem(logictoint(address)) AFTER responsetime; 

ENDIF; 

ENDIF; 

END PROCESS; 

END registerlevel; 
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Appendix F. VHDL models of addressgenerator 

This appendix contains two examples of the VHDL model of the addressgenerator. The 
first example is of a one-dimensional register, the second example is of a two-dimensional 
register. 

Example of VHDL model of addressgenerator for a one-dimensional register 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE work.definitions.ALL; 

USE work.exemplar_1164.ALL; 

ENTITY addr_gen IS 

PORT( address_in :IN INTEGER RANGE 0 TO registerlength-1; 

address_out :OUT std_ulogic_vector(numb_of_addr_bits-1 DOWNTO 0); 

ce :OUT bit 

); 

END addr_gen; 

ARCHITECTURE registerlevel OF addr_gen IS 

BEGIN 

-- RAM is always enabled 

ce <= ENABLED; 

-- the conversionfunction int2evec is defined in the exemplar _1164 package and is exemplar specific 

conv _addr : PROCESS(address_in) 

VARIABLE temp_ var: std_ulogic_vector(3 DOWNTO 0); 

BEGIN 

temp_ var:= int2evec(address_in,4); 

address_out(1 DOWNTO 0) <= temp_var(3 DOWNTO 2); 

address_out(numb_of_addr_bits-1 DOWNTO 2) <= "0000000000"; 

END PROCESS; 

END registerlevel; 
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Example of VHDL model of addressgenerator for a two-dimensional register 
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LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE work.definitions.ALL; 

USE work.exemplar_1164.ALL; 

ENTITY addr_gen IS 

PORT( address_in :IN INTEGER RANGE 0 TO registerlength-1; 

address_out : OUT std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0); 

ce : OUTbit 

); 

END addr_gen; 

ARCHITECTURE registerlevel OF addr_gen IS 

BEGIN 

-- RAM is always enabled 

ce <= ENABLED; 

-- the conversionfunction int2evec is defined in the exemplar _1164 package and is exemplar specific 

conv_addr: PROCESS(address_in) 

BEGIN 

address_out(S DOWNTO 0) <= int2evec(address_in,6); 

address_out(numb_of_addr_bits-1 DOWNTO 6) <= "000000"; 

END PROCESS; 

END registerlevel; 
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Appendix G. Listing of simple testcase 

This appendix contains three VHDL descriptions of the simple testcase. The fiTst descrip
tion is the testcase before register replacement has been performed. The other two descrip
tions are the testcase after the replacement: the fi.rst description is used for simulation and 
the second description is used for synthesis. 

Testcase before register replacement 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE work.definitions.ALL; 

ENTITY dsn IS 

PORT(clk 

END dsn; 

rst 

data_read 

); 

: IN std_ulogic; 

: IN std_ulogic; 

: OUT std_ulogic_ vector(wordlength-1 DOWNTO 0) 

ARCHITECTURE dsnreg OF dsn IS 

BEGIN 

regpcs : PROCESS(clk) 

VARIABLE index 

VARIABLE repl_reg 

TYPE state_type IS 

VARIABLE state 

BEGIN 

:INTEGER RANGE 0 TO registerlength-1; 

: std_ulogic _ vector(registerlength-1 DOWNTO 0); 

(RST,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE, 

TEN,ELEVEN,TWELVE,THIRTEEN,FOURTEEN,FIFTEEN); 

: state_type; 

IF clk'EVENT AND elk= '1' THEN 

IF rst = '1' THEN 

state:= RST; 

ENDIF; 

CASE state IS 

WHENRST 

WHENONE 

WHENTWO 

WHENTHREE 

=> state := ONE; 

=> -- writing of first data 
repl_reg(index+wordlength-1 DOWNTO index):= "0001"; 

index:= index+wordlength; 

state <= TWO; 

=> -- writing of second data 

repl_reg(index+wordlength-1 DOWNTO index):= "0010"; 

index:= index+wordlength; 

state <= THREE; 

=> -- writing of third data 
repl_reg(index+wordlength-1 DOWNTO index):= "0100"; 
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WHENPOUR 

WHENPIVE 

WHENSIX 

WHENSEVEN 

WHENEIGHT 

WHENNINE 

WHENTEN 

WHENELEVEN 

index:= index+wordlength; 

state<= POUR; 

=> -- writing offourth data 

repl_reg(index+wordlength-1 DOWNTO index):= "1000"; 

index:= 0; 

state<= FIVE; 

=> state <= SIX; 

=>state<= SEVEN; 

=> state <= EIGHT; 

=> state <= NINE; 

=> state <= TEN; 

=>state<= ELEVEN; 

=>--reading offirst data 

data_read <= repl_reg(index+wordlength-1 DOWNTO index); 

index := index+wordlength; 

state<= TWELVE; 

WHEN TWELVE => -- reading of second data 

data_read <= repl_reg(index+wordlength-1 DOWNTO index); 

index := index+wordlength; 

state <= THIRTEEN; 

WHEN THIRTEEN => -- reading of third data 

data_read <= repl_reg(index+wordlength-1 DOWNTO index); 

index:= index+wordlength; 

state<= POURTEEN; 

WHEN POURTEEN => -- reading of fourth data 

data_read <= repl_reg(index+wordlength-1 DOWNTO index); 

index:= 0; 

state <= PIPTEEN; 

WHEN PIPTEEN => state<= ONE; 

END CASE; 

END IF; --RISING_EDGE(clk) 

END PROCESS; -- regpcs 

END dsnreg; 

Testcase for simulation after replacement 

LIBRARY ieee; 
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USE ieee.std_logic_1164.ALL; 

USE work.definitions.ALL; 

ENTITY dsn IS 

PORT(clk : IN std_ulogic; 

: IN std_ulogic; rst 

data_read 

); 

:OUT std_ulogic_vector(wordlength-1 DOWNTO 0) 

ENDdsn; 

Emulation flow for designs with large memory requirements 



Listing of simple testcase February 18, 1994 

ARCHITECTURE dsnram OF dsn IS 

COMPONENT memory 

PORT (address 

data_ram_in 

r_w 

ce 

data_ram_out 

); 

:IN std_u1ogic_vector(numb_of_addr_bits-1 DOWNTO 0); 

:IN std_u1ogic_vector(wordlength-1 DOWNTO 0); 

:IN bit; 

:IN bit; 

:OUT std_ulogic_vector(wordlength-1 DOWNTO 0) 

:IN INTEGER RANGE 0 TO registerlength-1; 

END COMPONENT; 

COMPONENT addr__gen 

PORT (address_in 

address_out 

ce 

:OUT std_ulogic_vector(numb_of_addr_bits-1 DOWNTO 0); 

: OUTbit 

); 

END COMPONENT; 

FOR ALL : memory USE ENTITY work.memory; 

FOR ALL : addr__gen USE ENTITY work.addr__gen; 

SIGNAL address 

SIGNAL data_ram_in 

SIGNALr_w 

SIGNAL data_ram_out 

SIGNAL ce 

SIGNAL address_to_ram 

BEGIN 

: INTEGER RANGE 0 TO registerlength-1; 

: std_ulogic_vector(wordlength-1 DOWNTO 0); 

:bit; 

: std_ulogic_vector(wordlength-1 DOWNTO 0); 

:bit; 

: std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0); 

-- send address for conversion to address _generator 
ag1 : addr__gen 

PORT MAP(address,address_to_ram,ce); 

-- send data to and receive data from memory 
ram1: memory 

PORT MAP(address_to_ram,data_ram_in,r_ w,ce,data_ram_out); 

rampcs : PROCESS(clk) 

VARIABLE index :INTEGER RANGE 0 TO registerlength-1; 

VARIABLE sample_reg : std_ulogic_vector(wordlength-1 DOWNTO 0); 

TYPE state_type IS (RST,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE, 

VARIABLE state 

BEGIN 

TEN,ELEVEN,TWELVE,THIRTEEN,FOURTEEN,FIFTEEN); 

: state_type; 

IF clk'EVENT AND elk= '1' THEN 

r_w<=READ; 

sample_reg := data_ram_out; 
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IF rst = '1' THEN 

state := RST; 

ENDIF; 

CASE state IS 

WHENRST 

WHENONE 

WHENTWO 

WHENTHREE 

WHENFOUR 

WHENFIVE 

WHENSIX 

WRENSEVEN 

WHENEIGHT 

WHENNINE 

WHENTEN 

WHENELEVEN 

=> address <= registerlength-l; 

r_w<=READ; 

state := ONE; 

=> -- writing offirst data 

data_ram_in <= "0001 "; 

index:= 0; 
address <= index; 

r_w <= WRITE; 

state := TWO; 

=> -- writing of second data 

data_ram_in <= "0010"; 

index := index+wordlength; 

address <= index; 

r_ w <= WRITE; 

state := THREE; 

=> -- writing of third data 

data_ram_in <= "0100"; 

index:= index+wordlength; 

address <= index; 

r_ w <= WRITE; 

state := FOUR; 

=> -- writing offourth data 

data_ram_in <= "1000"; 

index:= index+wordlength; 

address <= index; 

r_ w <= WRITE; 

state:= FIVE; 

=> state := SIX; 

=>state:= SEVEN; 

=> state := EIGHT; 

=> state := NINE; 

=> state :=TEN; 

=> -- address for next read operation 

index:= 0; 

address <= index; 

state:= ELEVEN; 

=>--reading offirst data 

data_read <= sample_reg; 

index := index+wordlength; 

address <= index; 

state:= TWELVE; 

Lisring of simple testcase 
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WHEN TWELVE =>--reading of second data 

data_read <= sample_reg; 

index := index+wordlength; 

address <= index; 

state := THIRTEEN; 

WHEN THIRTEEN => -- reading of third data 
data_read <= sample_reg; 

index := index+wordlength; 

address <= index; 

state := FOURTEEN; 

WHEN FOURTEEN =>--reading offourth data 
data_read <= sample_reg; 

state:= FIFTEEN; 

WHEN FIFTEEN => state := ONE; 

END CASE; 

END IF; -- RISING _ EDGE( elk) 

END PROCESS; -- rampcs 
END dsnram; 

Testcase for synthesis after replacement 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE work.definitions.ALL; 

ENTITY dsn IS 

PORT(clk :IN std_ulogic; 

rst : IN std_ulogic; 

data_read :OUT std_ulogic_vector(wordlength-1 DOWNTO 0); 

data_ram_out :IN std_ulogic_vector(wordlength-1 DOWNTO 0); 

data_ram_in :OUT std_ulogic_vector(wordlength-1 DOWNTO 0); 

address_to_ram: OUT std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0); 

r_ w : OUT bit; 

ce : OUTbit 

); 

END dsn; 

ARCHITECTURE dsnram OF dsn IS 

COMPONENT memory 

PORT (address 

data_ram_in 

r_w 

ce 

data_ram_out 

); 

END COMPONENT; 

:IN std_ulogic_vector(numb_of_addr_bits-1 DOWNTO 0); 

:IN std_ulogic_vector(wordlength-1 DOWNTO 0); 

:IN bit; 

:IN bit; 

:OUT std_ulogic_vector(wordlength-1 DOWNTO 0) 
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COMPONENT addr_gen 

PORT (address_in 

address_out 

ce 

); 

:IN INTEGER RANGE 0 TO registerlength-1; 

: OUT std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0); 

:OUT bit 

END COMPONENT; 

FOR ALL : memory 

FOR ALL : addr_gen 

USE ENTITY work.memory; 

USE ENTITY work.addr_gen; 

SIGNAL address :INTEGER RANGE 0 TO registerlength-1; 

SIGNAL data_ram_in : std_ulogic_vector(wordlength-1 DOWNTO 0); 

SIGNAL r_w :bit; 

SIGNAL data_ram_out : std_ulogic_vector(wordlength-1 DOWNTO 0); 

SIGNAL ce :bit; 

SIGNAL address_to_ram : std_ulogic_vector(numb_of_addr_bits-1 DOWNTO 0); 

BEGIN 

-- send address for conversion to address _generator 
agl : addr_gen 

PORT MAP(address,address_to_ram,ce); 

-- send data to and receive datafrom memory 
ram 1 : memory 

PORT MAP(address_to_ram,data_ram_in,r_w,ce,data_ram_out); 

rampcs: PROCESS(clk) 

VARIABLE index 

VARIABLE sample_reg 

TYPE state_type IS 

VARIABLE state 

BEGIN 

:INTEGER RANGE 0 TO registerlength-1; 

: std_ulogic_vector(wordlength-1 DOWNTO 0); 

(RST,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE, 

TEN,ELEVEN,TWELVE,THIRTEEN,FOURTEEN,FIFTEEN); 

: state_type; 

IF clk'EVENT AND elk= '1' THEN 

r_w<=READ; 

sample_reg := data_ram_out; 

IF rst = '1' THEN 

state := RST; 

ENDIF; 

CASE state IS 

WHENRST 

WHENONE 

=> address <= registerlength-l; 

r_w<=READ; 

state := ONE; 

=> -- writing of first data 
data_ram_in <= "0001"; 
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WHENTWO 

WHENTHREE 

WHENFOUR 

WHENFIVE 
WHENSIX 
WHENSEVEN 

WHENEIGHT 
WHENNINE 
WHENTEN 

WHENELEVEN 

WHENTWELVE 

index:= 0; 

address <=index; 
r_w <= WRITE; 

state := TWO; 

=> -- writing of second data 

data_ram_in <= "0010"; 

index:= index+wordlength; 

address <= index; 
r_ w <= WRITE; 
state:= THREE; 

=> -- writing of third data 

data_ram_in <= "0100"; 

index:= index+wordlength; 

address <= index; 
r_ w <= WRITE; 

state := FOUR; 

=> -- writing offourth data 

data_ram_in <= "1000"; 
index:= index+wordlength; 

address <= index; 
r_ w <= WRITE; 
state := FIVE; 

=> state := SIX; 
=>state:= SEVEN; 
=>state:= EIGHT; 

=> state := NINE; 
=>state:= TEN; 
=> -- address for next re ad operation 

index:= 0; 

address <= index; 
state := ELEVEN; 

=> -- reading of first data 

data_read <= sample_reg; 
index := index+wordlength; 

address <=index; 
state:= TWELVE; 

=> -- reading of second data 

data_read <= sample_reg; 
index := index+wordlength; 

address <=index; 
state := THIRTEEN; 

WHEN THIRTEEN => -- reading of third data 

data_read <= sample_reg; 

index:= index+wordlength; 

address <= index; 
state:= FOURTEEN; 

Emulation flow for designs with large memory requirements 

February 18, 1994 

93 



February 18, 1994 

WHEN FOURTEEN =>--reading offourth data 

data_read <= sample_reg; 
state:= FIFIEEN; 

WHEN FIFIEEN 

END CASE; 

=>state:= ONE; 

END IF; -- RISING _ EDGE( elk) 

END PROCESS; -- rampcs 
END dsnram; 

listing of simple testcase 
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Appendix H. Example of control file 
The necessary parameters, mandatory and optional, are passed on to the reptacement tooi 
by means of a control file. 

Below an example of such a control file is given. The reptacement tool considers alllines 
starting with a #-symbol as comment lines. Any number of comment lines and empty lines 
is allowed; they are ignored by the reptacement tooi. The syntax for non-comment, non
empty lines is: <parameter> <Value>. 

################################################## 
# MANDATORY PARAMETERS; MUST BE SPECIFIED # 
################################################## 
# The clock frequency (in MHz) on which the total design must function 
CLOCK_FREQUENCY 30 

# The register that is being replaced 
REGISTER_TO_REPLACE 

# Length of the above register 
REGISTER_LENGTH 

priv _segm_reg 

16000 

# Variabie that is used for indexing the register that is being replaced 
INDEX_ VARIABLE write_pointer 

# Length of the above variabie 
INDEX_LENGTH 

#String to use for detection of active edge 
ACTIVE_EDGE_MARK 

8 

IF (clk'EVENT AND elk= '1 ') THEN 

################################################################ 
# MANDATORY PARAMETER FOR TWO-DIMENSIONAL REGISTERS # 
################################################################ 
# Name of type declaration in case of a two-dimensional register 
2D_TYPE reg_type 

#################################################### 
# OPTIONAL PARAMETERS; NEED NOT BE SPECIFIED # 
#############################lllllllllf/1################# 
#Name of the RAM, present in the RAM library, to u se for reptacement 
RAM_NAME CY7C171 

# Extension for output simulation files; default= ".sim.vhdl" 
SIMULATION_FILES_EXTENSION .sim.vhdl 

# Extension for output synthesis files; default= ".syn.vhdl" 
SYNTHESIS_FILES_EXTENSION .syn.vhdl 

# Extension for temporary re sult files; default = ".r2r" 
TEMPORARY _FILES_EXTENSION .r2r 
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# Extension for temporary files containing procedure bodies; default= ".pbf' 
PROCEDURE_BODY _FILES_EXTENSION .pbf 

#Name of package file containing constants, etcetera; default= "definitions.vhdl" 
PACKAGE_ FILE definitions. vhdl 

#Name of file containing framework for package file; default= "definitions.vhdl.frame" 
PACKAGE_FRAME_FILE definitions. vhdl.frame 

#Name of file containing addressgenerator; default= "ram.vhdl" 
ADDR_GEN_FlLE ram.vhdl 

#Name of file containing framework for addressgenerator; default= "ram.vhdl.frame" 
ADDR_ GEN_FRAME_FILE ram. vhdl.frame 

#Name of file containing RAMs toselect from; default= "ram.library" 
RAM_LIBRARY _FILE ram.library 

#Name of file to write transcript to; default= "transcript.r2r" 
TRANSCRIPT_FILE transcript.r2r 

#Name of constant indicating lengthof wordsof RAM; default= "wordlength" 
WORDLENGTH_CONSTANT_NAME wordlength 

# Name of constant indicating number of address bits of RAM; 
#default = "numb_of_addr_bits" 
NUMB_OF _ADDR_BITS_CONSTANT_NAME numb_of_addr_bits 

#Name of constant indicating number of wordsof RAM; default= "numb_of_words" 
NUMB_OF _ WORDS_CONSTANT_NAME numb_of_words 

# Name of constant indicating registerlength; default = "registerlength" 
REGISTERLENGTH_CONSTANT_NAME registerlength 

#Name of sampling register that is inserted; default= "sample_reg" 
SAMPLING_REGISTER_NAME sample_reg 

#Name of address signalas input for addressgenerator that is inserted; default= "address" 
ADDRESS_TO_ADDR_GEN_SIGNAL_NAME address 

#Name of data_ram_in signal that is inserted; default= "data_ram_in" 
DATA_RAM_IN_SIGNAL_NAME data_ram_in 

#Name ofread_write signal that is inserted; default= "r_w" 
READ _ WRITE_SIGNAL_NAME r_ w 

#Name of data_ram_out signal that is inserted; default= "data_ram_out" 
DATA_RAM_OUT_SIGNAL_NAME data_ram_out 

#Name of RAM enable signal that is inserted; default= "ce" 
RAM_ENABLE_SIGN AL_NAME ce 

#Name of address_to_ram signal that is inserted; default= "address_to_ram" 
ADDRESS_TO_RAM_SIGNAL_NAME address_to_ram 
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Appendix I. Example of files file 

Since a design can be distributed over multiple files, all these files have to be known to the 
reptacement tool. Therefore all files have to be stated in a "files file". 

Below an example of such a files file is given. The reptacement tool considers alllines 
starting with a #-symbol as comment lines. Any number of comment lines and empty lines 
is allowed; they are ignored by the reptacement tool. The syntax for non-comment, non
empty lines is: <file name>. 

# This file defines all the files to consider when converting a registertoa RAM 

#packages 
demux_pack.vhdl 

# 1/0 routines 
demux_data_io.vhdl 

# demux parser 
parser_ wd930612.vhdl 
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Appendix J. Example of RAM library 

Every replacement may require its own specific RAM. All characteristics of the RAM that 
is used for the replacement have to be known to the replacement tooi. The most flexible 
solution is to state all characteristics of all possible RAMs in a separate file: a RAM 
library. 

Below an example of such a RAM library is given. The replacement tooi considers all 
lines starting with a #-symbol as cornrnent lines. Any number of comment lines and empty 
lines is allowed; they are ignored by the reptacement tooi. The syntax for non-comment, 
non-empty lines is: <characteristic> <value>. 

# This file is a RAM library 

RAM_NAME 

WORD_LENGTH 

NUMB_OF _ADDR_BITS 

NUMB_OF _ WORDS 

ENABLE_ VALUE 

RESPONSE_ TIME 

READ_VALUE 

WRITE_ VALUE 

STATUS 

CY7C171 

4 
12 

4096 

0 
25 

1 
0 
AVAILABLE 

# Note that the order of stating the characteristics can be changed 

RAM_NAME CY7C167 

STATUS NOT AVAILABLE 

RESPONSE_ TIME 25 

READ_VALUE 1 

WRITE_ VALUE 0 
ENABLE_ VALUE 0 
WORD_LENGTH 1 

NUMB_OF _ WORDS 16384 

NUMB_OF _ADDR_BITS 14 
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Appendix K. Glossary 
architecture 

ASIC 

benchmark 

bit 

BRD 

bread board 

byte 

constraint 

COST 

CRC 

DSA 

DVB 

DVP 

EDIF 

emulation 

entity 

EPLD 

FIFO 

flip-flop 

FDM 

function 

gate array 

gate level 

hardware 

HD 

- defines the relationships between input and outputs of an entity 

- Application S,pecific Integrated Circuit 

- well-known and well-defined design used as standard testcase; compar-
ison between software tools, hardware modules etcetera, is usually 
based on benchmarks 

- .Qinary digi! 

- Bandwidth Restoration Decoder, decoder in an HD-MAC receiver 

-circuit board for system development and testing 

- group of bits (usually eight) 

- limitation of possible val u es 

- function for partitioning hardware and software, taking into account 
Customer requirements, Overall development cost, .S.ilicon area & 
package and Time-To-Market 

- Cyclic Redundancy Check, error detecting code 

- Design .S.tyle Assistant, tooi developed for bridging the gap between an 
HL description of an IC and synthesis tools as part of the Advanced 
PCALE Design Flow, subject of this Master's Thesis 

- Digital Video Broadcasting 

- Digital Video f.rocessing, design group at PCALE 

- E.lectronic Design Interchange Eormat 

- design functionality check by means of hardware 

- primary hardware abstraction in VHDL 

- Erasable f.rogrammable Logic Device 

- Eirst In Eirst Out 

- hardware element, capable of retaining one logic value 

- Erequency Division Multiplexing, multiplexing on basis of different 
frequencies 

- VHDL construct, used for abstraction of an algorithm ( or part of it) to a 
single expression 

- half-fabricated ICs: the logic cells are already fabricated but the inter-
connections (wiring) still have to be made through two final IC masks 

- logic gate description level 

- circuit board(s) 

- High Definition 
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HDL 

HD-MAC 

HDTV 

HL 

Hz 

IC 

IEEE 

I/0 

ISO 

library 

LL 

Jlc 
Mbit 

MHz 

ML 

modulation 

MPEG 

MPEG-1 

MPEG-2 

multiplexing 

netlist 

package 

PC ALE 

PLD 

PREP 

102 

Glossary 

- Hardware Description Language 

- High Definition Multiplexed Analogue Components, compatible 
HDTV standard developed in the European Eureka_95 project 

- High Definition Ieleyision 

- High Level description of a design 

-Hertz, unit offrequency (s-1) 

-Integrated Circuit (chip) 

- Institute of Electrical and Electronics Engineers 

- Input/Output 

- International S.tandards Organization 

- coneetion of similar objects 

- Library Level description of a design 

- micro-controller 

- 106 bit 

-106 Hz 

- Medium Level description of a design 

- shifting information to a higher frequency to improve transmission 

- Moving fictures Expert Group, standard for compression of digital 
image data 

- version 1 of the MPEG-standard, digital image compression algorithm 
originally intended for digital storage media, capable of reproducing 
full motion video at bit rates of about 1.5 Mbit/s 

- version 2 of the MPEG-standard, extension to version 1 in the sense 
that it enables full motion image reproduetion at bit rates up to and 
including 15 Mbit/s, aimed at digital TV broadcast systems 

- mixing of different data signals into one signal 

- listing of a gate level implementation of an IC, containing gates and 
in terconnection 

- VHDL construct, provides a means of defining subprograms and other 
resources in a way that allows different design units to share the same 
declarations; also the packing of an IC 

- froduct Concept and Application Laboratory of Philips Semiconduc
tors in Eindhoven 

- frogrammable Logic Device 

- Programmabie Electronic ferformance Corporation, a consortium of 
13 prominent suppliers of programmabie logic and tools 
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procedure - VHDL construct, used for abstraction of an algorithm ( or part of it) toa 
single statement 

RAM - Random Access Memory 

register - group of flip-flops, used for retaining some logic values 

RTL - Register Iransfer .!::evel, descrihing a design at this level means that the 
complete structure of the design is described 

SIL - .Sprite Input Language, an intermediate language between high level 
specification languages and synthesis tools 

simulation - design functionality check by means of software 

software -computer program(s) 

subprogram - procedure or function as part of a VHDL description, defines algorithm 
for computing values or exhibiting behaviour 

synthesis - creation of an implementation of an IC from a description of an IC 

synthesis library - library containing all primitive building blocks that can be used by a 
synthesis tool to synthesize a design description 

synthesis tool - software used for (semi-)automatic creation of an implementation of an 
IC from a description of an IC 

TDM - Iime Division Multiplexing, multiplexing on basis of time sharing 

template - prescribed framework 

tool - software for performing a specific task 

TUE -Eindhoven University of Iechnology 

TV - Ieleyision 

TXT - Teletext 

VHDL - VHSIC Hardware Description Language 

VHSIC - Very High Speed !ntegrated Circuit 

VLSI - Very Large ,.Scale !ntegration 
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