
 Eindhoven University of Technology

MASTER

Emulation flow for designs with large memory requirements

Lammers, K.J.

Award date:
1997

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d8d67a65-1bbd-47c7-84d0-dbb62d0882c0

tl8

Master's Thesis

Emulation flow for designs with large
memory requirements

Department

Supervision

Period

Place

Supervision PCALE

ID.nr.

K.J. Lammers

:Design Automation Section,
Department of Electrical Engineering,
Eindhoven University Of Technology

:Prof. Dr. Ing. J.A.G. Jess

: 01-04-'93 to 18-02-'94

:DVP group,
Department PCALE,
Philips Semiconductors

: Ir. J.A.A.M. van den Hurk
Ing. J. Lakerveld
Ir. R.H. van der Wal

:270493

The Eindhoven University of Technology is not responsible for the contents of thesis reports

Abstract February 18, 1994

Abstract

During the development of HD-MAC decoder I Cs for HDTV, an ASIC design flow was
developed: the PCALE Design Flow. Since this design flow does not capture all a spects of
system design, a system design flow is developed: the Advanced PCALE Design Flow.

Part of the Advanced PCALE Design Flow is emulation: the bread board implementation
of a design through mapping of the VHDL description of the design to programmabie
logic devices. One of the steps for deriving this implementation is synthesis by means of
synthesis tools. However, synthesis of designs containing large registers with programma
bie logic devices as back end tums out to be problematic, since very little memory is avail
able in programmabie logic devices. This large register problem was solved by using a
RAM for implementation of a large register.

The solution consists of a conversion of the VHDL description of a design containing a
large register to a VHDL description of a design containing a RAM while preserving
design functionality. This conversion is feasible under certain restrictions and a tool was
written to automate the conversion. Also, templates that guarantee that the restrictions are
met, have been devised. Template checking is incorporated in the tool, prior to design con
version.

So through register reptacement emulation of designs with large memory requirements has
become possible within the Advanced PCALE Design Flow.

Emulation flow for designs with large memory requirements

Surnmary February 18, 1994

Summary

During the development ofHD-MAC decoder ICs for HDTV, an ASIC design flow was
developed: the PCALE Design Flow. Since this design flow does not capture allaspects of
system design, a system design flow is developed: the Advanced PCALE Design Flow.

One of the new parts in the Advanced PCALE Design Flow is a flexible hardware route.
This flexible hardware route bas to enable the quick development of hardware with the
same functionality as the final ASIC before ASIC design has even started. This hardware,
also known as bread boards, can then be used for emulation: a combination of the advan
tages of a flexible software simulation with the advantages of real time (and consequently
fast) hardware.The reasons for emulation are fourfold:

1. Fast-prototyping

2. Start-up production

3. Field-test

4. Reai-time simulation

Yet building bread boards in the usual way is time-consuming and not very flexible. Fortu
nately the quick development of bread boards comes within reach due to the emergence of
flexible hardware modules.

One of the steps for deriving bread boards is synthesis by means of synthesis tools. How
ever, synthesis of designs containing large registers with programmabie logic devices as
back end tums out to be problematic, since very little memory is available in programma
bie logic devices. This large register problem was solved by using a RAM for implementa
tion of a large register.

Two solutions have been investigated, namely:

1. Synthesis libraries

The three synthesis tools available at PCALE are reviewed with respect to their ability
to add designer defined VHDL descriptions as new building blocks to their synthesis
libraries. lf it is possible to add a VHDL description of an existing memory IC to the
synthesis libraries, then it might be possible to instruct the synthesis tool to automati
cally use this description instead of synthesizing the register.

However, none of the reviewed synthesis tools support VHDL models as a basis for
building blocks. The support that exists is not sufficient for application within the
Advanced PCALE Design Flow. Therefore the condusion is drawn that synthesis
libraries cannot solve the large register problem.

2. Register reptacement

This solution consists of a conversion of the VHDL description of a design containing a
large register to a VHDL description of a design containing a RAM while preserving
design functionality. As it tums out, this conversion is feasible under certain restric
tions.

Emulation flow for designs with large memory requirements 111

February 18, 1994 Summary

Hence register replacement is the developed solution to the large register problem. A tool
was written to automate the conversion. Also, templates that guarantee that the restrictions
are met, have been devised. Template checking is incorporated in the tool, prior to design
conversion.

So through register reptacement emulation of designs with large memory requirements has
become possible within the Ad vaneed PCALE Design Flow.

iv Emulation flow for designs with large memory requirements

Table of Contents February 18, 1994

Table of Contents

1. Introduction .. 1

2. The PCALE Design Flow .. 5
2.1. Existing PCALE Design Flow ... 5
2.2. Advanced PCALE Design Flow .. 7
2.3. Standard emulation flow .. 10

3. Synthesis libraries .. 15
3.1. Autologic ... 15
3.2. CORE ... 17
3.3. VHDLSyn .. 19
3.4. Conclusions ... 19

4. Changing the design description .. 21
4.1. Differences between RAMs and registers ... 23
4.2. Reptacement restrictions .. 25
4.3. Adjustments for simulation ... 33

4.3.1. Register assignment. .. 34
4.3.2. Register access ... 35
4.3.3. Procedure calls ... 36
4.3.4. Function calls ... 37

4.4. Adjustments for synthesis .. 38
4.5. Conclusions ... 38

5. Templates ... 41
5.1. Templates for register declaration .. .42
5.2. Templates for register assignment.. .. .43
5.3. Templates for register access .. .44
5.4. Templates for lP-statements45
5.5. Templates for CASE-statements47
5.6. Guidelines for register replacement.. .. .48

6. Testcase .. 49
6.1. Digital TV Receiver ... 49
6.2. The Demultiplexer/Descrambler ... 50

7. Testing ... 53
7 .1. Testing the principle .. 53
7 .2. Testing the reptacement tooi.. .. 54

8. Features .. 57
8.1. Tool control ... 57

8.1.1. Mandatory parameters ... 58
8.1.2. Optional parameters ... 59

8.2. RAM library ... 62

Emulation flow for designs with large memory requirements V

February 18, 1994 Table of Contents

8.2.1. Structure ofthe library ... 63
8.2.2. Automatic selection from the library ... 65

8.3. Template checking ... 66
8.4. Error checking ... 66
8.5. Transcript file ... 68

9. Conclusions and recommendations ... 71

Appendix A. List of References .. 7 5

Appendix B. List of Figures .. 77

Appendix C. Framework of definitions package ... 79

Appendix D. Example of definitions package ... 81

Appendix E. VHDL model of memory ... 83

Appendix F. VHDL modelsof addressgenerator .. 85

Appendix G. Listing of simple testcase ... 87

Appendix H. Example of control file ... 95

Appendix I. Example of files file ... 97

Appendix J. Example of RAM library ... 99

Appendix K. Glossary .. 101

vi Emulation flow for designs with large memory requirements

Introduetion February 18, 1994

1. Introduetion

When developing new systems, it is necessary to verify their performance prior to imple
mentation in Application .S.pecific Integrated Circuits (ASICs). For instance, in the case of
digital video applications, simulations can be used to inspeet and evaluate video images
before such a digital video application is implemented in an Integrated Circuit (IC). This
offers the possibility to critically evaluate systems prior to their implementation. In this
stage of system design changes in system specifications can still be easily made since soft
ware can be adapted quickly, while changes in dedicated I Cs (ASICs) are costly and much
more time-consuming. This strategy is incorporated in the ASIC design flow currently at
use at the .froduct Concept and Application Laboratory Eindhoven (PCALE). This ASIC
design flow is called the PCALE Design Flow.

The PC ALE Design Flow prescribes the consecutive steps to be taken in dedicated IC
design. However, system design involves more than the development of dedicated hard
ware only. For instance, most systems consist of both hardware and software. Also miss
ing in the PCALE Design Flow is a flexible hardware route. This flexible hardware route
has to enable the quick development of hardware with the same functionality as the final
ASIC before ASIC design has even started. This hardware, also known as bread boards,
can then be used for emulation: a combination of the advantages of a flexible software
simulation with the advantages of real time (and consequently fast) hardware. In fact, the
reasoos for integrating hardware emulation in the PCALE Design Flow are fourfold:

1. Fast-prototyping

Through emulation a customer can quickly be provided with a "prototype" of the final
ASIC (in fact emulation does notprovide a prototype but a bread board with the same
functionality as the final ASIC). The availability of a prototype enables the customer to
verify his specification through testing the functionality of the bread board. This allows
tracing desirabie changes in the specification in an early stage of the ASIC design. Fur
thermore, the customer can start writing software for his application (in case software is
part of the system) and build a prototype-system. In general, a total of some tens of pro
totype copies can be expected since prototypes are usually small in number.

2. Production

A second possibility is to map a description of the design to gate arrays in order to use
these gate arrays in the beginning of system production. Gate arrays are half-fabricated
ICs: the logic cells are already fabricated but the interconnections (wiring) still have to
be made through two final IC masks.

The use of gate arrays in start-up production is faster and less expensive and therefore
more desirabie than fabricating a dedicated IC. In this case less than a 100,000 gate
array copies can be expected. Later on, an optimal and more expensive dedicated IC
can be designed for mass production.

3. Field-test

The prototype can be used fora so-called field-test. This means that incompletepartsof
the specification can be tested by the designer and that some parts can be evaluated with

Emulation flow for designs with large memory requirements

Febmary 18, 1994 Introduetion

respecttotheir functionality. The incompletepartsof the specification can usually be
completed after such a field~test.

4. Reai-time simulation

Through emulation, the designer has the opportunity for reai-time simulation. This way
"simulations" (by means of emulations) can be carried out much faster than traditional
simulations. In particular for simulations at system level, a large reduction in simula
tion time is to be expected. Emulation does not mean that simulation has become out
dated: through simulation a description of a design must be checked for correctness;
after that, by emulation, the design becomes rapidly available in hardware without hav
ing to wait until the ASIC design has been completed.

Yet building bread boards in the usual way is time-consuming and not very flexible. Fortu
nately the quick development of bread boards comes within reach due to the emergence of
flexible hardware modules. But the bread board development speed is not the only require
ment that is imposed on a flexible hardware route (emulation flow).

Another requirement is that the emulation flow starts with a description of a design in a
Hardware Description Language (HDL), a language especially developed and suited for
the description of hardware designs. Several of such HDLs exist, but the HDL that is used
for this purpose at PCALE is the VHS IC Hardware Description Language (VHDL). This
HDL is defined by the Institute ofElectrical and Electtonics .Engineers (IEEE) and is used
in the industry for the description of designs during development (see [2]). This require
ment is imposed on the emulation flow, since the basis of the dedicated hardware route, an
HDL design description, must be the basis of the flexible hardware route also, in order to
ensure identical functional behaviour of the ASIC and bread board.

Forthermore theemulation flow must fit into the PCALE Design Flow. This means that
the mandatory functional verification at alllevels of the PCALE Design Flow must also be
applicable to the levels of the emulation flow.

A fourth requirement on the emulation flow is that the application of the emulation flow
has to be kept in mind: the emulation flow is to be used for designs that involve video
applications, so very stringent speed requirements have to be taken into account.

Finally, a choice has to be made what flexible hardware modules to use. There are several
choices for flexible hardware modules since a number of such devices are available on the
market: gate arrays from different vendors (Altera, Xilinx, Actel, etcetera) and .Erasable
~ogrammable Logic Devices (EPLDs) from Altera. The Digital Video !J-ocessing (DVP)
group at PCALE has chosen to use EPLDs from Altera as their flexible hardware modules
for several reasons:

1. Only for large amounts of bread boards (for instanee when emulation is to be applied
for production start), gate arrays are cheaper than EPLDs. Since the first applications of
the emulation flow apply to fast-prototyping and field-testing (hence a small amount of
bread boards), EPLDs are considered as back end of theemulation flow.

2 Emulation flow for designs with large memory requirements

Introduetion February 18, 1994

2. EPLDs are reprograrnrnable while gate arrayscan only be given a certain logic function
once. With EPLDs as flexible hardware, this flexible hardware is re-usable when a
bread board is no longer needed. But the fact that EPLDs can be quickly reprograrnrned
bas an additional advantage. As with all developrnents, the emulation flow too bas to be
tested several tirnes during its developrnent. Using gate arrays for such tests is too
expensive and takes too rnuch time. EPLDs on the other hand can be used for several
tests and their prograrnrning takes little time. On top of that, the EPLDs can even be
used fora bread board after theemulation flow bas been developed: when testing the
emulation flow with EPLDs, no money is lost on flexible hardware. Of course, after the
emulation flow has been developed, the extension to gate arrays can then still be made.

3. Altera EPLDs are the fastest devices according to cornparisons with other flexible hard
ware modules. These cornparisons arebasedon benchrnarks (well-known and well
defined designs used as standard testcase) and have been performed by the Programma
bie ,Electronic _eerformance Corporation (PREP), a consortium of 13 prominent suppli
ers of programrnabie logic and tools.

4. Altera EPLDs have been used before by the DVP group. Very satisfactory performance
was experienced on those occasions. So there is no reason for changing to new and
unknown devices unless they prove to be better.

The developrnent of a standard emulation flow is the subject of the Master's Thesis of
L.P.M. van Lieshout (see [16]). He encountered several synthesis problerns in the synthe
sis tools that can be used in the emulation flow for synthesizing a VHDL design descrip
tion. Most of these problerns were solved by defining a VHDL subset that is included in
the (synthesizable) tool supported VHDL subset. But this subset could not solve all syn
thesis problerns. One synthesis problern, the problern of large registers in the description
of a design, still rernained.

The reason that this synthesis problern cannot be solved by defining a VHDL subset is that
this problern is nota question of "bad" VHDL statements but rnerely a question of register
size. The size of a register becornes a problern when it exceeds the memory capacity of an
EPLD: preferably the design is rnapped into one EPLD and when more EPLDs have to be
used, it is desirabie in terms of timing not to di vide the register arnongst several EPLDs.
Since the memory capacity of an EPLD is in the order of magnitude of 200 flip-flops, any
register of that size or larger is a candidate problern register.

Therefore another solution bas to be found for this synthesis problern. Hence the subject of
this Master's Thesis, the developrnent of an emulation flow for designs with large memory
requirernents.

Basic idea bebind this emulation flow is the use of an existing memory IC (RAM) for the
irnplernentation of the large register. Then the large register no longer bas to be irnple
rnented in flexible hardware; only the rest of the design bas to be irnplernented in flexible
hardware. This way the need for large memory capacity in flexible hardware would be
taken care of.

Emulation flow for designs with large memory requirements 3

February 18, 1994 Introduetion

The only way to solve the large register problem is to change the input for the synthesis
tool, since the synthesis tool itself cannot be altered. The input for a synthesis tool are the
description of the design that is synthesized and the synthesis libraries. Synthesis libraries
provide the synthesis tool with the building blocks needed to synthesize the design. Both
inputs are investigated in this Master's Thesis as possible solutions:

• First the possibilities to change the synthesis libraries of synthesis tools are evaluated.
The three synthesis tools available at PCALE are reviewed with respect to their ability
to add designer defined VHDL descriptions as new building blocks to their synthesis
libraries. lf it is possible to add a VHDL description of an existing memory IC to the
synthesis libraries, it might be possible to instruct the synthesis tool to automatically
use this description insteadof synthesizing the register. Since the memory IC does not
have to be synthesized (remember that it is an existing IC), only the rest of the design
has to be implemented in flexible hardware.

• Secondly, the possibilities to change the VHDL description of the design are evaluated.
It might be possible to change the VHDL description of a design in such a way that the
register is replaced by (a VHDL model of) a memory IC, while preserving design func
tionality. In that case the standard emulation flow would have to be adapted in a way
that the design itself is synthesized while the memory IC is not synthesized. The mem
ory requirements imposed by the register are then no longer a problem. Of course the
conditions under which the reptacement can take place have to be investigated and
preferably a tool is developed for this replacement.

The next chapter discusses the PCALE Design Flow in its present form (the Existing
PCALE Design Flow) and in its successor form (the Advanced PCALE Design Flow), fol
Iowed by an etaboration of the standard emulation flow. Chapters 3 and 4 involve the
development of the emulation flow for designs with large memory requirements itself:
chapter 3 is about three synthesis tools and their synthesis libraries and chapter 4 reviews
the conversion of a design with a register to a design with a memory IC. The templates
that guarantee successful register reptacement are discussed in chapter 5. Readers unfa
miliar with the syntax and semantics of VHDL may experience some difficulties reading
chapters 4 and 5. They are referred to the IEEE Standard VHDL Language Reference
Manual (see [2]). The testcase and the tests that have been performed are the subjects of
chapters 6 and 7. The features of the tool that performs the register reptacement are also
reviewed in chapter 8. The final chapter is concerned with conclusions regarding the
development of an emulation flow for designs with large memory requirements.

4 Emulation flow for designs with large memory requirements

The PCALE Design Flow February 18, 1994

2. The PCALE Design Flow

As already stated in the introduction, the PCALE Design Flow in its present form does not
capture all elements of system design. The DVP group has set out to extend this design
flow toa design flow that covers more and hopefully allaspects involved in system design.
One of the extensions is the emulation of designs, including the emulation of designs with
large memory requirements. However, before the emulation flow for designs with large
memory requirements is developed, it is important to have a good notion of the PCALE
Design Flow in its present and in its envisioned form and of the standard emulation flow
developed for designs in generaL They are discussed in this chapter.

2.1. Existing PCALE Design Flow

The PCALE Design Flow, depicted in figure 1 on page 6, is a top-down hierarcbic al
design flow. It prescribes a trajectory from algorithm to evaluated silicon and is based on
two basic principles: specification and verification. As for the first principle, the paper
specification of a design is the input for the design flow and must be very accurate since
the functionality of the flow input highly deterrnines the functionality of the flow output,
the final ASIC. The second basic principle, the functional verification at alllevels of the
flow, is to eosure design correctness at every moment during design development includ
ing the flow output. The combination of the two basic principles is the philosophy bebind
the PCALE Design Flow, which yields a lot of advantages over non-hierarchical design
flows. The most important advantages are:

• A reduced risk of functional design errors

This is the most important benefit of mandatory functional verification at alllevels in
the flow.

• An integrated design environment for system development

This allows for straightforward data exchange between tool sets and between consecu
tive design levels.

• A short throughput time

A direct result of a short throughput time is a short Time-To-Market.

• The possibility to join forces of multiple design teams in the development of a chip-set

• The possibility to limit simulation run times

Through abstract functional descriptions of individual I Cs system behaviour is matebed
with the algorithm specification and simulation at high abstraction levels becomes pos
sible, resulting in limited simulation run times.

The PCALE Design Flow has been successfully applied during the development of the
first generation ofHD-MAC Bandwidth Restoration Decoders (BRDs) in the Eureka-95
project, which involved the development of High Definition Ieleyision (HDTV). It proved
to be very effective and is now being used for digital design at PCALE. Por a more exten
sive description on this design flow, see [1].

Emulation flow for designs with large memory requirements 5

February 18, 1994

6

• MEDIUM LEVEL

rnre
~

• LIBRARY LEVEL

~

• LAYOUT

• SILICON

• • TESTING

1
0000

0 1:1
00 0
0....:::::~

1:11:1 0

The PCALE Design Flow

The PCALE Design Flow starts at the Algorithm Level (AL). In this
stage of the design flow a system's functional behaviour is recorded
in an abstract software description. This description is known as the
reference software, or algorithm. An algorithm is the principal func
tional reference for the development of a system in the PCALE
Design Flow.

Once an algorithm has been frozen, IC-partitioning is performed. For
each IC in an IC-partitioning, its behaviour is described in a High
Level (HL) description. An HL is used as functional reference for the
development of an individual IC. IC interfaces and functional behav
iour must be in exact accordance with the HL. The combined behav
iours of all HLs must be equivalent to the algorithm's behaviour.

To capture anIC's proposed interior architecture and hierarchy, a
Medium Level(ML) description can be written which is less abstract
than an HL. Functional correctnessof an ML is verified through bit
by-bit comparison with the HL description; bit-by-bit comparison is
performed through simulations. An ML is written in a Hardware
Description Language (HDL) at Register Iransfer Level (RTL).

The lowest level symbolic description of an IC, the Library Level
(LL) description, is created by implementing the ML by means of
library elements. Such an LL contains both symbolic representations
of VLSI library blocks and their symbolic interconnections. Func
tional correctness of an LL is verified through bit-by-bit comparison
with (parts of) the ML. Timing verification is performed also.

Through placement and routing, the IC layout is generated from an
LL description. This layout is checked during factory finishing, for
instanee to find possible design rule errors .

In this stage of the PCALE Design Flow, the IC layout is transferred
to a foundry. At the foundry the design is implemented on silicon
wafers and the fust IC prototypes are delivered to the design team for
testing .

When the fust IC prototypes return from the foundry, silicon evalua
tion can start. Silicon evaluation includes both functional and electri
cal evaluation. In addition to IC-only evaluation, (sub)system
evaluation, including other ICs in the chip-set, is performed.

FIGURE 1. Existing PCALE Design Flow

Emulation flow for designs with large memory requirements

The PCALE Design Flow February 18, 1994

2.2. Advanced PCALE Design Flow

U ntil now systern developrnent has been separated into the developrnent of the hardware
part of the systern, foliowed by the developrnent of the software part (provided that the
systern incorporates both hardware and software); on top of that the two developrnents
were cast in a different rnould. The PCALE Design Flow in its present form as described
in the preceding section, prescribes the consecutive design steps to take in dedicated hard
ware design. However, due to a growing understanding of systern design and all the
aspects of systern design over the years, the idea was formed that a complete design flow
should cover all the aspectsof designing and not rnerely dedicated hardware design.
Hence, the DVP group at PCALE set out to extend the Existing PCALE Design Flow. The
PCALE Design Flow in its envisioned extended form, called the Advanced PCALE
Design Flow, is shown in figure 2.

Paper specification

~ Function based on
• Ç, ustomer requirements (proprietary)
• Q verall development cost
• S:. ilicon area, package, etcetera
• I. ime-To-Market

FIGURE 2. Advanced PCALE Design Flow

Emulation flow for designs with large memory requirements 7

February 18, 1994 The PCALE Design Flow

It is important to realize that the philosophy behind the Existing PCALE Design Flow
remains intact in the Advanced PCALE Design Flow. The difference is that this philoso
phy is applied to other aspects of system design also (for example to the development of a
system's software). Another important notice is that the Existing PCALE Design Flow in
tigure 1 is really a design flow in the sense that it identities the various levels and the con
secutive steps involved in dedicated hardware design. The diagram of the Advanced
PCALE Design Flow in tigure 2 is conceptually different since it merely identities possi
bie target implementations. The concept of different levels during system development
still applies although these levels are not depicted in tigure 2.

The blocks in the Advanced PCALE Design Flow are:

• Paper specification

8

Completely analogue to the Existing PCALE Design Flow, the Advanced PCALE
Design Flow starts with the paper specitication of the system. Basedon this specitica
tion, the system is developed. A system can consist of both hardware and software.
Insteadof separating the development of a system's hardware and software in two con
secutive and conceptual different steps, the co-design of the two has a lot of advan
tages, namely:

1. The hardware-software combination can be tested in an early stage of system devel
opment. This in turn offers the possibility to check the specitication of the complete
system at an early hour against customer wishes. This system evaluation can then be
used to adjust or complete the specitication. Most likely this leadstobetter designs
and largely reduces the possibility of redesigns.

2. Furthermore, simultaneous hardware and software design decreases the total Time
To-Market. The total Time-To-Market is IC development time plus software devel
opment time. The Time-To-Market (IC development time) in the Existing PCALE
Design Flow is already much shorter than the Time-To-Marketof non-hierarchical
design flows. However, if a system also incorporates software, then the software
development time is not accounted for in this Time-To-Market. The total Time-To
Market decreases due to the co-design of hardware and software in the Advanced
PCALE Design Flow.

3. At some stage in system design, the system has to be partitioned in hardware and
software. With a growing knowledge of the system during development, this parti
tioning can be adjusted on the basis of an estimation of costs. This estimation can be
thought of as a function taking into account Customer requirements, Overall devel
opment co st, Silicon area & package and Time-To-Market (COST). The partitioning
adjustment can be made in almost every stage of the design flow since both hard
ware and software are described in the same description language, for example
VHDL.

The combination of hardware and software development, Hardware-Software Co
design, is therefore captured in the Advanced PC ALE Design Flow, starting with the
paper specitication.

Emulation flow for designs with large memory requirements

The PCALE Design Flow February 18, 1994

It is important to observe that both hardware and software are based on VHDL descrip
tions. VHDL was developed for the description of hardware as the name already sug
gests, VHS IC Hardware Description Language. Buttakinga closer look at VHDL, it is
observed that it incorporates certain constrocts that can be used for the de scription of
software also. This in fact makes the smooth hardware-software integration feasible
and worthwhile; otherwise Hardware-Software Co-design becomes much more com
plex and perhapsnot even feasible within the PCALE Design Flow.

• Functional model

Also completely analogue to the Existing PCALE Design Flow is recordinga system's
behaviour in an abstract software description. Again this de scription (or algorithm) is
the principal functional reference for the development of a system. The only difference
with the Existing PCALE Design Flow is that a system involves both system hardware
and system software in the Advanced PCALE Design Flow. Therefore the algorithm
incorporates the combined functionality of a system's hardware and software.

• Software

Basedon the evaluation of the COST function, some parts of the system are selected to
be implemented in software. A distinction can be made between firmware and micro
controller (JlC) software. Firmware is fixed software, which means that this software
possesses little or no fiexibility (for instanee software in a ROM). Software imple
mented on a micro-controller is much more fiexible, but on the other hand takes more
chip area. Por some designs firmware suffices while other designs need the micro-con
troller implementation; sometimes even, the designer has to evaluate the pros and cons
of the two before making a choice.

• Micro-controller (JlC) software

Just like all target implementations, the final implementation in micro-controller soft
ware is basedon a VHDL description. But VHDLis not suited for programming a
micro-controller. Hence a translation from VHDL to some programming language is
necessary for implementation in a micro-controller: a tool translating sequentia! VHDL
to the C programming language has already been developed at PCALE.

• Firmware

Firmware, being the fixed implementation of software, is already indicated as part of
the Advanced PCALE Design Flow. Yet the design flow for firmware is still to be
developed.

• Hardware

Basedon the evaluation of the COST function, some parts of the system are selected to
be implemented in hardware. Final implementation usually means development of ded
icated hardware (implementation in ASICs). However, besides dedicated hardware also
the implementation in fiexible hardware is possible. This implementation is usually of a
more temporary nature since it is used for emulation purposes.

Emulation flow for designs with large memory requirements 9

February 18, 1994 The PCALE Design Flow

The fact that both dedicated as well as flexible implementations can be derived for
hardware, has an additional advantage. It is possible to implement ICs from a chip-set
via the dedicated route one by one. The others can be emulated until an IC has been
implemented in dedicated hardware. Then another IC follows the dedicated path until
the whole chip-set is available in dedicated hardware.

• Flexible hardware

As mentioned in the introduction, emulation can be very useful. The blockcalled flexi
ble hardware indicates the route that leads toemulation boards (bread boards). A flexi
ble hardware route for designs in general has been developed by L.P.M. van Lieshout.
However, designs with large memory requirements cannot be emulated with that flexi
ble hardware route. Hence this Master's Thesis subject of a flexible hardware route for
such designs.

• Dedicated hardware

Dedicated hardware is the development of AS I Cs: selecting the dedicated path for parts
of the system means that these parts are implemented in ASICs. The path Paper specifi
cation - Functional model -Hardware - Dedicated in the Advanced PCALE Design
Flow indicates the target technologies of the Existing PCALE Design Flow. This
means that all dedicated hardware is developed according to the Existing PCALE
Design Flow. Por dedicated hardware, two blocks in the Advanced PCALE Design
Flow are distinguished: full-custom and synthesis.

• Full-custom

Dedicated full-custom hardware design means development of ASICs that are as opti
mal as can be. The design team exerts itself to the utmost to optimize the final ASICs.
The consecutive steps to take in full-custom hardware design are prescribed by the
Existing PCALE Design Flow.

• Synthesis

The block synthesis in the Advanced PCALE Design Flow indicates the development
of all dedicated hardware except full-custom hardware design. Final target implementa
tions are standard cell or datapath designs. The denvation of these implementations is
prescribed by the Existing PCALE Design Flow.

2.3. Standard emulation flow

Now that the reasans for emulation and the place of emulation in the PCALE Design Flow
have been determined, it is time to take a closer look at the emulation flow itself. As men
tioned in section 2.2, emulation is the implementation of an HL description of an IC in
flexible hardware. This implementation is of use when the final ASIC has not yet been
developed through dedicated design. Only by using synthesis tools the flexible hardware
implementation can be generated quickly (which is an essential demand on the emulation
flow). After synthesis, a mapping has to be generated by a mapping tool and finally the
generated mapping can be transferred to flexible hardware. These are the main steps in the
emulation flow.

10 Emulation flow for designs with large memory requirements

The PCALE Design Flow February 18, 1994

However, emulation is to be part of the PCALE Design Flow and must therefore comply
with the philosophy behind the PCALE Design Flow. So every next step in theemulation
flow can only be taken if the functional correctness of the preceding step has been estab
lished. In figure 3 the concept emulation flow is illustrated along with the three bit-by-bit
comparisons that have to be performed to verify functional correctness. The first two are
based on simulation results; establishment of functional correctness of the programmed
flexible hardware is in fact bit-by-bit comparison of simulation results with emulation
results.

Mapping Tooi

In

HL Descri tion

Network
Description

Configuration
Description

+

FIGURE 3. Concept emulation flow

i bit-by-bit . r comparJson

D Description
level

OTool

However, the synthesis of a design by means of a synthesis tool turns out to be the most
critical step in the emulation flow due to the fact that the available synthesis tools demon
strate several problems when synthesizing an HL description written in VHDL. These
problems have been thoroughly described by L.P.M. van Lieshout in his Master's Thesis
(see [16]). He describes various subsets of the VHDL language (see figure 4) and con
cludes that many of the synthesis problems stem from the fact that these subsets have non
overlapping parts and that even VHDL descriptions written according to the tool sup
ported subset are possibly synthesized inefficiently.

Emulation flow for designs with large memory requirements 11

February 18, 1994 The PCALE Design Flow

Synthesizable VHDL PCALEVHDL

FIGURE 4. VHDL subsets

As a solution to the synthesis problems he defines the Design .S.tyle Assistant (DSA)
VHDL subset, a VHDL subset that contains those VHDL statements of the tooi supported
VHDL subset that are synthesized in a satisfactory way. Figure 5 illustrates the position of
the DSA VHDL subset with respect to the other VHDL subsets.

Tool supported VHDL

Synthesizable VHDL PCALEVHDL

FIGURE 5. DSA VHDL subset

By making sure that an HL description not only complies with the PCALE design VHDL
subset but also with the DSA VHDL subset, most of the synthesis problems can be solved
except for the large register problem, since this problem is nota question of "bad" VHDL
statements (registers are allowed within the DSA VHDL subset) but merely a question of
memory size.

A DSA tooi has been developed by L.P.M. van Lieshout to help the designer to ensure that
an HL complies with the DSA VHDL subset. This DSA tooi can be used to aid in translat
ing VHDL constructsin the PCALE design VHDL subset, but not in the DSA VHDL sub
set to equivalent VHDL constructsin the DSA VHDL subset. This DSA tooi is to be
applied before synthesis is attempted. The emulation flow incorporating this tooi is
depicted in figure 6.

12 Emulation flow for designs with large memory requirements

The PCALE Design Flow

HL Descri tion

I IJl

Design ~ssistant .4-" Modifled HL

.... .---D_e_s_c_ri,_pt_io_n__,

Mapping Tooi

In

(JJ
Network

Description

Contiguration
Description

m F

- .
~

+
FIGURE 6. Standard emulation flow

February 18, 1994

i bit-by-bit . f compar1son

D Description
level

OTool

This emulation flow is called the standard emulation flow since it applies to almost every
design and concerns most of the synthesis problems. Whether or not this emulation flow
also holds for designs with large registers, is to be investigated.

Emulation flow for designs with large memory requirements 13

Syniliesis libraries February 18, 1994

3. Synthesis libraries

When synthesizing an IC description, synthesis tools use so-called synthesis libraries to
map the de scription to a technology. These synthesis libraries provide the synthesis tooi
with the building blocks and their characteristics needed to perfonn synthesis and to be
able to meet constraints. Constraints may have been imposed on the design in order to
achieve speed or memory requirements. For every technology another synthesis library is
available since building blocks and their characteristics can differ from technology to
technology.

When synthesis libraries can be expanded with designer defined building blocks, this pro
vides a powerlul way to perfonn more efficient mapping. Since the synthesis tooi can
choose between the original building blocks and added optimized building blocks, the
mapping is likely to improve: inefficient mappingscan be avoided and previously impos
sibie mappings become available. In fact, effort that has previously been invested into cer
tain designs, is not lost. Also, if existing I Cs are added as building blocks, implementation
of a building block by an existing IC and copying (parts of) layouts of existing ICs are
possibilities that come within reach. So chip design becomes more efficient and faster.

But the fact that (parts of) designs can be mapped to added building blocks offers the pos
sibility to emulate designs containing one or more large registers. If a RAM is added as
building block to the synthesis libraries and if the synthesis tooi can map a register to such
a RAM, then the register can be implemented by a RAM instead of by ftexible hardware.
This way the emulation flow can be extended to cover designs with large registers.

In the next sections three synthesis tools are discussed. They are evaluated in tenns of
their ability to add designer defined building blocks to their synthesis libraries. The evalu
ation concerns designer defined building blocks in generaL This is done because a general
solution not only enables emulation of designs with large registers but also upgrades chip
design. A solution merely aimed at the actdition of a RAM as building block would only
enable the emulation and would not improve chip design. Since all design descriptions at
PCALE are written in VHDL, the synthesis tools are evaluated on their possibility to add
VHDL descriptions of building blocks to their synthesis libraries; descriptions that are
written in a format other than VHDL are not of interest. And, of course, all results must fit
into and comply with the Advanced PCALE Design Flow and especially the Flexible
Hardware route, since the synthesis tools are applied in that context.

3.1. Antologie

The synthesis tooi from the Mentor Graphics Corporation is called Autologic. It is the first
synthesis tooi that has been evaluated with respect to its ability to add designer defined
building blocks to its synthesis library. The manuals that go along with the synthesis tooi
(see [6] and [7]) fonn the basis of this evaluation.

An Antologie synthesis library can be developed through a library development process.
This development process involves a number of steps, starting with the creation of aso-

Emulation flow for designs with large memory requirements 15

February 18, 1994 Synthesis libraries

called AMP-library. Only from such an AMP-library, Autologic synthesis libraries can be
developed.

The only way to add a component to an AMP-library is to provide a functional model of
that component. Three AMP functional model types are supported:

1. AMP built-in model

An AMP built-in model is a logical model that operates with simulators and synthesis
tools and provides good run time performance and high memory capacity in the tools.

2. QuickPart table model

A QuickPart table model is a formatted table description of a functional model which
offers specification ftexibility for the creation of accurate models.

3. Schematic model

A schematic model is a coneetion of smaller models (such as built-in models and
QuickPart Table models) which accurately represents the internal composition of the
model.

VHDL models, however, are not supported, so an alternate model must be provided for
such VHDL models or the unsupported VHDL models must be marked as "blackbox".

A. Providing an alternate model for the VHDL model

16

This means that the designer has to supply an extra model for synthesis with the same
functionality as the original VHDL model. This means that the same objective can be
achieved with the altemate model; the VHDL model is superftuous. Moreover, "model
ling the VHDL model" is not wanted: you are performing the same task, namely
descrihing the functionality of a design, twice. The only remaining possibility is gener
ating a schematic from the VHDL model. Then this schematic could be used as a func
tional model for the AMP-library. However, schematics that can be used as a functional
model for the AMP-library are restricted:

• Schematicscan only consist of built-in models, QuickPart Table models or other
schematic models. VHDL models cannot be part of schematics.

• Asynchronous feedback cannot be included in a schematic model.

• Restrictions are present for the components that can and/or should be used in a sche
matic model. That is: some components are not supported and some components are
mapped in a logically correct, but inefficient manner. Since there is no guarantee that
such unwanted components are introduced when generating the schematic, there is
also no guarantee that the schematic can be used as a functional model for the AMP
library.

Looking at the above restrictions, it is evident that no guarantee can be given in
advance whether or nota schematic generated from a VHDL model can be used as a
functional model for the AMP-library. Therefore schematics do not qualify as a possi
bie solution.

Emulation flow for designs with large memory requirements

Synthesis libraries February 18, 1994

B. Marking the VHDL model as blackbox

Marking the VHDL model as blackbox means that no logic is generated during synthe
sis. The designer or the library developer must create a replacement rule to map the
blackbox cell to a target library. By means of areplacement rule Autologic can be
instructed to use a specific building block from the library for implementation of a cer
tain component.

In case of VHDL models of existing I Cs, no optimization should be performed, so
marking of the blackbox cell with Syn_donttouch or Syn_dontuse is necessary.

• Syn_donttouch: Autologic does not remove or introduce this component during opti
mization, but it can still be replaced by means of a replacement rule.

• Syn_dontuse: Autologic does not introduce this cell during optimization, but it can
be introduced by means of a replacement rule.

So marking the VHDL model as blackbox and replacing it through a replacement rule
boils down to instantiating a netlist from the synthesis library. Since timing is not
included in the netlist, the timing of the total IC can only be synthesized and optimized
correctly if the designer tells Autologic what the timing of the blackbox is. On top of
that, in the case of EPLDs as back end synthesis tools cannot guarantee that the timing
will be correct after synthesis and mapping.

This is not a straightforward and transparent use of synthesis libraties since nothing is
done by the synthesis tooi: what to replace, how to replace it and the timing have to be
entered by the designer. So marking the VHDL model as blackbox is useless.

Since there is no way to use VHDL models in the envisaged fashion as a basis for compo
nentsof the synthesis libraties of Autologic, the Autologic synthesis libraties cannot solve
the problem of large registers in a design.

3.2. CORE

Another synthesis tooi is the Complete Optimization and Retargeting Environment
(CORE) from Exemplar Logic. It is the second synthesis tooi that was reviewed. In CORE
there is a distinction between input synthesis libraties and output synthesis libraties.
Figure 7 illustrates this distinction.

Input I I Output
~-de_s_ig_n~~------~•~~~-c_o~r_E __ ~~------~•~~--de_s_ig_n~

t t
D Output

Synthesis
Library

FIGURE 7. CORE and synthesis libraries

Emulation flow for designs with large memory requirements 17

February 18, 1994 Synthesis libraries

CORE uses input synthesis libraries to allow mapping out of a technology, that is to pro
vide an input for CORE. Output synthesis libraries are used for mapping into a technol
ogy.

Conceming synthesis libraries, CORE has two tools available for the creation of synthesis
libraries: !Build for the creation of libraries that are used for input synthesis only and !Gen
for the creation of libraries that are used for input and output synthesis. The restrictions of
these tools and particularly the restrictions on the synthesis libraries are listed below. Note
that on top of these restrictions, every library element has to be described by hand. Auto
matic creation of library elements is not supported so VHDL models cannot be automati
cally transformed to library elements.

!Build:

lf a library is built for input synthesis only, the area and electrical properties of the gates
are not needed, and the globallibrary properties arealso not needed. Only gate functional
ity descriptions are required. Gate functionality can be described as a set of boolean equa
tions, as a set of predefined primitives or a combination of both. The following restrictions
for input synthesis libraries are listed in the !Build manual (see [9]):

• Supply voltage with the name VCC and ground with the name GND are added when
the synthesis library is built, unless those functions are specified with other names.

• Gate and pin narnes are case insensitive.

• No loops in combinatoriallogic are allowed. Most loop situations can be specified by
using one of the predefined primitives.

• Gate, pin and node narnes which are also keywords or contain non-alphanumeric char
acters, should be quoted. For example: gate "DELAY".

!Gen is the tooi to use for libraries that are built for output synthesis also.

In addition to the restrictions for input synthesis libraries listed in the !Build manual, the
!Gen manual (see [10]) lists the following restrictions for output synthesis libraries:

• !Gen requires at least a 2-input NAND-gate and an inverter to be included in the library.

• Complex combinatorial cells with more than one output are allowed for input only.
Therefore these cells must be designated as NOMAP when the library is used for output
synthesis also.

• For mappable gates, !Gen supports at most a single predefined primitive (such as flip
flops, latches, tri-states) per gate. There is no limitation to the combinatoriallogic that
can accompany that primitive.

• When mapping into a technology, CORE performs automatic selection of gates in a
class to get the best performance out of the circuit. Gates are members of the same class
if they have the same functionality and the same pin names.

18 Emulation flow for designs with large memory requirements

Synthesis libraries February 18, 1994

The synthesis libraries are used as output synthesis libraries in the PCALE Design Flow.
Since it is far frorn realistic that library elernents (and in particular RAMs) contain at the
most one prirnitive and have only one output, and since VHDL rnodels cannot be used as a
basis for library elernents, the CORE synthesis tooi is unfit as a solution to the memory
problern that large registers cause in the flexible hardware route.

3.3. VHDLSyn

The last synthesis tooi that was evaluated, is VHDLSyn frorn PhilipsElecttonic Design &
Tools. According to the VHDLSyn rnanual (see (11]), it is possible to add your own para
rnetrized VHDL rnodels to the synthesis library. Since VHDLSyn can produce output in
the .S.prite Input Language (SIL) format, the SIL-format of the library is nota problern.

VHDLSyn uses an irnplernentation frorn the synthesis library whenever a VHDL opera
tion is translatedor when an entity or subprogram is instantiated that has the so-called
lv _primitive attribute (see (11]). This rneans that by giving an entity or a subprogram the
lv _primitive attribute, VHDLSyn can be told toskip the architecture/subprogram body and
to use a predefined irnplernentation frorn the synthesis library.

Autornatic selection of an irnplernentation is only possible for standard building blocks
(such as AND-gates, flip-flops, etcetera) or for standard operations (such as counters,
shifters, etcetera). This rneans that you can add your own cornponents to the synthesis
library without any problern, but the autornatic selection only takes place if the added
component is an alternative for already existing standard building blocks or standard oper
ations.

Cornbining the memory problern with the possibilities of VHDLSyn, two problerns are
noticed:

1. RAMs and registers are cornpletely different hardware cornponents. A RAM does not
qualify as an alternative for a register. That makes autornatic selection irnpossible in
VHDLSyn.

2. A register can be modelled in VHDLas a VARIABLE or as a SIGNAL. VARIABLES
and SIONALS are part of an entity or subprograrn. So the lv _primitive attribute is also
useless since that attribute can only be applied to entities or subprograms as a whole.

Apparently VHDLSyn does not incorporate capabilities that allow autornatic irnplernenta
tion of a register by a RAM. Therefore it is evident that the memory problern cannot be
solved by the synthesis libraries of VHDLSyn.

3.4. Conclusions

A large register in a design requires a large memory capacity to be available in flexible
hardware when a bread board is developed for the design. Flexible hardware elernents in
contrast have very little memory capacity. Therefore synthesis tools have to use a lot of

Emulation flow for designs with large memory requirements 19

February 18, 1994 Synthesis libraTies

fiexible hardware elements when mapping a design which contains large registers to fiexi
ble hardware. This means that a design has to be partitioned among multiple elements.

Partitioning implies an increase in wiring and in wiring complexity, which leads to ineffi
cient mappings, which in turn cause a decrease in clock frequency. Remember that for
video applications the speed requirements are very stringent. Also it is preferred to keep
the number of fiexible hardware elements as small as possible in order to keep the bread
board simple, small and as cheap as possible. Besides this, the synthesis tools crash during
synthesis of such designs, probably because such large registers cause an overflow in the
intemal format used by the synthesis tools.

To overcome the memory problem, several synthesis tools have been reviewed on their
synthesis libraties. The idea bebind the use of synthesis libraties is quite simple: if it is
possible to add a VHDL model of a RAM to these libraties as new building block, then it
might be possible that the synthesis tooi can perform an automatic mapping of the register
to this new building block.

But the reviewed synthesis tools have either no support for VHDL modelsas a basis for
their synthesis libraties, or such support has too many and too severe restrictions. Hence
none of the reviewed synthesis tools can provide a solution to the memory problem in
terms of synthesis libraties.

20 Emulation flow for designs with large memory requirements

Changing the design description February 18, 1994

4. Changing the design description

Besides the synthesis libraties of synthesis tools, another solution is looked into: perhaps
the description of a design containing a large register can be altered in such a way that the
large register problem can be overcome. The basic idea is still that the large register is
implemented in an existing RAM IC while the rest of the design is implemented in ftexible
hardware. The bread board for emulation can thus be built from this RAM and ftexible
hardware. The emulation flow descrihing the approach of this solution is shown in
figure 8.

HL Descri tion

I _.
Design S~.yle ~sslstant

[J ~ ,M~D~~:~~f~~;~m!~li~~~~~

e
3a 3bt

Mapping Tooi

um

Network
Description

Contiguration
Descri tion

+
~
4~

Bread Board --------1~

Emulation

i bit-by-bit . f compar1son

D Description
level

OTool

FIGURE 8. Emulation flow for designs with large memory requirements

Emulation flow for designs with large memory requirements 21

February 18, 1994 Changing the design description

In this emulation flow the consecutive steps to take, starring with an HL description of a
design, are:

1. Conversion of the design description

The first step in the emulation flow is the conversion of the HL description of the
design to a new HL description. During this conversion the large register has to be
completely replaced by a RAM. The tooi that performs the replacement is part of the
Design S,tyle Assistant (DSA) tooi that already was present in the standard emulation
flow of figure 6.

The new description still has to be simulatable of course for functional verification of
the design after conversion. Reeall that functional verification is an essential part of
the PCALE Design Flow and that theemulation flow must comply with the PCALE
Design Flow.

However, the new design description does not have to be synthesizable. The RAM,
actually a VHDL model of the RAM, only has to be simulatable since it is not synthe
sized. The rest of the design description on the other hand must be completely synthe
sizable since it has to be synthesized by means of a synthesis tooi.

2. Splitting the design description

The second step is splitting up the new HL description into a part containing the RAM
and a part containing the rest of the design. This has to be done since the RAM is not
synthesized.

3a. Acquisition of a suitable RAM

Evidently, a suitable RAM must be acquired for implementation of the register unless
it is available. A suitable RAM is a RAM that suffices the speed, memory and voltage
requirements.

3b. Synthesis and mapping

Parallel to the acquisition of a suitable RAM is synthesis. Synthesis is performed on
the new HL description without the part that describes the RAM. After synthesis, map
ping on flexible hardware (EPLDs) is performed by means of a mapping tooi.

4. Bread board building

After RAM acquisition and synthesis, it is time to build the bread board. On this bread
board the flexible hardware and the RAM are connected. Finally the bread board is
emulated and theemulation results are verified through bit-by-bit comparison with the
simulation results that are obtained after conversion of the design description.

The first two steps in this emulation flow still have to be developed; the other steps can
already be performed. But before these two stepscan be developed, the differences
between registers and RAMs must be inventorised. Since RAMs and registers differ in
behaviour, it is very likely that there are some restrictions on the conversion of the design
description. After these restrictions have been determined, conversion and splitting of the
design can be developed, thus completing the emulation flow for designs with large mem
ory requirements.

22 Emulation flow for designs with large memory requirements

Changing the design description February 18, 1994

4.1. Differences between RAMs and registers

For the reptacement of a register by a RAM the most general case is considered: registers
with full random access and assignment. Afterwards it is atways possible to investigate the
reptacement of other registers such as shift registers. Perhaps the restrictions for reptace
ment and the reptacement itsetf are different for such other registers.

Preferably there are no restrictions for the register replacement, of course. This means that
full random register access and assignment have to be replaced by full random RAM
access and assignment. But that is an illusion since the behaviour of a RAM is very differ
ent from the behaviour of a register. Due to the differences between RAMs and registers
there are most tikely some restrictions for descrihing a register in a design when such a
register is to be replaced by a RAM. The main differences between RAMs and registers
are:

1. Response time

Every operadon on a RAM takes a certain amount of time namely the response time of
that RAM. A register in contrast has no response time. The time needed to perform a
register operation is negligible compared with the time needed fora RAM operation.

2. Accessible amount of data

Only one word at a time can be read from a RAM or written toa RAM. This means that
for a RAM the accessible amount of data is equal to the wordlength of the words of the
RAM. The accessibte amount of data for the register on the other hand is equal to the
registersize since the register is completely accessible.

3. Control signals

Besides the doek signal the register does not need any control signals for its operation.
A RAM however does not need a doek signal but some other control signals, namely a
read_ write signal, an enable signal and an acknowtedge signal.

The read_ write signal indicates the RAM what kind of operation it has to perform: a
read operation or a write operation. With the enabling signal the RAM can be tumed on
and off. Usually tuming the RAM offresults in a low power consumption. The RAM
has to be enabled before data is read from the RAM or written to the RAM. The third
control signal, the acknowledge signal, is used by the RAM to indicate that an opera
tion is completed.

These differences clearly indicate that the conversion of the HL description is not trivial.
But besides the differences between registers and RAMs, there are more aspects involved
in the conversion. For instance, the HL description has to be simulatable after the conver
sion and the design without the RAM has to be synthesizable.

The complexity of the conversion is depicted in figures 9 and 10. In figure 9 the position of
the design in the various VHDL subsets before reptacement is reflected.

Emulation flow for designs with large memory requiremems 23

February 18, 1994

Tooi supported VHDL

PCALEVHDL

Syntllesizabie VHDL

Changing the design description

Unsyntllesizabie VHDL

D
e
s
i
g
n

...... &

R
e
g
I
s
t
e
r

FIGURE 9. Place of design description in VHDL subsets before conversion

Figure 10 shows the position of the design with the RAM in the VHDL subsets after the
replacement.

Tooi supported VHDL

PCALEVHDL

Syntllesizabtle VHDL

Unsyntllesizable VHDL

R
A
M

D
e
s
i
g
n

FIGURE 10. Place of design description in VHDL subsets after conversion

As tigure 10 clearly shows, the RAM is in the PCALE VHDL subset but is not synthesiz
able. The rest of the design is in the DSA VHDL subset after treatment by the DSA tooi.

24 Emulation flow for designs with large memory requirements

Changing the design description February 18, 1994

4.2. Replacement restrictions

As stated in the previous sectien it is most likely that the reptacement of a register by a
RAM is restricted. Before the restrictions for reptacement can be stated there are a number
of considerations that must be paid attention to. These considerations that are listed below
lead to the restrictions under which the reptacement can take place and thus they lead to
the VHDL model of the RAM.

Considerations:

1. A RAM consists of two parts: the memory itself and an addressgenerator which is used
to address the RAM correctly. This is illustrated in tigure 11. Also indicated in the tig
ure are the signals that control the memory and the addressgenerator.

IN

.. -OUT .. -
IN

INTERN AL

OUT

RAM

Addressgenerator

Simulatable & Synthesizable

Memory

Simulatable

register _address
data_in
read_write
enable

ram_address
data_in
read_write
enable

data_out
acknowledge

INTERN AL

.J Convermon

FIGURE 11. Schematic model of a RAM

The memory consists of a eertaio number of words, each with the same wordlength.
The total memory capacity of the RAM is the wordlength multiplied with the number
ofwords.

A register can be modelled as a one-dimensional and as a two-dimensional array as
shown in tigure 12. More dimensional arrays are not supported by synthesis tools.
Therefore registers are assumed to be one-dimensional or two-dimensional since the
result of a reptacement of a more dimensional register cannot be veritied.

Emulation ftow for designs with large memory requirements 25

February 18, 1994 Changing the design description

registerlength

••••

-~ wordlength

One-dimensional register

wordlength

_I •••• _I

• • • •

registerlength

Two-dimensional register

FIGURE 12. Schematic modelsof a one-dimensional and a two-dimensional register

Registers are indexed with integer values. In contrast, RAMs are addressed with so
called std_(u)logic_ vectors. Hence type conversion is necessary. This type conversion
has to take place in the addressgenerator. Note that the memory of a RAM is always
two-dimensional. A different dimensionality between the register and the memory
requires a more complex address conversion of course.

2. For the memory of the RAM an existing IC is used while on the other hand the address
generator has to be synthesized. Therefore it is necessary that they have separate
VHDL models. The VHDL model of the addressgenerator must be both simulatable
and synthesizable whereas the VHDL model of the memory only needs to be simulata
ble.

3. In the design various partsof the register (slices) can be indexed. It is possible that
these slices vary in size or differ from the wordlength of the memory. This has to be
accounted for in the addressgenerator also. For simplicity only slices of a size equal to
the wordlengthare considered (see figure 12). Afterwards extensions can be added.

4. Another consideration is that constraints have to be put on the various signals. Every
RAM has its own specific response time: every read-operation and every write-opera
tion takes this time to complete. This time can be accounted for in the simulatable
model of the RAM memory; however, this time is not accounted for when synthesizing
the design and the addressgenerator. Therefore constraints have to be put on various
signals (such as the read_ write signal, the data signal, etcetera), in order to synthesize a
functionally correct design and addressgenerator. These constraints are parameters for
the synthesis tool when it performs synthesis.

26

There are two types of constraints: input constraints and output constraints:

• With input constraints the arrival times at input ports can be defined. An arrival time
for an input port defines the maximum delay relative to the clock to that input
through logic extemal to the synthesized design.

Emulation flow for designs with large memory requirements

Changing the design description February 18, 1994

• With output constraints the required times at output ports can be defined. The
required time for an output port defines the longest allowable path from any input
port to the output port. Paths start at primary inputs and at register outputs. Paths end
at primary outputs and at register inputs.

Constraints are relative to the lastor to the next active clock edge (see figures 13
and 14).

------~~~~--------------'x clock signa!

zzzX5_(~~~ _______ s_ign_ai_a_t_I;_o_p_o_rt

FIGURE 13. Constraint relative to last active clock edge

________ X ___________ --!'1>< clock signa]

XX><><X~~ constrrunt .;
signa! at 1/0 port

FIGURE 14. Constraint relative to next active clock edge

Note that when signals are constrained, there is no guarantee that the synthesis tool is
able to synthesize a network that meets the constraints imposed on the input/output sig
nals of the design and addressgenerator. Even if the synthesis tool reports successful
synthesis, it is still not guaranteed that the constraints are indeed met, since the exact
timing of the final EPLD(s) is not known before the mapping is completed (see [16]).

5. In VHDL the signals that control the RAM can be modelled as VARIABLES or as SIO
N ALS. Preferably the RAM that replaces a large register has the same possibilities that
the register has: full random access for write and for read operations. This implies the
use of VARIABLES.

It is already established that the signals have to be constrained. Since only SIONALS
can be constrained, the use of VARIABLES is impossible. A direct consequence of the
use of SIONALS is that the number of operations per clock cycle is limited to the max
imum of one. This is due tothefact that SIONALS can only be updated once per clock
cycle in VHDL.

Another consequence of the usage of SIONALS is that re ad operations have to be anti
cipated at least one clock cycle. Suppose some data is needed in the middle of a PROC
ESS. That implies that the signals have to be updated in the middle of the PROCESS.
On the contrary, during simulation SIONALS areupdatedat the end of a PROCESS.

Emulation flow for designs with large memory requirements 27

February 18, 1994 Changing the design description

The only way in VHDL to update SIGNALS in the middle of a PROCESS is by using a
WAlT-statement. However, WAlT-statements are not synthesizable. So when data is
needed in a clock cycle, the data has to be retrieved before that clock cycle.

6. The reptacement of a register by a RAM alone is complex enough, so the tool that
eventually has to carry out the reptacement does not try to ensure that the register com
plies with the restrictions for replacement. lnstead, the restrictions under which the
reptacement can be done are captured in templates (see chapter 5) and the tool checks
the design before reptacement for compliance with these templates.

If the templates are violated, the reptacement is not guaranteed to be correct. In that
case interaction with the designer rules the decision whether or not a register has to be
replaced by a RAM. This means that the designer takes responsibility for the restrietion
that the register complies with the restrictions.

7. A nother important aspect is the timing. The timing of a RAM is shown in the diagram
of figure 15. Normally when actdressing a RAM, all the needed signals (read_write,
data, address) are made valid. After that the RAM is enabled by means of an enable sig
nal. When the read or write operation has completed, the RAM sends an acknowledge
signal to indicate this completion. Next the enable signal is disabled. In case of a read
operation data is notsent to the RAM but data is received from the RAM, of course.

28

_w_m __ i_n __ J)(~l--------------~P<====
_act_ctr_e_ss_--Jx!,_ I,>C
read wnte

enable "'! r
=:;......_..-;;.......~ k.. ~ ~

acknowledge """_} r
FIGURE 15. Timing diagram of a RAM

The VHDL code that corresponds with the above timing diagram and that handles the
acknowledge correctly, is:

valid_mm_in; -- in case of a write operation

valid_address;
valid_read_ write;

enable_ram;

WAlT UNTIL ram_acknowledge;
disable_ram;

Yet such a construct, to be implemented in the addressgenerator, is not synthesizable
due to the fact that the WAlT UNTIL statement is not synthesizable for signals other
than the clock signal (see [16]).

Emulation flow for designs with large memory requirements

Changing the design description February 18, 1994

Another solution one might think of is to use a WAlT POR statement in the VHDL
model of the memory:

WAlT FOR access_time;
disable_ram;

Since the memory is not synthesized, the unsynthesizability of this statement is not a
problem. But the enabling and disabling of the enable signal is a problem. Because the
addressgenerator "knows" when the various signals are valid, the enabling has to be
done by the addressgenerator. Disabling on the other hand is done by the memory, since
only the memory can determine when the operation has been completed.

However, there are three reasoos why this approach cannot be applied.

1. It is functionally incorrect that a RAM disables itself. The RAM is controlled by the
addressgenerator so the addressgenerator has to enable and disable the RAM.

2. The logic needed to disable the RAM is not synthesized since the memory of the
RAM is not synthesized.

3. The enable signal now has multiple drivers: both the memory and the addressgenera
tor assign the enable signal. Multiple drivers imply a WIRED_OR or a
WIRED _AND in hardware and such hardware elements are notpresent in EPLDs. A
separate process for disabling the RAM, triggered by an EVENT on the acknowl
edge signal, is also impossible due to multiple drivers.

The only remaining possibility is that an enable VARIABLE is used insteadof an ena
ble SIGNAL, but since constraints cannot be applied to VARIABLES, this cannot be
correct either.

Apparently the enable signa/ must always be enabled, since there is no way of imple
menring correct disabling.

8. Since the RAM is always enabled, the RAM is continuously working. However, the
design does not continuously access the RAM, and the data and/or address signal may
change after an access. In case the last performed operation was a read operation, a
change in the data and/or address signal does not matter. But if the last performed
action was a write operation, any change in the data and/or address signal bas a disas
trous effect: the RAM contents are unintentionally overwritten. The only way to avoid
this effect is to be always reading the RAM, unless explicitly a write operation has to be
carried out. So aftera write operation, the read_ write signal is irnrnediately adjusted so
that the writing of the RAM only takes place when correct data and address signals are
present.

9. Let us consider the read operation. Several casescan be distinguished for the read oper
ation:

• Only a read operation is performed.

• The read operation is performed after eertaio conditions have been met. The deter
mination of these conditions is implemented in hardware as a boolean network. This
network evidently takes some arnount of time before the read operation can start.

Emulation flow for designs with large memory requirements 29

February 18, 1994 Changing the design description

30

• Furthermore, it is possible that a decision is made on which data is read, whereas
every read operation can be preceded by some decision. Since every decision
implies another boolean network, it is most likely that the read-operations are pre
ceded by different amounts of time.

• It is also not unlikely that a read operation is foliowed by some sort of calculation on
the read data. This calculation also takes time in hardware and again different
amounts of time can be expected.

Now two problems arise:

1. There is no way of predicting the amount of time a synthesized network (boolean
network, network for calculation) takes.

2. Every signal (read_ write, data, address, enable) can have only one constraint, while
the preceding indicates that all the different cases ask for different constraints (meet
ing one constraint most likely violates other constraints).

To solve these problems, the constraints could be determined iteratively. This iterative
determination starts by giving the various output signals an output constraint of 0 ns
after the last active edge of the clock; the input signal (data coming from the RAM) is
given an input constraint of 0 ns before the next active edge of the clock. In fact this
means that the determination starts with the assumption that there is no preceding
boolean network before a read operation and no following calculation after the read
operation. The start of the constraint determination is depicted in figure 16.

____ _,)<]~~------------~~>< clock signa!

~Ons Ons~
output input

constramts constraints

FIGURE 16. Start of iterative constraint determination

Starting with constraints of 0 ns, the synthesis tool could issue an error about the times
minimally needed for the boolean network and for the calculation. These times are then
the new constraints in the iterative process of constraint determination. The correct
constraints can thus be found. Note that the time between the output constraints and the
input constraints must be at least equal to the response time of the RAM, otherwise
there is not enough time to perform an operation on the RAM. The end of the constraint
determination is shown in figure 17.

____ _,)<]~~------------~~><~cl_o_ck_si_gn_ru_
J~ut._~ i ... in:J

constramts ~-... ...l. constraints ~l:access

FIGURE 17. End of iterative constraint determination

Emulation flow for designs with large memory requirements

Changing the design description February 18, 1994

It is not known whether there is a synthesis tooi that reports such a warning. It is also
unknown whether the synthesis tools report the time minimally needed for each and
every read operation or only for the first read operation that cannot be successfully
implemented with the given constraint. This could mean that the designer is iteratively
determining the constraints, while in the end the condusion might be that the needed
input and output constraints cannot be met.

Note that the constraints on the signals for write operations coincide with the con
straints for read operations; the constraints would have been adversary if the read oper
ation is implemented in the same clock cycle when it is needed. Actually this is another
reason for anticipating the read operations.

10. The memory part of the RAM has to modelled but is not synthesized. Ho wever, there
must be an EVENT that triggers the VHDL model of the memory during simulation.
(Actually, this is another reason for using SIONALS and notVARIABLES since only
SIONALS have EVENTS defined on them in VHDL.)

Normally theEVENT to use as a trigger would be an EVENTon the enable signal (see
also [14] and [15]):

IF enable'EVENT AND enable = '0' THEN
-- memory model

ENDIF;

Since the enable signal is always enabled, this can no longer be the case. An EVENTon
another signal must be the triggering EVENT for the memory. Let us review all other
possibilities:

• Read _ write signal

For this signal EVENTS take place when no operation on the RAM is needed (see
consideration 9). Also, more seriously, there could be a need fora new operation on
the RAM when no EVENT occurs on the read_ write signal. For instance, when dur
ing some subsequent clock cycles the design is continuously reading (writing).
Therefore the read_ write signal cannot be used for triggering the memory.

• Data signal

Data is only offered to the RAM in case of a write operation. Using the datasignalas
trigger makes read operations unsimulatable. So the data signal cannot be used for
triggering also.

• Address signal

U sing the address signal for triggering implies a restriction: an operation on the
same position in the register (and thus in the RAM) can only be implemented when
at least one operation on another position is in between the two operations. This
however does not present the behaviour of a real RAM. So the address signal can be
used for triggering as long as the design does not violate the restriction.

• A combination of signals

A combination of several of the above signals could be used for triggering the mem
ory. All these signals are simultaneously updated during simulation. Since there is
no guarantee about the order of updating, there is no way to predict the order of the

Emulation flow for designs with large memory requirements 31

February 18, 1994 Changing the design description

EVENTS. Since there is no way to predict the order of the EVENTS, the simulation
order of processes is undetermined. Simulations consequently become unreliable.
This violates the PCALE Design Flow philosophy severely and is therefore useless.

• Clocked RAM

Another possibility is the use of a docked RAM instead of an asynchronous RAM.
Here the problem arises that data is sampled at the active edge of the doek, which
means that it is not possible to generate a write or read operation halfway the doek
cycle in order to write data into the RAM or read data from the RAM in that doek
cyde. When an operation is needed, the read_write (and data signal possibly) must
be generated so that the docked RAM copies or delivers the data in the next doek
cyde. This implies two restrictions.

1. Since every read operation already had to be anticipated one doek cyde, every
write operation foliowed by a read operation must a least be separated by three
doek cydes in order to perform the operations.

2. Write operations must be delayed one doek cyde. Read operations must be com
pleted one extra doek cyde earlier to a total of two doek cydes.

As both restrictions are unacceptable, the RAM cannot be modelled as a doeked
RAM.

Apparently, the only useful solution is the use of theEVENTS on the address signa! as
the triggering EVENTS for the memory model during simulation. This means that the
design must comply with the restrietion for separating operations on the same position.

However, this restrietion can be relaxed a little. Since data is read before the doek
cyde in which the data is needed, this data has to be retained during the active edge of
the doek. This is done by sampling the data in a sampling register. This register has a
size equal to the wordlength of the RAM. This sampling register allows for two read
operations on the same address aftereach other. No EVENT occurs for the address sig
nal, but the needed value is still present in the sampling register.

From the above considerations, the following restrictions are deducted:

• The number of operations per doek cyde is limited to one.

• Read operations are anticipated one doek cyde at least. Write operations are not antici
pated.

• A read (write) operation aftera write (read) operation or vice versa ortwowrite opera
tions after each other on the same address, are separated by at least one operation on
another address. Two read operations after each other on the same address are allowed.

These restrictions are further referred to as the repfacement restrictions. Only if a design
complies with these replacement restrictions, can the design be converted while preserv
ing design functionality.

The considerations of this chapter form the basis for the VHDL models of the memory and
the addressgenerator. The VHDL model of the memory is listed in appendix E. An exam
ple of the VHDL model of the addressgenerator is listed in appendix F since the address
conversion in the addressgenerator is different for every design and RAM.

32 Emulation flow for designs with large memory requirements

Changing the design de scription February 18, 1994

4.3. Adjustments for simulation

When the replacernent tool performs the register replacernent, the HL VHDL description
has to be changed in several ways. The following adjustrnents are needed to obtain the
descriptions that can be sirnulated to verify functional correctness after replacernent:

• Insertion of package declaration and package creation

Type conversion functions frorn integer to std_(u)logic and vice versa are needed for
the replacernent. These conversion functions are defined in a package. Sorne syrnbolic
constants also are defined in this package; the constants are used in the inserted VHDL
code because they enhance readability. This package has to be made "visible" to the
entity in which the register has been replaced through a package declaration. The pack
age itself has to be created with the correct contents, for instanee the correct constant
value for the response time of the RAM has to be defined in the package.

• Insertion of component declarations and configurations

The VHDL descriptions of the RAM and of the addressgenerator are defined in a sepa
rate file. Since these descriptions are referred to as cornponents in the new HL descrip
tion, both declaration and contiguration of these cornponents have to be inserted at the
correct position in the altered entity.

• Insertion of signals for communication with RAM

The signals that stern frorn the design and that control the RAM (which is added as a
component in the design), must be declared inside the entity.

• Insertion of component instantiations

The declarations and configurations of the RAM and the addressgenerator are defined
in the entity header. The actual instantiations of these cornponents are also added as
VHDL statements to the entity. The instantiations are concurrent statements and are
added right after the beginning of the entity body.

• Adjustment of register declaration

The original register including the declaration is rernoved frorn the entity. A new regis
ter is needed due to the replacernent. This new register samples the RAM output. So the
register declaration of the large register is replaced by another register declaration for
the new and rnuch smaller register.

• Contiguration of the addressgenerator

Perhaps the RAM is larger than the register. This rneans that not all bits of the address
signal are used. During contiguration of the addressgenerator the unused address bits
are assigned a value of '0'. Furthermore in case of a one-dirnensional register the index
variabie has to be divided by the wordlength to obtain the correct word address for the
RAM. Actually this division consists of leaving the least significant register address
bits unused after conversion to std_(u)logic: a total of 2log(wordlength) bits is not used.

• lnsertion of default value for read _ write signa I

The read_ write signal is default set for reading since the RAM is always enabled. The
code that assigns this default value is inserted after the active edge statement.

Emulation flow for designs with large memory requirements 33

February 18, 1994 Changing the design description

• Insertion of sampling statement

The code for assigning the output of the RAM to the sampling register is also inserted.
This sampling statement is inserted af ter the code for the default value of the read_ write
signal.

The above stated alterations only need to be performed once. But there are other VHDL
statements in which the register occurs and they can occur multiple times in the entity
body. These VHDL statements are register assignment, register access, procedure calls
and function calls. They are the most important VHDL statements to replace because they
describe the functionality of the design. The next sections discuss these VHDL statements
and their equivalents for the RAM.

4.3.1. Register assignment

When the reptacement tool encounters VHDL codefora register assignment (when a part
of the register is assigned a value), then this code has to be replaced by equivalent code
that stores the data in the RAM. Pirst of all it is important to know what the code fora reg
ister assignment looks like for one-dimensional and for two-dimensional registers. Only
then it is possible to recognize theessenrial partsof such an assignment after which the
equivalent code can be constructed.

An assignment to a one-dimensional register is a VHDL statement of the form:

repl_reg(index+wordlength-1 DOWNTO index):= some_value;

Por a two-dimensional register an assignment is in a slightly different form:

repl_reg(index) := some_ value;

The essential parts of such assignments are:

• The name of the register

The fact that the name of the register (repl_reg) occurs in a statement and the fact that
the name of the register occurs before the variabie assignment symbol (:=), tells the
reptacement tool that this statement is a register assignment. Thus this statement has to
be replaced by equivalent code for data storage in the RAM. In this way the name of the
register to replace is only used for recognition of the register assignment.

• What part of the register is being assigned

34

Por the second essential part of a one-dimensional register assignment, what part of the
register is being assigned, a choice has to be made whether to use the upper index
(index+wordlength-1) or the lower index (index), since only one of them can be used as
an address for the RAM. The most logical choice is the lower index since this implies a
more direct address translation in the addressgenerator: the index value of 0 corre
sponds with address 0 of the RAM.

This index has to be sent to the addressgenerator for translation from linear indexing to
indexing on word basis. Therefore the following code is inserted (assuming that

Emulation flow for designs with large memory requirements

Changing the design description February 18, 1994

address is the name of the signal that is used as address input signal for the addressge
nerator):

address <= index;

For a two-dimensional register no choice has to be made of course. The index is sent to
the addressgenerator with the same VHDL statement as for a one-dimensional register.

• The value that is assigned

The last essential part of a register assignment is the value (some_ value) that is
assigned. This value mustbesent to the RAM as data to store. Assuming that the name
of the signal that is used to this end, is data_ram_in, the following code is inserted:

data_ram_in <= some_ value;

Besides the above two VHDL statements, another statement has to be inserted. Since a
write opera ti on has to be performed, the read_ write signal must be set accordingly:

r_ w <= WRITE;

So the equivalent RAM code for a register assignment is nothing more than three state
ments: one statement for the data itself, one statement for the address to store the data and
one statement to signal the RAM to perform a write operation.

4.3.2. Register access

Similar to register assignment is the case of register access: when the reptacement tooi
encounters VHDL codefora register access (when a part of the register is accessed), then
this code has to be replaced by equivalent code that retrieves the data from the RAM.

The VHDL code for accessing a one-dimensional register can be in one of the two follow
ing forms:

some_signal <= repl_reg(index+wordlength-1 DOWNTO index);

or:

some_ variabie := repl_reg(index+wordlength-1 DOWNTO index);

In case of a two-dimensional register the equivalent statements are:

some_signal <= repl_reg(index);

or:

some_ variabie := repl_reg(index);

Note that the first statements of the above pairs are NOT concurrent signal assignments.
As stated insection 4.2, the register is assumed to be a VARIABLE. Hence they are to be
interpreled as a sequential statements and not as concurrent statements.

For a register access there are only two essential parts that determine how the reptacement
is to be performed:

Emulation flow for designs with large memory requirements 35

February 18, 1994 Changing the design description

• The name of the register

It does not matter whether the register value is assigned to a signal or a variable: when
the name of the register (repl_reg) is encountered after a signal assignment symbol
(<=) or aftera variabie assignment symbol (:=), the tooi decides that a register access
has been found.

• What part of the register is being accessed

Register access means that a read operation is performed on the RAM. As already has
been mentioned insection 4.1, read operations have to be anticipated at least one doek
cyde. This is done by updating the index variabie in the doek cyde before the data is
needed. This way the RAM starts retrieving the correct data before the doek cyde in
which the data is needed; at the start of a new doek cyde, the data is available on the
output of the RAM and is stored in the sampling register. Assurning that the original
VHDL code complies with those rules, only one the statement is needed to replace the
register access. This statement only concerns retrieving from the sampling register. The
sampling itself is perforrned every doek cyde.

Therefore the following code replaces the register access (assuming that the sampling
register is named sample_reg):

data_read <= sample_reg;

VHDL code for the read_write signal to indicate the RAM to performa read operation,
does not have to be inserted since the default value for the read_ write signal is set to read
ing (see sections 4.1 and 4.3).

So the equivalent RAM code for a register access is nothing more than one statement: the
statement for assigning the read data that is stored in a sampling register.

4.3.3. Procedure calls

It is of course possible that the register to replace does not occur in a direct assignment or
access, but as parameter in a procedure call. Replacing the original register code with
equivalent RAM code becomes somewhat more complex in this case.

The following aspects have to be considered in case of a procedure call, namely:

• The total register can be parameter in the procedure call. However, an operation on the
RAM involves one word in the RAM which corresponds with part of the register. So
reptacement implies figuring out a couple of things:

36

1. It has to be determined what part of the register is involved in the procedure call. It
might even be impossible to determine this, for instanee when this part is determined
on basis of incoming data.

2. Possibly that part is larger than the wordlengthof any available RAM. This means
that the restrietion of one operation per doek cyde is violated. Hence, replacement
is useless since it leads to erroneous results.

Emulation flow for designs with large memory requirements

Changing the design description February 18, 1994

3. The design description can contain several procedure calls to the same procedure. In
that case it bas to be determined whether every procedure call involves the same part
of the register and if every procedure call has the register to replace as parameter. lf
not every procedure call contains the register to replace and the same part of that
register, then separate procedures have to be created for every individual case.

• Wh en the parameter mode of the register is IN, the value of the register that samples the
output of the RAM every clock cycle is needed inside the procedure body. So this regis
ter must become an IN parameter.

• When the parameter mode of the register is OUT, the data_ram_in signal and the r_ w
signal must become SIGNAL parameters of the procedure. An alternative is that the
values forthese signals are assigned to variables in the procedure body and that the val
ues of these variables are assigned to the signals after the procedure call.

• When the parameter mode of the register is IN OUT, this means a combination of both
IN andOUT.

• The index variabie is needed as index for the register and must be assigned a new value
for the next clock period in case a register access occurs in the next clock period.
Hence, the index variabie must become an IN OUT parameter in case a register access it
to take place in the next clock period.

From the above list can be concluded that conversion of procedure calls and correspond
ing procedures is not impossible but that it is very difficult and laborious, while removing
the procedure call and inserting the procedure body is much easier.

Therefore the corresponding procedure body is inserted in case a procedure call with the
register to replace as parameter is encountered. However, a procedure may have local dec
larations, such as VARIABLE declarations. These declarations cannot be copied to the
position of the procedure call, since declarations cannot be done in the statement part of a
process. They must be done inside the declarative part of the calling process. This problem
is solved by inserting the declaration part of the inserted procedure in the declarative part
of the calling process. And finally, of course, the register replacement has to be redone for
inserted procedure bodies.

4.3.4. Function calls

The same observations that were made for procedure calls can be made for function calls;
however, since in VHDL all parameters of a function are of mode IN, it is impossible to
change the parameter list of a function in the sense that the parameter list is adjusted to
support the replacement. Thus function calls with the register to replace as parameter are
not allowed. In case the replacement tooi detects a function call with the register to replace
as parameter, the replacement is not performed and an error message is generated.

Emulation flow for designs with large memory requirements 37

February 18, 1994 Changing the design description

4.4. Adjustments for synthesis

Insection 4.3 all the adjustments that have to bemadein the original HL description to
obtain simulatable files have been discussed. However, before synthesis can be attempted
with a synthesis tooi, the RAM has to be removed from the description since this part of
the description is not synthesized: an existing IC is used for the RAM component in the
entity. The tooi actions needed to remove the RAM from the description and to obtain a
synthesizable description of the rest of the design are reviewed in this section.

The tooi actions needed to create the obtain the description to be synthesized by a synthe
sis tooi are:

• Commenting out RAM component declaration, contiguration and instantiation

Of course, the RAM component has to be removed completely from the entity. This
means that component declaration, contiguration and instantiation have to be removed.
To allow for the designer to be able to trace the actions of the replacement tooi, the
removal is done by mak:ing these VHDL lines comment.

• Removal of signal deelara ti ons of signals for communication with RAM

The signals that control the RAM are not local signals of the entity anymore since the
RAM component is removed; consequently their declarations have to be removed.

• Addition of signals to port interface for communication with RAM

The RAM is added as a component inside the original design ENTITY. This means that
the port interface of the ENTITY remains unaltered. As a consequence the testbench
that is used for simulation can be used both before and after replacement.

lf the RAM is added as a component outside the original design ENTITY, then the port
interface of the ENTITY has to be altered: all signals for communication with the RAM
have to become port SIGNALS. Since then the testbench has to be altered too, compar
ison of simulation results before and after replacement becomes more difficult and
laborious. Therefore the first approach of adding the RAM inside the original design is
taken.

But before synthesis the RAM is removed as component from the design. The RAM
control signals are also removed from the entity. These signals must become interface
parameters of the entity. Hence the entity header must be extended with these signals.

4.5. Conclusions

A large register in a design requires a large memory capacity to be available in flexible
hardware when a bread board is developed for the design. Flexible hardware elements in
contrast have very little memory capacity. Therefore synthesis tools have to use a lot of
flexible hardware elements when mapping a design containing large registers to flexible
hardware. This means that a design has to be partitioned among multiple elements.

Partitioning implies an increase in wiring and in wiring complexity which leads to ineffi
cient mappings, which in turn cause a decrease in doek frequency. Also it is preferabie to

38 Emulation flow for designs with large memory requirements

Changing the design description February 18, 1994

keep the number of flexible hardware elements as small as possible in order to keep the
bread board simple, small and as cheap as possible. Besides this the synthesis tools crash
during synthesis of such designs, probably because such large registers eau se an overflow
in the internal format used by the synthesis tools.

To overcome this problem the possibilities to change a design containing a large register
into design containing a RAM have been investigated. As it turns out, the replacement of a
register by a RAM while preserving the functionality of the original design can be done if
the register complies with eertaio restrictions.

These restrictions, called the repfacement restrictions, are:

• The number of operations per clock cycle is limited to one.

• Read operations are anticipated one clock cycle at least. Write operations are not antici
pated.

• A read (write) operation aftera write (read) operation or vice versa ortwowrite opera
tions after each other on the same address are separated by at least one operation on
another address. Two read operations after each other on the same address are allowed.

The replacement changes theemulation flow. After the replacement and functional verifi
cation of the result of the replacement, the RAM part of the design is removed to enable
implementation of the rest of the design in flexible hardware. At the end of the emulation
flow a bread board is built from the flexible hardware and an existing RAM IC. Emulation
of this bread board bas to establish functional correctness of the final result.

Emulation flow for designs with large memory requirements 39

Templates February 18, 1994

S. Templates

Register replacement by a RAM can only be performed under eertaio restrictions, as has
been discussed in the previous chapter. In genera!, register specifications do not comply
with the restrictions since they are quite severe and differ a lot from the normal, instinctive
use of registers. Also VHDL code can be so complex that a register might comply with the
restrictions, but writing a tooi capable of checking the restrictions is much too complex in
the general case (for instanee in case of concurrent statements). However, it is desirabie to
know in advance whether the restrictions are met; that is, to knowhow to describe a regis
ter in a way that it is guaranteed that the replacement can be done. To this end templates
are written so that, when these templates are used in a correct manner, the replacement
under preservation of design functionality is then guaranteed. The replacement tooi has to
check the design for compliance with these templates.

In chapter 4 the differences in behaviour between registers and RAMs have been investi
gated. The evaluation of those differences lead to the restrictions under which the replace
ment can be performed under preservalion of design functionality. Several templates are
needed to guarantee compliance with the replacement restrictions. In short the templates
and their relation to the replacement restrictions are:

1. Templates for register declaration

The templates that involve the deelaratien of the register are needed since there are sev
eral ways to describe a register in VHDL and only two of them are supported by the
replacement tooi: one template for one-dimensional registers and another template for
two-dimensional registers.

In conneetion with the register, an index variabie is needed. The deelaratien of this
index variabie is also described in the templates. Furthermore, the replacement tooi
needs two constauts that indicate the length of the register and the size of the slices that
are indexed. Both constants enhance readability of inserted code, and they are
described in the templates, too.

2. Templates for register assignment and access

These templates describe the correct manoer of register assignment and access. On top
of that, the templates guarantee that the index value of the register is known one clock
period (or more) in advance in case of register access.

3. Templates for IF -statements and for CASE-statements

These templates eosure one register operation maximally during one clock cycle. Veri
fication of this restrietion is very complex in generaL Such a verification involves data
flow analysis, and it is doubtful whether dataflow analysis is possible for VHDL
concurrency. The best that can be done is stating templates for which verification is
realizable. Correct use of these templates guarantee that the restrietion is met, but the
templates do not cover every possible way to describe a register correctly.

4. Other guidelines

The restrietion that two operations (except two read operations) on the same address are
separated by an operation on another address, cannot in general be captured in tem-

Emulation flow for designs with large memory requirements 41

February 18, 1994 Templates

plates. Verification of the restrietion is comparable with the verification of at most one
register operation during one elock cyele. Therefore some informal guidelines are
given to help the designer in descrihing a large register in a design. The designer takes
responsibility for compliance with the replacement restrictions. The templates are
intended as an aid to the designer.

The templates and the guidelines are discussed in more detail in the next sections.

5.1. Templates for register declaration

Since there are several ways to describe a register in VHDLand only two of them are sup
ported by the replacement tooi, the deelaratien of the register to replace has to be pre
scribed by templates. The replacement tooi supports one-dimensional registers that
comply with the following template:

Template for deelaratien of one-dimensional re~ister

CONSTANT wordlength :INTEGER:= any_positive_constant_value;

CONSTANT registerlength :INTEGER:= any_positive_constant_value;

VARIABLE repl_reg : std_ulogic_ vector(registerlength-1 DOWNTO 0);

VARIABLE index :INTEGER RANGE 0 TO registerlength-1;

FIGURE 18. Template for declaration of one-dimensional register

Two-dimensional registers that are supported by the replacement tooi are prescribed by the
following template:

Template for deelaratien of two-dimensional re~ister

CONSTANT wordlength :INTEGER:= any_positive_constant_value;

CONSTANT registerlength : INTEGER := any_positive_constant_ value;

TYPE reg_type IS ARRAY(O TO registerlength-1) OF std_ulogic_vector(wordlength-1 DOWNTO 0);

VARIABLE repl_reg

VARIABLE index
: reg_type;
:INTEGER RANGE 0 TO registerlength-1;

FIGURE 19. Template for declaration oftwo-dimensional register

Replacement of registers of type SION AL is not supported. SIONALS in VHDL offer the
system designer usage of the register in multiple en ti ties. Replacement of the register over
multiple entities is not supported, therefore the restrietion on registers of type V ARIA
BLE. Also, entities describe concurrent behaviour. Verification of concurrent behaviour
for compliance with the replacement restrictions is very complex and perhaps even impos
sible. Furthermore, registers are usually described in VHDL by means of V ARIABLES
and not by SION ALS, since registers by nature possess full random access and assignment
that only can be modelled in VHDL by VARIABLES.

42 Emulation flow for designs with large memory requirements

Templates February 18, 1994

The variabie that is used as index fortheregister is (trivially) an integer with val u es within
the total range of the register. This variabie is denoted in the templates.

In the register and index variabie declarations the constant value indicating the register
length is needed; also the size of the part of the register that is indexed at a time is needed
as a constant. Therefore these two constants must be stated before the declarations in the
templates. These constants are also used in some VHDL code that is inserted during
replacement, for instanee in the VHDL modelsof the addressgenerator and the memory.

5.2. Templates for register assignment

To make sure that every register assignment that is performed on the register complies
with the replacement restrictions, the following template must be used whenever a one
dimensional register is being assigned:

Template for one-dimensional re~ister assi~nment

index ;:::: new _index_ value;
repl_reg(index +wordlength-1 DOWNTO index) := new _register_ value;
-- do not state a new value for the index variabie here

FIGURE 20. Template for one-dimensional register assignment

Key elements of this template are that the size of the part of the register that is indexed is
equal to wordlength and that the indexing variabie is updated immediately befare a regis
ter assignment. The latter is necessary to makesure that theEVENT on the address signal
that triggers the memory during simulation coincides with the new register value.

For two-dimensional registers the equivalent template is:

Template for two-dimensional re~ister assi~nment

index := new _index_ value;
repl_reg(index) := new _register_ value;
-- do not state a new value for the index variabie he re

FIGURE 21. Template for two-dimensional register assignment

The size of the part of the register that is indexed is equal to wordlength due to the decla
ration of the two-dimensional register. Hence the only key element of this template is that
the indexing variabie is updated immediately befare a register assignment similar to the
template for one-dimensional register assignment.

Emulation flow for designs with large memory requirements 43

February 18, 1994 Templates

5.3. Templates for register access

Every register access that is performed on the register has to comply with the restrictions.
Therefore the following template must be used for one-dimensional register access:

Template for one-dimensional register access

--do notstate a new valuefor the index variabie here
... <= repl_reg(index+wordlength-1 DOWNTO index);

-- state a new index value with the next statement ONLY if the next register operation is a register acces
index:= new_index_value;

FIGURE 22. Template for one-dimensional register access

Key elements of this template are that the size of the part of the register that is indexed is
equal to wordlength and that the indexing variabie is updated immediately aftera register
access if the next operation on the register is also a register access.

For a two-dimensional register the equivalent template is:

Template for two-dimensional register access

-- do notstate a new value for the index variabie here
... <= repl_reg(index);

-- state a new index value with the next statement ONLY if the next register operation is a register acces
index:= new_index_value;

FIGURE 23. Template for two-dimensional register access

The size of the part of the register that is indexed is equal to wordlength due to the decla
ration of the two-dimensional register. That leaves only one key element for this template
namely that the indexing variabie is updated immediately aftera register access similar to
the template for one-dimensional register access.

In case there is not a register access in a clock cycle while the next clock cycle comains a
register access, the above templates cannot be used. In fact the only statement that is
needed in this case is the updating of the indexing variable. The template for this situation
is shown in figure 24. It applies to both one-dimensional and two-dimensional registers.

Template to use when the next clock cycle comains a register access

index := new _index_ value; -- set index variabie for register access in next clock cycle

FIGURE 24. Template when the next clock cycle contains a register access

The indexing is not part of template checking. This gives the designer a maximum of free
dom for updating the index variable. Any vialation in providing the index at least one
clock period before register access is noticed during simulation of the converted design.

44 Emulation flow for designs with large memory requirements

Templates February 18, 1994

5.4. Templates for IF -statements

The previous sections involved templates for register dedaration, access and assignment.
Basically these templatescan only guarantee that the register is of the correct type and that
the read operations on the RAM can be anticipated one doek cyde. They do not guarantee
that at the most one operation is performed per doek cyde.

The simplest way to guarantee that this restrietion is met, is limiting the number of register
operations to one. However, writing to the register without reading or reading from the
register when nothing has been written, is useless: the number of register operations can
not be limited to one. Still it is desirabie to be able to guarantee that the restrietion is met.

As already stated, verification of the restrietion in the general case is too complex. But
there are some VHDL statements for which mutual exclusiveness is guaranteed. The state
ments for which mutual exclusiveness is guaranteed are rF-statements and CASE-state
ments. This section involves the templates for rF-statements; in the next section the
templates for CASE-statements are reviewed.

The register can occur in the conditions of the (ELS)IF-clauses of an lP-statement. Also,
the register can occur in any THEN-dause. lf the register occurs in a condition and in a
THEN -dause, then two opera ti ons per doek cyde are indicated: one for the condition and
one for the THEN-dause. So the templates must ensure that this is not the case.

Two templates can be given for lP-statements. The first is based on the occurrence of the
register in at least one THEN-dause. This implies that the conditions of the IF-statement
do not contain the register. Of course the register may not occur more than once inside one
single THEN-dause. This first template is stated in figure 25.

IF-template 1: conditions do not contain register

IF condition_l THEN sequential_statements
ELSIF condition_2 THEN sequential_statements

ELSIF condition_n THEN sequential_statements
ELSE sequential_statements
ENDIF;

--index may (optionally) be stated herefor resourcesharing reasons

-- at most one register operation
-- at most one register operation

-- at most one register operation
-- at most one register operation

FIGURE 25. Template 1 for IF -statements

If the register is needed in at least one condition, then another template has to be used. The
template for this situation is stated in figure 26. Occurrence of the register in a condition
implies register access; register assignment is impossible. Since register replacement
involves several statements that cannot be inserted in a condition, the register access has to
be performed before the IF-statement: a register value is assigned to a temporary variable.
At that position the replacement can be performed. The updating of the index variabie
when the next register operation is a register access is denoted in the template, too. This

Emulation flow for designs with large memory requirements 45

February 18, 1994 Templates

updating is done in the THEN-clauses or after the IF-statement for resourcesharing rea
soos.

IF-template 2: register value is needed in condition(s)

VARIABLE tmp_var: std_ulogic_vector(wordlength-1 DOWNTO 0);

tmp_var := repl_reg(index+wordlength-1 DOWNTO index);

IF condition_l_with_tmp_var THEN sequential_statements

index:= new_value

ELSIF condition_2a_ without_tmp_ var THEN sequential_statements

index := new _ value

ELSIF condition_2b_ with_tmp_ var THEN sequential_statements

index := new _ value

ELSIF condition_n_ without_tmp _var THEN sequential_statements

ELSIF condition_n_ with_tmp_ var

ELSE sequential_statements

index := new _ value
ENDIF;

index := new _ value

THEN sequential_statements

index:= new_value

-- no use ofrepl_reg;
-- tmp _var can be used
-- if next operation is access

--index may (optionally) bestaled herefor resourcesharing reasons

FIGURE 26. Template 2 for IF-statements

-- no use ofrepl_reg;
-- tmp _var can be used
-- if next operation is acces
-- no use ofrepl_reg;
-- tmp _var can be used
-- if next operation is acces
-- no use ofrepl_reg;
-- tmp _var can be used
-- if next operation is acces

-- no use of repl_ reg;
-- tmp _var can be used

ij next operation is acces
-- no use ofrepl_reg;
-- tmp _var can be used
-- if next operation is acces

The fact that the temporary variabie may or may not occur in any condition is symboli
cally denoted in the temp late. Also any THEN -clause can contain the temporary variable,
even multiple times. This is denoted as comment in the template. Of course none of the
conditions and THEN-clauses contain the register.

There is a restrietion for the usage of the IF-templates discussed in this section and the
CASE-templates stated in the next section. Unnested the total of all templates cannot be
more than one. Otherwise the replacement tooi cannot verify the replacement restrictions
by means of template checking. There is no restrietion on the nested usage of the tem
plates. lf the temptates are viotated, the reptacement tooi asks the designer if the reptace
ment still has to be perfonned. In that case, the designer takes responsibility for the
reptacement and forthefact that the reptacement restrictions have to be met. lt is then
NOT guaranteed that the reptacement resutts in pre servation of design functionality.

46 Emulation flow for designs with large memory requirements

Templates February 18, 1994

5.5. Templates for CASE-statements

The templates for CASE-statements in this section are completely analogue to the tem
plates for lP-statements of the previous section. The fi.rst CASE-template, shown in figure
27, is when the register statements occur in the WHEN-clauses and not in the expression.

CASE-template 1: expressiondoes not contain re~ister

CASE expression IS

WHEN expression_ values_1 => sequential_statements

WHEN expression_ values_2 => sequential_statements

WHEN expression_ values_n => sequential_statements

WHEN OTHERS => sequential_statements

END CASE;

--index may (optionally) be stated herefor resourcesharing reasans

-- at most one register operation
-- at most one register operation

-- at most one register operation
-- at most one register operation

FIGURE 27. Template 1 for CASE-statements

The second CASE-template, depicted in figure 28, is when a register value is needed in the
expression. Identical to the second IF-template, the register value is assigned to a tempo
rary variabie and this variabie can be used in the expression and in the WHEN -clauses.

CASE-template 2: re~ister value is needed in expression

VARIABLE tmp_ var: std_ulogic_ vector(wordlength-1 DOWNTO 0);

tmp_var := repl_reg(index+wordlength-1 DOWNTO index);

CASE expression_ with_tmp_ var IS

WHEN expression_ values_1 => sequential_statements

index := new _ value

WHEN expression_ values_2 => sequential_statements

index:= new_value

WHEN expression_ values_n => sequential_statements

WHENOTHERS

END CASE;

index := new _ value

=> sequential_statements

index := new _ value

-- index may (optionally) be stated here for resource s haring reasans

-- no use ofrepl_reg;
-- tmp _var can be used
-- if next operation is access
-- no use ofrepl _reg;
-- tmp _var can be used
-- if next operation is access

-- no use ofrepl_reg;
-- tmp _var can be used
-- if next operation is access
-- no use ofrepl_reg;
-- tmp _var can be used
-- if next operation is access

FIGURE 28. Template 2 for CASE-statements

Emulation flow for designs with large memory requirements 47

February 18, 1994 Templates

5.6. Guidelines for register replacement

The templates that are defined in the previous sections cannot be used without some pre
caution. Furtherrnore, the defined templates involve only two of the three replacement
restrictions. The third replacement restrietion that two operations (except two read opera
tions) on the same address have to be separated by another opera ti on on another address
cannot in general be captured in a VHDL temp late. The verification of the restrietion
involves dataflow analysis which cannot be captured in a VHDL template. On top of that,
dataflow analysis is very complex in VHDL, if it is possible at all.

Therefore some guidelines are stated in this section. These guidelines help the designer in
writing a design description with a large register that can be replaced. The guidelines,
which involve all three replacement restrictions, are:

1. The templates for the declaration of register, for register assignment and for register
access must ALWAYS be used.

2. It is important to realise that the RAM, which is to replace the register, can only per
form one read or one write operation per clock period. This means that the register also
can have one operation per clock period at the most. So the designer has to make sure
that the design satisfies this restriction. The templates for lP-statements and for CASE
statements can help with this restriction.

3. For simulation purposes, an EVENT is needed on the address signal that is sent to the
RAM. So two operations on the same part of the register are to be separated by another
operation on another part of the register. Only two read operations on the same part of
the register do not need to be separated by another operation on another part of the reg
ister.

4. Since read operations on the RAM have to be performed one clock cycle (or more)
before the data is needed, it is expected that the index variabie is set to the correct value
before the clock cycle in which the actual register operation takes place. Notice that in
case of a one-dimensional register the value of the index variabie is assumed to be the
lower index of the address; the upper index is determined by adding the wordlength to
the lower index (see the templates for registeraccessin section 5.3).

48 Emulation flow for designs with large memory requirements

Testcase February 18, 1994

6. Testcase

Of course, the reptacement tool bas to be tested to check its functionality in daily life prac
tice. The reptacement tool is to be used for the first time in the current project of the Dig
ital Video }Yocessing (DVP) group at PCALE: a Dernultiplexer/Descrarnbler IC as part of
Digital TV Receivers. Therefore the Dernultiplexer/Descrarnbler is used as the final test
case for the developrnent of the reptacement tool.

In this chapter that testcase is discussed. Pirst the Dernultiplexer/Descrarnbler as part of
Digital TV Receivers is reviewed, then the Dernultip lexer/Descrambler is looked into in
sorne detail. The next chapter is involved with the tests thernselves, including the test that
bas been performed with the Dernultiplexer/Descrarnbler. The interested reader is referred
to [5] for a complete description of the Dernultiplexer/Descrarnbler.

6.1. Digital TV Receiver

Nowadays there is a worldwide race towards digital TV transmission systerns. This race
was triggered by the developrnent of digital image cornpression standards. Arnong these
standards are two standards defined by the Moving fictures .Expert Group (MPEG) frorn
the !nternational.S.tandards Organization (ISO): the MPEG-1 standard and the MPEG-2
standard.

The MPEG-1 standard is a digital image cornpression algorithrn originally intended for
digital storage media. MPEG-1 is capable of reproducing full motion video at bit rates
around 1.5 Mbit/s. The MPEG-1 standard is airned at non-interlaced systerns.

MPEG-2 is an extension to MPEG-1 in the sense that it enables full motion image repro
duetion at bit rates up to and including 15 Mbit/s (hence resulting in a higher image reso
lution). The MPEG-2 standard is airned at digital TV braadcast systerns. Since most
braadcasting systerns are interlaced, MPEG-2 is better suited for braadcasting systerns
than MPEG-1.

Note that both the MPEG-1 and MPEG-2 standard do not define an irnplernentation. Only
the syntax and the sernantics of digital image cornpression are defined by these standards.
Por an extensive description of the MPEG-1 and MPEG-2 standards, see [3] and [4].

Apart frorn a reduction in bandwidth requirernents through image cornpression, a digital
TV braadcast systern involves rnultiplexing and rnodulation. Por digital TV broadcasting,
satellite, cable and terrestrial transmission are considered. Por the various transmission
media, different rnodulation forms are envisaged. Purthermore, as each of the media bas
its own specific error characteristics, various channel coding rnethods such as Reed-Solo
rnon or Viterbi, are considered. Multiplexing is the technique bebind the combination of
video, audio and text services into a single bit strearn. In present day TV systerns .Ere
quency Division Multiplexing (PDM) techniques are being used for this purpose. How
ever, digital TV braadcasting has a tendency towards Iirne Division Multiplexing (TDM).
Video, audio and text data are carried in fixed length packets. These packets are braadcast

Emulation flow for designs with large memory requirements 49

February 18, 1994

in random succession. The transmission order of the packets largely depends on the
amount of channel capacity each individual service requires.

Testcase

The combined Demultiplexer/Descrarnbler that is currently being developed by the DVP
group at PCALE is intended for use in MPEG-2 based Digital TV Receivers, possibly
incorporating conditional access. Such receivers can be implemented for instanee in a
Digital Video Braadcasting (DVB) top set box or in an integrated Digital TV Receiver. To
get an idea of such applications, an example of a Demultiplexer/Descrarnbler system con
tiguration is shown in tigure 29.

Conditionat 1+------+1 jJ.C
Access

System

Demodulator

&

Forward Error Corrector

Souree Decoder

A

Teletext

Decoder

FIGURE 29. Example of a Demultiplexer/Descrambler system contiguration

Apart from the Demultiplexer/Descrambler unit itself, this contiguration contains a chan
nel decoder module consisting of a demodulator and a forward error corrector, souree
decoders A and B, a system micro-controller (jJ.C) and a conditional access system. The
main function of the Demultiplexer/Descrambler is to separate relevant data from an
incoming data stream and pass it on to both the individual souree decoders and the system
micro-controller. In addition, parts of selected data streams can be descrambled, either
intemally or extemally. For this purpose the Demultiplexer subsystem contains the
descrambler part of a conditional access system. In the next section the Demultiplexer/
Descrarnbler is looked into in more detail.

6.2. The Demultiplexer/Descrambler

The intemal structure of the MPEG-2 Demultiplexer/Descrambler is shown in the func
tional block diagram in tigure 30. The block diagram indicates the main functional entities
in the Demultiplexer/Descrambler.

50 Emulation flow for designs with large memory requirements

Testcase February 18, 1994

1/0

Internal

Out In

Control

FIGURE 30. Demultiplexer/Descrambler functional block diagram

The functional entities and their meaning are:

• MPEG-2 syntax parser

The MPEG-2 syntax parser parses so-called transport streams that comply with the
MPEG-2 Systems specification.

• Error handling

Error handling is invoked whenever an error is detected.

• lnternal descrambler

The internal descrambler descrambles the incoming data stream.

• External descrambler interface

The external descrambler interface is for the communication with an optional external
de scrambler device. The throughput delay of the external descrambler is compensated
for in the interface module.

• Teletext filter

The !eletext (TXT) filter generates a teletext doek and provides aserial TXT data
stream.

• High Speed data filter

The High Speed (HS) data filter retrieves entire transport packets from the input stream;
the filtered data is stored in a .Eirst In .Eirst Out (FIFO) buffer.

Emulation flow for designs with large memory requirements 51

February 18, 1994 Testcase

• Auxiliary data filter

The auxiliary data filter derives data from the transport strearn. Auxiliary data is pro
tected by a Çyclic Redundancy Check (CRC) code, which is checked and removed by
the filter.

• Application Data Filter 2

This data filter in fact does notfilter at all, it merely passes the entire transport stream
on in byte format. In addition, a byte strobe signal (indicating consecutive bytes) and a
header byte indicator signal are generated.

• Application Data Filter 1

This data filter is intended for video data and has a vendor specific interface. It selects
f.acketized Elementary S.tream (PES) data and passes it to the video FIFO buffer. Time
stamps are also obtained from the PES stream.

• Application Data Filter 0

As Application Data Filter 1, except that this filter is for audio data.

• Program Clock Reference processor

The f.rograrn Clock Reference (PCR) processor is capable of regenerating a local sys
tem time clock. A local clock counter generates an absolute timing value which is used
to verify the phase relationship between the local system time clock and the transmitter
reference clock.

• Two time-stamp processors

The time-stamp processors are for synchronization of the attached souree decoders.
These processors compare incoming time-stamps with the local absolute time value
generated by the PCR processor. In case of equality an interrupt is generated and sent to
the micro-controller (!lC) for further handling.

• Two FIFO buffers with buffer control

These buffers are intended for the interfacing between different clocking systems.

• Micro-controller interface

The micro-controller (!lC) interface provides protocol handling for the 1/0 bus and con
tains filters for retrieving f.rogram S.pecific !nformation (PSI) and entidement message
data from the transport strearn.

One or more blocks are used as testcase for DSA, for instanee the PSI filter, since it con
tains a large register that cannot be mapped effectively to flexible hardware.

52 Emulation flow for designs with large memory requirements

Testing February 18, 1994

7. Testing

Evidently the tooi that performs the register replacement has to be tested afterits develop
ment. Testing DSA means that all the steps of the non-standard emulation flow described
in figure 8 on page 21 are taken, with a suitable testcase as input for the first step. The test
case that is used to this end is the PSI filter in the micro-controller interface of the Demul
tiplexer/Descrambler. Correctness of the functionality of the tooi is shown by comparing
the simulation results before and after the register replacement and theemulation results;
these results must be identical. The testcase and its relevanee have been explained in
chapter 6 and the test results are described in section 7 .2.

However, before putting a lot of effort into the development of DSA, the principle of reg
ister replacement has to be tested first. In principle the parser of the Demultiplexer/
Descrambler could be used for such a test. But when the time had come totest the princi
ple of register replacement, there were a number of problems that inhibited the use of the
parser of the Demultiplexer/Descrambler as testcase. The problems were:

1. The parser had other synthesis problems than only a large unsynthesizable register. The
DSA tooi of L.P.M. van Lieshout (see [16]) for solving those problems, was still under
development and could not be used. Rewriting the complete design was too laborious.

2. The register in the parser did not comply with the replacement restrictions. Again,
rewriting the design was too laborious.

3. The parser requires a high clock frequency (about 30 MHz) while the fastest RAMs
available at that time were relatively slow (response time of 25 ns). This leaves about 8
ns for design functionality. Looking at the complexity of the parser and especially at the
data calculations before a write operation or after a read operation on the register, it is
evident that it is impossible to create a bread board for the parser in combination with
such a slow RAM.

4. The only available synthesis tooi at that moment, Autologic, refused to synthesize con
straints. This means that the synthesis tooi could not be infl.uenced with regard to tim
ing.

Hence a simple testcase requiring a relative low clock frequency had to be written so that
this could serve as testcase for the principle of register replacement. This simple testcase
and the testresults belonging to it are described in the next section.

7 .1. Testing the principle

As previously stated, there is a need for a simple testcase for testing the principle of regis
ter replacement prior to the development of the replacement tooi. The testcase for this pur
pose is a design containing a register and a design containing a RAM. Of course the regis
ter in the design fully complies with the replacement restrictions derived in section 4.2.
The design containing the RAM is completely analogue to the design containing the regis
ter, except for the fact that the register replacement as described in chapter 4 is performed.

Emulation flow for designs with large memory requirements 53

February 18, 1994 Testing

This is done by hand, since this test takes place before development of the reptacement
tool. Fora complete description of the testcase please refer to appendix G.

The main functionality of the design is formed by a state machine. In the design, in some
states of the state machine the register is written, in other states the register is read. Very
little time (about 8 ns) is available for design functionality. Also, constraints cannot be put
on the design during synthesis since the synthesis tool does not synthesize designs with
constraints. Therefore the most sensible thing to do is to make sure that the available time
is not exceeded. This is done by performing no data calculations before a write operation
or after a read operation. So this testcase cannot provide any guarantee about timing
aspects; it can however indicate that thefunctionality of a register can be implemented in a
RAM.

Totest the principle of register reptacement both designs are simulated in a VHDL simula
tor to check design functionality. The comparison of the two simulations shows that the
reptacement does not infiuence the functionality of the design: the two designs produce
identical simulation results.

In addition to the simulations, the design with the RAM is adapted for synthesis as
described in section 4.4. Basically this means that the RAM component instantiation is
removed from the design and that the port interface of the design is expanded with the sig
nals that are used for communication with the RAM. After this synthesis adaptation, the
design is synthesized. Following synthesis, the synthesized design is mapped to EPLDs
with the MAX +PLUS mapping tool of the Altera Corpora ti on (see [12]): the design can be
successfully mapped to an EPM7032LC44-3 EPLD. With this EPLD and a CY7C171
RAM from Cypress Semiconductor a bread board is built which is emulated. Comparison
of this emulation with the previously conducted simulations shows that the bread board
exhibits the same functionality as the design during the simulations.

Since all three tests (the two simulations and the emulation) produce exactly the same
results, the principle of register reptacement is established: the reptacement of a register
by a RAM while preserving the functionality of the original design can be done if the reg
ister complies with eertaio restrictions.

7.2. Testing the reptacement tooi

After the principle of register reptacement was established, a tool was developed to auto
mate the register replacement. The tests that have been performed to test this reptacement
tool are described in this section.

1. PSI filter

54

The PSI filter as part of the micro-controller interface was the fi.rst testcase for the
reptacement tool. The large, two-dimensional register in this PSI filter consistsof 512
words of 16 bits. However there were no RAMs available with a 16 bit wordlength.
This problem was reported by the reptacement tool and it was solved by changing the
wordlength of the available RAMs in the RAM library to 16. This means that several

Emulation flow for designs with large memory requirements

Testing February 18, 1994

RAMs have to be used parallel on the bread board. All corresponding pins of all RAMs
except the data pins have to be connected while the data pins of the RAMs are con
nected to a part of the data pins of the design. For example in case of RAMs with a
wordlength of 8 bit, one RAM is used for the lower 8 bits of the data while the other
RAM is used for the upper 8 bits of the data.

After this change in the RAM library the reptacement was attempted again. The
reptacement tool now reported that the active edge mark could not be found. Analysis
of this problem showed that this error was due to concurrency. The register in the PSI
filter was described as concurrent with the index variable. Since concurrency is not sup
ported by the reptacement tool, the reptacement cannot be performed.

2. Other testcases

To show that the reptacement tool performs a functionally correct reptacement pro
vided that the register is written compliant with the reptacement restrictions, the test
case that was used for testing the principle was used again.

Besides the original testcase which contains a one-dimensional register, the testcase has
also been described with a two-dirnensional register. Both testcases were simulated in a
VHDL simulator and showed identical functionality.

After simulation the two testcases were converted by the reptacement tool. The tool
reported a successful conversion in both cases. To verify that the reptacement had not
changed the functionality of the testcases, the testcases were simulated again in the
VHDL simulator. These simulations showed that the functionality had not changed in
either case due to the replacement.

Next the testcases were synthesized with the CORE synthesis tool and subsequently
mapped with the MAX+PLUS mapping tool. Both designscan be successfully mapped
to an EPM7032LC44-3 EPLD. Two bread boards were built each with one such EPLD
and a CY7C171 RAM from Cypress Semiconductor. Then the bread boards were emu
lated. Comparison of the emulations with the previously conducted simulations showed
that the bread boards exhibit the same functionality as the designs during the sirnula
tions.

Since all tests (the simulations and the emulations) produce exactly the same results,
the functional correctness of the reptacement tool is established. The reptacement tool
replaces one-dimensional and two-dimensional registers by a RAM while preserving
the functionality of the original design (provided of course that the original design com
plies with the reptacement restrictions).

Emulation flow for designs with large memory requirements ss

Features February 18, 1994

8. Features

Besides the basic functionality of the tooi, which is the replacement of a register by a
RAM, some features are added to increase usability and fiexibility of the tooi. All these
features are discussed in this chapter. The features are:

1. The tooi is controlled by means of a control file, in which parameters can be set that
infiuence the effect of the tooi. Since the number of parameterscan be rather large, they
are passed on to the tooi by means of a control file instead of by means of command
line parameters. This control file is the first command line parameter.

2. Also the replacement tooi must be provided with a library of RAMs. In this RAM
library the data of the RAMs that can be used for the replacement is stored.

However, storage of the necessary data of RAMsisnot the only function of the RAM
library. The RAM library also makes automatic selection of a RAM possible: when the
designer does not specify a specific RAM to use for the replacement, the replacement
tooi attempts to select a RAM from the library.

3. Another feature is template checking. The tooi automatically verifies the HL descrip
tion on its compliance with the templates that were composed in chapter 5.

4. Furthermore the tooi incorporates some error checking. In case the tooi encounters
VHDL constructs that make the register replacement impossible or that guarantee erro
neous results, the tooi issues an error message and ceases the replacement.

5. The tooi also generates a transcript file that lists the actionsof the tooi. This transcript
file contains the information.

The replacement tooi is called by a command with the following syntax:

r2r <Control file> <files file>

The first argument, the control file, is thoroughly described in the next section. The second
argument is aso-called files file. The files file lists all files among which a design can par
titioned. The order of listing these files is ascending in the sense that the top hierarchical
level of a design is described in the last file. An example of a files file is listed in
appendix I.

8.1. Tooi control

The effect of the tooi is determined by some essential data and by some extra, non-essen
tial data. The essenrial data is passed to the tooi by means of mandatory parameters. These
mandatory parameters are discussed in section 8.1.1 in more detail.

The extra, non-essential data does not need to be passed on to the tooi. If some non-essen
tial data is passed on to the tool, it is passed on as optional parameters. These optional
parameters are explained insection 8.1.2 along with their infiuence on the effect of the
tooi and their default values.

Emulation flow for designs with large memory requirements 57

February 18, 1994 Features

In appendix H an example of a control file is listed. All parameters, mandatory and
optional, are embodied in this example.

8.1.1. Mandatory parameters

The register reptacement can only be performed when some essential data is known. Since
this data differs from design to design, it cannot be assigned default values. Therefore this
data must be passed to the tool as parameters in the control file every time it is called. This
subsection explains these mandatory parameters and their meaning. In the next subsection
the other, optional tool parameters are discussed.

The mandatory parameters and their meaning are:

• CLOCK_FREQUENCY

The doek frequency (in MHz) on which the total design must function must be speci
fied in order for the tool to be able to check whether or not the RAM that is used for the
reptacement meets the speed requirements. It is also used as a criterium for the auto
matic selection of a RAM.

• REGISTER_TO_REPLACE

With this parameter the designer can tell the tool the name of the register that has to be
replaced; the reptacement is almost completely based on finding occurrences of this
name in the VHDL files.

• REGISTER_LENGTH

This parameter specifies the length of the register indicated by the parameter REGIS
TER_TO_REPLACE. It must be specified in order for the tool to be able to check
whether or not the RAM that is used for the reptacement meets the memory require
ments. It is also used as a criterium for the automatic selection of a RAM.

It is of course possible that the tool automatically determines the length of the register
by reading the range from its declaration. However, ranges in VHDL can be complex
expressions that require a lot of tool complexity. Therefore the automatic determination
of the length of the register is left out.

• INDEX_ VARIABLE

This parameter indicates the name of the variabie that is used for indexing the register
that is being replaced. By demanding that the designer uses a variabie for indexing of
the register instead of direct indexing it is guaranteed that the designer always indexes
the same amount of data. Furthermore, through the use of a variable, it is always clear
what address mustbesent to the RAM, namely the value of this variable.

• INDEX_LENGTH

58

This parameter specifies the length of the indexed slices of the register. It must be spec
ified in order for the tool to be able to check whether the width of the RAM that is used
for the reptacement suffices. It is also used as a criterium for the automatic selection of
a RAM.

Emulation flow for designs with large memory requirements

Features February 18, 1994

Por the same reason as with the parameter REGISTER_LENGTH, automatic determi
nation of the length of the index variabie is left out.

• ACTIVE_EDGE_MARK

A VHDL statement for the default value of the read_ write signal and a VHDL state
ment for assigning a value to the sampling register every clock cycle must be added
when replacing the register. In order to eosure that these VHDL statements are exe
cuted every clock cycle, they are stated right after the VHDL code for detecting the
active edge. This implies that the tool must know what VHDL code indicates the detec
tion of the active edge of the clock. Every synthesis tool uses its own specific definition
of what VHDL code indicates the detection of the active edge of the clock. Therefore
the string to u se for the detection of the active edge of the clock must be specified by
means of this parameter.

• 2D_TYPE

In order forthereplacement tool to be able to check the deelaratien of a two-dimen
sional register, the name that is used for the type of the two-dimensional register bas to
be specified. The 2D _TYPE parameter is used to this end. Por one-dimensional regis
ters this parameter is left out of course.

8.1.2. Optional parameters

Besides the mandatory parameters reviewed in the previous section, some optional param
eters can also be set in the control file. lf these parameters are not specified, they are given
a default value. These parameters are intended to increase tool flexibility.

The optional parameters, their meaning and default values are:

• RAM_NAME

This parameter is used to specify the name of the RAM to u se for replacement. The tool
uses the data of this RAM for configuring the package file (see optional parameter
PACKAGE_PILE) and for checking suitability of the RAM. When this parameter is not
specified, the tool attempts automatic selection of a suitable RAM (see sectien 8.2.2).

• SIMULATION_PILES_EXTENSION

Running the tool results in output files which can be used for simulation, so the result of
the replacement can be checked as prescribed in the PCALE Design Flow (see sectien
2.1). These simulation output files have narnes equal to the original file narnes extended
with an extension as indicated by this parameter. When this parameter is not set, a
default value of ".sim.vhdl" is assumed.

• SYNTHESIS_PILES_EXTENSION

Besides the simulation output files, the tool also produces synthesis output files. These
synthesis output files are used for synthesizing the design after replacement and after
the result of the replacement has been verified through simulation. These synthesis out-

Emulation flow for designs with large memory requirements 59

February 18, 1994 Features

put files have narnes equal to the original filenarnes extended with an extension as indi
cated by this parameter. Not setting this parameter results in a default value of
".syn.vhdl".

• TEMPORARY _FTI..,ES_EXTENSION

When replacing the register by a RAM, the tool needs sorne ternporary result files. The
narnes of these files are equal to the original files extended with an extension as indi
cated by this parameter. The default value for this parameter is ".r2r". The rnain pur
pose of this parameter is that the ternporary files of the tool can be recognized (for
instanee in case of a tool crash) and that the extension can be in:fluenced so that
unwanted filenarnes can be avoided.

• PROCEDURE_BODY _FILES_EXTENSION

In case of a procedure call, the procedure call has to be replaced by the procedure body.
Since the procedure body can reside in the sarne file as the procedure call and since files
cannot be used for two purposes at the sarne time (finding procedure calls and extract
ing procedure bodies), the tool makes a copy of the file containing the procedure body.
This copy has a filename equal to the original files extended with an extension as indi
cated by this parameter. As with the parameter TEMPORARY_FILES_EXTENSION,
the rnain purpose of this parameter is recognition of the files and avoiding unwanted
filenarnes. The default value for this parameter is ".pbf'.

• PACKAGE_FTI..,E

The name of the package file that is created can be stated by rneans of this parameter. It
has a default filename of "definitions.vhdl".

• PACKAGE_FRAME_FILE

Starting with a suitable frarnework, the needed package file is generated by the tool.
The name of the file containing this frarnework can be entered through this parameter
The default file name for this file is "definitions.vhdl.frarne".

• ADDR_GEN_Fll.,E

This parameter is used to state the name of the file to create the contigured addressgene
rator in. The default value for this parameter is "rarn.vhdl".

• ADDR_GEN_FRAME_FILE

Sirnilar to the frarnework file for the package, the name of the frarnework file for the
addressgenerator can entered. The default name for this file is "rarn.vhdl.frarne".

• RAM_LIBRARY _FTI..,E

This parameter states the name of the file containing the RAMs that can be used for
replacernent. This file comains the necessary data of the RAM that is used for the
reptacement and this file is used for the autornatic selection of a RAM. Default this
parameter takes on the value of "rarn.library".

• TRANSCRIPT_FILE

60

The actions of the tool and possibly errors and warnings are written to a transcript file
so that the behaviour of the tool can be still be viewed afterwards without rerunning the

Emulation flow for designs with large memory requirements

Features February 18, 1994

tool. The name of this transcript file is indicated by this parameter and has as default
value of "transcript.r2r".

The above explained optional parameters influence the behaviour of the reptacement tool.
The following optional parameters influence the VHDL code that is inserted. They can be
used to alter the narnes ofthe CONSTANTS, VARIABLES and SIGNALS that are
involved in the register replacement. These parameters should be set when the designer
does not want to use the default narnes or when the default narnes already occur in the
design before it is converted by the reptacement tool.

• WORDLENGTH_CONSTANT_NAME

The reptacement tool has to know the name of the constant that indicates the length of
the words involved in register and RAM operations. This constant has a default name
of "wordlength" which can be overwntten by setting WORDLENGTH_CONSTANT_
N AME. This parameter should be used when the default name has already been used in
the design to another end.

• NUMB_OF _ADDR_BITS_CONSTANT_NAME

Similar to WORDLENGTH_CONSTANT_NAME, the name of the constant in the
package file indicating the number of address bits of the RAM can be given a value dif
ferent from the default value of "numb_of_addr_bits" by means of this parameter.

• NUMB_OF _ WORDS_CONSTANT_NAME

A lso the name of the constant indicating the number of words of the RAM can be given
a non-default value different from the value of "numb_of_ words".

• REGISTERLENG TH_ CONSTANT _NAME

The fourth constant in the package file whose name can be influenced, is the name of
the constant indicating the length of the register. It has a default value of "register
length".

• SAMPLING_REGISTER_NAME

As with the above constants, the name of the sampling register that samples the output
of the RAM every clock cycle can be explicitly stated by means of this parameter;
default value for this parameter is "sample_reg".

• ADDRESS_TO_ADDR_GEN_SIGNAL_NAME

The name of the address signal that is an input of the addressgenerator can be set by
means of this parameter. The default value for this parameter is "address".

• DATA_RAM_IN_SIGNAL_NAME

The name of the signal representing the data that must be stored in the RAM can also
be set. The default signal name is "data_ram_in".

• READ_ WRITE_SIGNAL_NAME

The name of the read_ write signal indicating the RAM whether to read or write can be
given another name than the default of"r_w".

Emulation flow for designs with large memory requirements 61

February 18, 1994 Features

• DATA_RAM_OUT_SIGNAL_NAME

The name of the signal with the data that is read frorn the RAM can be entered through
this parameter; otherwise it takes on the value of "data_rarn_out".

• RAM_ENABLE_SIGNAL_NAME

Every RAM must be enabled before an operation can be performed. The name of the
signal that is used for the enabling of the RAM can be adjusted by rneans of this
optional parameter; its default value is "ce".

• ADDRESS_TO_RAM_SIGNAL_NAME

This parameter states the name of the signal that represents the address of the data in
the RAM, and it bas a default value of "address_to_rarn".

8.2. RAM library

When the reptacement of a register by a RAM is to be performed, the characteristics of the
RAM that is used for this reptacement have to be known. Of course these characteristics
could be made known to the tool in the control file. However, since specifying these char
acteristics in the control file is very disadvantageous, the characteristics are specified in a
library of RAMs. The benefits of this approach are:

• Maintenance

While every design bas its own specific control file and while every designer rnay have
its own control files, the characteristics of the RAMs are present in one file only which
can be shared between rnany designers. This way rnaintenance of the characteristics is a
one time change in the library. Besides not only the characteristics of RAMscan be eas
ily updated, but new RAMs and obsoleteRAMscan be added and rernoved very easily
too.

• Possibility of automatic selection

When the characteristics of the RAM to use for the reptacement are specified in the
control file, only the characteristics of one RAM are known to the tool, while a RAM
library can contain the characteristics of rnany different RAMs. The presence of (the
characteristics of) multiple RAMs offers the possibility of autornatically selecting a
RAM frorn the RAM library: the designer only has to specify the doek frequency of the
design and the size of the register after which a suitable RAM is extracted frorn the
library (see section 8.2.2).

• Ease ofuse

The characteristics of every RAM only have to be inserted in the RAM library once.
After that the designer only bas to know the name of the RAM when he wants to force
the tool to use a specific RAM; or the designer can exploit the possibility of autornatic
selection when the designer bas no knowledge of the RAMs.

The structure of the library is discussed insection 8.2.1, while the autornatic selection
frorn the library is reviewed in more detail in section 8.2.2.

62 Emulation flow for designs with large memory requirements

Features February 18, 1994

8.2.1. Structure of the library

The structure of the RAM library is simply a list of RAMs. An example of a RAM library
is listed in appendix J. For every RAM in the library there are some characteristics that
must or can be set. These characteristics are:

• RAM_NAME

In order to be able to distinguish between the characteristics of each RAM, every RAM
must have its own unique name, for instanee the part number code that every IC has.
This name must be the first characteristic of every RAM in the library: every line after
the name of a RAM is assumed to state a characteristic of that RAM until the name of
the next RAM in the library is encountered. All characteristics of a RAM other than
RAM_NAME, can be statedinrandom order.

Stating the name of a RAM in the control file forces the tool to use that RAM for the
replacement; notstatinga name of a RAM in the control file results in automatic selec
tion of a suitable RAM. Any string can be used for this characteristic.

• WORD_LENGTH

The RAM is used to store words in. The lengthof thesewordsis indicated by the char
acteristic WORD_LENGTH. No default value is assumed for this characteristic since it
differs from RAM to RAM. It is mandatory to specify this characteristic and it must be
stated as an integer larger than zero.

• NUMB_OF _ADDR_BITS

Every word in the RAM has its own specific address. This address consists of as many
bits as indicated by NUMB_OF _ADDR_BITS. The total number of wordsin the RAM
is of course 2NUMB_OF_ADDR_BITs. Hence NUMB_OF _ADDR_BITS doesnothave to be
specified as long as the parameter NUMB_OF _ WORDS is set for the RAM. When
both are set, they must be consistent of course. All integers larger than zero are valid
values for this characteristic.

In the package a CONSTANT is declared with the value of NUMB_OF _ADDR_BITS.
This CONSTANT is symbolically used in the inserted VHDL code, for instanee in the
declaration of the address signal. The VHDL code for this declaration is of the follow
ing form:

SIGNAL address_in: std_ulogic_vector(numb_of_addr_bits- 1 DOWNTO 0);

Of course, the value of NUMB_OF _ADDR_BITS_CONSTANT_NAME (one of the
optional parameters in the control file) is inserted in the above declaration insteadof
"numb_of_addr_bits".

• NUMB_OF_WORDS

The number of words in the RAM is indicated by this characteristic. The total number
of wordsin the RAM is of course equal to 2NUMB_OF_ADDR_BITs. Hence the characteristic
NUMB_OF _ WORDS doesnothave to be specified as long as the above mentioned
characteristic NUMB_OF _ADDR_BITS is set for the RAM. When bothare set, they
must be consistent of course.

Emulation flow for designs with large memory requirements 63

February 18, 1994 Features

This characteristic is not used in the inserted VHDL code. It is used to verify or deduct
the characteristic NUMB_OF _ADDR_BITS; valid values are positive powersof 2.

• ENABLE_ VALUE

The RAM can only perform an operation when it is enabled. The characteristic called
ENABLE_ VALUE specifies whether enabling of the RAM is high active or low active.
When this characteristic is not specified, it is assumed to be low active. Low activity is
indicated by the value '0', high activity by the value '1 '.

• RESPONSE_TIME

This characteristic specifies the response time of the RAM, which is the time the RAM
takes to perform one operation. It is mandatory that this characteristic is set for every
RAM, since it is needed for the simulation of the HL description after the register
replacement and since it differs from RAM to RAM.

Any positive integer can be used to state the value for RESPONSE_ TIME in nanosec
onds. Stating 0 nanoseconds as the value for the response time of a RAM is allowed.
However, simulations with this value are incorrect since in reality RAMs always take a
certain amount of time for an operation. The reason for allowing this value is that the
designer may want to use it for comparison with register simulations. Register opera
tions do not take time in simulations.

• READ_ VALUE

This characteristic indicates what value has to be assigned to the read_ write signal of
the RAM in order for the RAM to performa read operation. READ_ VALUE can take
on the value of '0' or '1 '.

Note: it must be opposite to the value of the characteristic WRITE_ VALUE; when
WRITE_ VALUE is specified, READ_ VALUE does not need to be specified; when both
characteristics are not specified, READ _ VALUE assumes the default value of '1 '.

• WRITE_ VALUE

This characteristic indicates what value has to be assigned to the read_ write signal of
the RAM in order for the RAM to performa write operation. Just like the characteristic
READ_ VALUE, WRITE_ VALUE can take on the values '0' or '1'.

Note: it must be opposite to the value of the characteristic READ_ VALUE; when
READ_ VALUE is specified, WRITE_ VALUE does not need to be specified; when both
characteristics are not specified, WRITE_ VALUE assumes the default value of '0'.

• STATUS

64

This "characteristic" can take on three values: AVAILABLE, ON ORDER or NOT
AVAILABLE. When it is notspecified fora RAM, it takes on the default value of
AVAILABLE which simply means that the RAM is available. However, a RAM with a
STATUS of ON ORDER causes a waming to appear for the designer that the RAM is
currently not available but on order; a STATUS of NOT AVAILABLE causes a warning
that the RAM is not available. The STATUS characteristic is also used for the automatic
selection of a RAM (see section 8.2.2).

Emulation flow for designs with large memory requirements

Features February 18, 1994

8.2.2. Automatic selection from the library

When the designer does not specify a specific RAM to use for the reptacement in the con
trol file, DSA attempts automatic selection of a RAM in the RAM library that best
matches the requirements imposed on an adequate RAM. To this end, DSA starts with the
creation of a list of all the RAMsin the RAM library. Then the automatic selection starts.
The five consecutive steps in the processof automatic selection are:

1. All inadequate RAMs are removed from the list. Adequacy of a RAM is based on three
relations. The first relation verifies whether a RAM is fast enough in relationship to the
clock frequency:

response time <
clock Jrequency

1000

The second relation is todetermine whether the wordlengthof the RAM equals the
lengthof the index variabie since the tool is (partially) basedon this equality:

word length :::: index _length

The third relation that is used to determine adequacy involves the memory capacity.
The memory capacity of the RAM must at least be equal to the memory capacity that is
needed by the register. So for a one-dimensional register the following relation must
hold:

word_length x number _of_words ;;::: register _length

In case of a two-dimensional register another relation is used:

number _of_ words ;;::: register _length

Only if a RAM suffices the first two relations and the appropriate third relation, the
RAM is considered adequate.

When this step leaves no RAMs in the list, this means that the reptacement cannot be
performed since there is no adequate RAM. Wh en only one RAM remains after this
selection step, this RAM is automatically selected since apparently this is the only
RAM that suffices the requirements. When there is more than one RAM that meet the
requirements, the next selection step is taken.

2. The second step in the selection process is based on the response time of the RAMs.
Since a large amount of the available time within a clock period is consumed by the
RAM, and since it is desirabie that as much time as possible is available for design
functionality (in order to get the highest chance of success for synthesis), the fastest
RAM is selected.

3. When there are more than one adequate and equally fast RAMs available in the RAM
library, the next selection step is taken. The RAMs with the smallest memory capacity
are selected since in general larger RAMs cost more area on the final bread board
(which must be kept as smallas possible of course).

Emulation flow for designs with large memory requirements 65

February 18, 1994 Features

4. The last criterium on which a RAM is automatically selected, is the STATUS of the
RAM. The selection is made in the following fashion: available RAMs are preferred
over RAMs that are on order which in turn are preferred over not available RAMs. So
when either all the RAMs have the same status or when the status of every RAM is not
set, this step results in no further selection.

5. When after all the previous steps in the selection process, DSA still canrtot decide what
RAM to use for the replacement, the designer is asked to enter what RAM to use for the
register replacement. The RAM that is then indicated by the designer must meet the
requirements. Otherwise the designer is asked to re-enter a RAM until an adequate
RAM has been entered.

Possibly this adequate RAM is not the most optimal RAM. In that case the designer is
given the opportunity to change his mind. Having changed his mind or not, the register
replacement then proceeds.

8.3. Template checking

A design is verified on its compliance with the stated templates in the sense that a check is
performed whether or not it can be guaranteed that the register to replace does not have
two operations within one doek period. lf this guarantee cannot be assured, then the
replacement tooi asks the designer whether or not to replace the register since the designer
might be able to provide the guarantee. The templates are not checked for the index varia
bie in order to give the designer complete freedom to determine the address of the next
RAM operation.

8.4. Error checking

During a run of the replacement tooi VHDL code is parsed, and while this takes place
some checks are performed. These checks can lead to warnings when something errone
ous is suspected; when the tooi is sure that the register replacement cannot be performed
or leads to erroneous results, this results in an error message and then the tooi stops run
ning without performing the replacement.

Wamings occur in the following situations:

• Syntax errors in the RAM library

When the replacement tooi encounters syntax errors in the RAM library this is reported
to the designer. Syntax errors are ignored and have no effect on the replacement tooi.
Correct syntax for the RAM library is: <Characteristic> <value>.

• Syntax errors in the control file

66

Similar to syntax errors in the RAM library, syntax errors in the control file are reported
to the designer. Again, syntax errors are ignored and have no effect. Correct syntax for
the control file is: <parameter> <value>.

Emulation flow for designs with large memory requirements

Features February 18, 1994

• Default values for RAM parameters

When default values are assumed for optional RAM parameters a warning is issued on
what value is assumed for which parameter.

• Zero response time of RAM

When the response time of a RAM is specified as zero the designer is warned that sim
ulation of the design after replacement is in conflict with reality. In reality, RAMs
always need a eertaio (positive) amount of time to perform an opera ti on.

• STATUS parameter of RAM

When the STATUS parameter of a RAM indicates that the RAM is on order or not
available a warning is issued, stating the value of the STATUS parameter.

Errors occur in a situation of:

• Missing mandatory parameters in the control file

When mandatory parameters are missing in the control file the replacement cannot be
performed. An error message is generated, indicating which parameters are missing.

• Illegal values for parameters in the control file

When a parameter is stated with an illegal value the parameter and the illegal value are
reported in an error message.

• Identical file extensions and file narnes in the control file

Several file extensions and file narnes are optional parameters in the control file. The
tool can only function correctly when these parameters do nothave identical values.

• Incorrect active edge mark

The tool scans the process that contains the register to replace for the occurrence of the
active edge mark. When the specified active edge mark cannot be located the replace
ment is impossible. An error message reports this error.

• Function call contains register

When the register to replace is parameter in a function call the replacement is not per
formed. An error message staring the function call is generated.

• Function call in procedure call

Procedures bodies are inserted when a procedure call with the register to replace as
parameter is encountered. This insertion is not supported when one of the parameters of
the procedurecallis a function call. However, this situation is detected and reported.

• Missing mandatory charaderistics in the RAM library

When one or more mandatory characteristics are missing for a RAM in the RAM
library this situation is reported to the designer. An error message is generated, indicat
ing which characteristics are missing.

• Illegal values for charaderistics in the RAM library

When a characteristic is stated with an illegal value the characteristic and the illegal
value are reported in an error message.

Emulation flow for designs with large memory requirements 67

February 18, 1994 Features

• Inconsistently specified RAM characteristics

The characteristics READ_ VALUE and WRITE_ VALUE and the characteristics
NUMB_OF _ WORDS and NUMB_OF _ADDR_BITS must be specified consistently.
When they are inconsistently specified, an error message is generated stating the incon
sistency.

• Characteristic RAM_ NAME is oot the first specified characteristic

When the fi.rst specified characteristic of a RAM in the RAM library is not the charac
teristic RAM_NAME, then the tooi reports this.

• Empty RAM library

The RAM library must at least contain one RAM. The replacement tooi verifies
whether this is indeed the case.

• lmpossible automatic selection due to insufficient RAMs

During automatic selection of a RAM from the RAM library, every RAM is checked
for compliance with the requirements imposed by the design. When none of the RAMs
in the RAM library complies with the requirements, register replacement is impossible.

• RAM stated in control file does oot exist in RAM library

When the RAM specified by the designer in the control file cannot be located in the
RAM library, the tooi notifies the designer of this error.

• Incorrect declarations of register to replace and index variabie

The declarations of the register to replace and of the index variabie must be according
to the templates that were stated forthese declarations (see section 5.1). Any vialation
of these templates results in an error.

• Name of register occurs in more than one entity

When the name of the register to replace occurs in several entities the tooi cannot
decide which one of these registers has to be replaced. Therefore this situation is also
recognized as error.

In genera!, the errors or warnings do not occur. Only when the designer makes mistakes or
when the RAM library file is adapted the stated errors or warnings appear.

8.5. Transcript file

All messages generated by the replacement tooi are written to a transcript file so that the
designer can review the actions undertaken by the tooi. The name of this file can be stated
in the control file (see section 8.1). When it is not stated in the control file the default name
"transcript.r2r" is assumed by the tool. The messages generated by the tooi include:

• error and warning messages

• messages on the files that are opened

• messages on automatic selection of a RAM from the library

68 Emulation flow for designs with large memory requirements

Features February 18, 1994

• messages on template checking

• messages on inserted VHDL code

• messages on register assignments, register accesses, procedure calls and function calls

• messages on insertion of procedure bodies and insertion of declaration lines

The messages are self-explanatory. All these messages are also shown on screen while the
tool is running and the reptacement takes place.

Emulation flow for designs with large memory requirements 69

Conclusions and recommendations February 18, 1994

9. Conclusions and recommendations

Various conclusions can be drawn and various recomrnendations can be given for the
aspects involved in the development of an emulation flow for designs with large memory
requirements. The conclusions and recommendations are discussed in this chapter in rela
tion to these aspects.

The conclusions are:

• VHDL

Unfortunately, all VHDL constructs available for handling actions and reactions
between entities (concurrent statements) are not synthesizable. Delay caused by an
external device can only be accounted for in synthesis tools at the beginning or at the
end of a clock cycle by means of constraints. Delay in the middle of a clock cycle
(action andreaction between ports) is impossible in synthesizable VHDLand in con
straints.

• Synthesis libraries

VHDL is not suited as basis for synthesis library building blocks. One of the major
causes for this is that the number of ways to describe the same functionality is almost
infinite.

• Register replacement

Under severe restrictions the register reptacement can be performed. lf a register is
described in a design according to the restrictions, then the reptacement can be per
formed while preserving design functionality. The restrictions are:

1. One register operation during one clock cycle

2. Read operations are anticipated

3. Operations on the same address are separated by another operation on another
address

• Templates

The templates that have been given cover the guarantee on one register operation at a
time; that is correct u se of the templates guarantees that there is one register statement
at the most during one clock cycle and that read operations are anticipated. The restrie
tion on separation of operations on the same address cannot be incorporated in the tem
plates since it requires dataflow analysis. This dataflow analysis is very complex and
maybe even impossible in VHDL.

• PCALE Design Flow

Emulation is a useful extension to the Existing PCALE Design Flow. The fact that the
mapping results cannot be verified through simulation is an acceptable deviation of the
philosophy bebind the PCALE Design Flow, since the final verification through emula
tion is still present in the design flow. Also, between mapping and bread board building,
no design actions take place so not simulating the mapping result but emulating the
bread board is acceptable.

Emulation flow for designs with large memory requirements 71

February 18, 1994 Conclusions and recommendations

The recommendations are:

• Synthesis libraries

It is desirabie to have VHDL support for synthesis libraries. VHDL support makes re
evaluation of the synthesis tools worthwhile.

• Reptacement tooi

The tooi could be extended to support the reptacement of registers that are declared as
SIGNAL too, insteadof only supporting the reptacement of registers that are declared
as VARIABLE. This implies that register statementscan occur in multiple entities.
Hence the tooi would have to be extended in a way that the reptacement is done not
only within one entity, but over multiple entities. The fact of multiple entities has also
implications with regard to the templates: the templates still hold inside one entity, but
templates cannot be extended to cover the guarantee over multiple entities, since it is
not feasible to exclude the concurrency that comes with multiple entities.

The tooi currently supports indexing from 0 tosome positive value. The tooi can be
extended to support any indexing range. Since the addresses for the RAM must start at
0, the addressgenerator must be adapted because a direct translation is then no longer
valid; the register addresses have to be linearly shifted in the addressgenerator over a
di stance of the lowest index value.

The tooi could be extended to support other RAMs too, for instanee RAMs with sepa
rate read and write signals. Also RAMs with a wordlength different from the lengthof
the index variabie can be considered. In case the RAM wordlength is larger, the unused
part of the words in the RAM can be stuffed with zeros. In case the RAM wordlength is
smaller, several RAMs can be used parallel.

The replacement, the reptacement restrictions, the reptacement tooi and the templates
are all based on full random access since this is the most general case. However, in
some occasions a FIFO might be sufficient insteadof a full random access RAM. Possi
bly the restrictions for reptacement then become less severe. So further investigation is
needed for this kind of replacement.

• Templates

In principle, the reptacement tooi can be extended to support better template checking.
At this moment the tooi only takes into consideration where register statements occur
and tries to guarantee the reptacement restrietion from that evaluation, without looking
at the conditions under which the statements occur. If these conditions are also taken
into consideration, then the guarantee that the restrictions are met can be given for more
designs. Furthermore, when the tooi also supports register of type SIGNAL, the "tem
plate" checking can be extended to check concurrency too. However, the concurrency
makes this task very complex and it is not clear how this can be done. This kind of ver
ification, which in fact is dataflow analysis, might even be impossible within VHDL.

• Synthesis tooi

72

Preferabie constraints are not entered by the designer when synthesis is performed, but
are automatically derived from VHDL statements. When the synthesis tooi can be told
to synthesize part of a design and to take into account the timing of the part of the

Emulation flow for designs with large memory requirements

Conclusions and recornmendations February 18, 1994

design that is not synthesized, then this is much more flexible than splitting the design
description before synthesis.

Also it is desirabie that the synthesis tooi has VHDL output, thus enabling functional
verification after synthesis.

• Mapping tooi

Preferably the mapping tooi has VHDL output. Then functional verification is possible
after the mapping step in the emulation flow.

• PCALE Design Flow

The philosophy behind the PCALE Design Flow is based on two principles: specifica
tion and verification. The latter principle is not fully incorporated in the developed
emulation flow. Therefore it is most preferabie that all tools have VHDL output. Then
the PCALE Design Flow philosophy can always be applied and no level ever has to be
skipped with regard to verification. Currently the mapping result is simulatable, but
only visual comparison with the other tooi output is possible.

Emulation flow for designs with large memory requiremenls 73

List of References February 18, 1994

Appendix A. List of References

[1] Van den Hurk, J.A.A.M.
Evaluation of the PCALE VLSI Design Flow for HDTV I Cs.
Report of a second phase project.
Eindhoven: Instituut Vervolgopleidingen, Technische Universiteit Eindhoven,
1992. ISBN 90-5282-189-5

[2] IEEE Std 1076-1987, IEEE Standard VHDL Language Reference Manual.
New York, The Institute of Electrical and Electtonics Engineers, lnc.,
March 31, 1988.

[3] MPEG-1 Working Draft.
IS 0/IEC DIS 11172
May, 1992.

[4] MPEG-2 Working Draft.
ISO/IEC JTC 1/SC 29 N 658
December, 1993.

[5] Van den Hurk, J.A.A.M.
Tentative Device Specification of the MPEG-2 Demultiplexer/Descrambler.
Internal Laboratory Report.
Eindhoven: Philips Semiconductors, Dept. PCALE,
November 8, 1993. Draft version 2.0

[6] Autologic VHDL Synthesis Guide.
Wilsonville, Oregon: Mentor Graphics™ Corporation,
1993. Software Version 8.2

[7] Autologic Library Development Manual.
Wilsonville, Oregon: Mentor GraphicsTM Corporation,
1993. Software Version 8.2

[8] CORE U ser Manual.
Berke1ey, CA: Exemplar Logic™,
1993. Software Version 1.21

[9] LBuild User Manual.
Berkeley, CA: Exemplar Logic™,
1993. Software Version 1.2

[10] LGen User Manual.
Berkeley, CA: Exemplar Logic™,
1993. Software Version 1.21

[11] Van der Horst, E. and P. Van der Haar and R. Krikhaar.
VHDLSyn™ vl.O User Manual.
Hilversum (The Netherlands), PhilipsElecttonic Design & Tools,
April 5, 1993. Software Version 1.0, EDTH-SYN-UM-022

Emulatioo flow for designs with large memory requüements 75

February 18, 1994 list of References

[12] User Guide MAX+PLUS 11
San Jose, CA: Altera ™ Corporation,
1992. Software Version 3.0

[13]Dutt, N. D.
Generic Component Library Characterization For High Level Synthesis.
In: Proceedings, Fourth CSI/IEEE International Symposium on VLSI Design, 1991.
(Cat. No. 91 TH0340-0), p. 5-10

[14] Bink, J. M.
Data Structures and VLSI.
Faculty of Electrical Engineering, Section of Digital Information Systems,
Eindhoven University Of Technology, August 1991.
Master's Thesis no. 5864

[15] Hak et, M. P.
Parametrized Hardware Oriented VHDL models for abstract datatypes.
Faculty of Electrical Engineering, Section of Digital Information Systems,
Eindhoven University Of Technology, August 1992.
Master's Thesis no. 5947

[16] Van Lieshout, L.P.M.
Development of an emulation flow as part of the PCALE Design Flow.
Master's Thesis.
Department of Electrical Engineering, Design Automation Section,
Eindhoven University OfTechnology, February 1994.

[17] Lakerveld, J.

76

VHDL rnadelling guidelines for Digital TV Receiver project vLO.
Internal Report, number: ETV !IR93038.
Eindhoven, Product Concept and Application Labaratory Eindhoven, April 1993.

Emulation flow for designs with large memory requirements

List of Figures February 18, 1994

Appendix B. List of Figures

PIGURE 1. Existing PCALE Design Flow ... 6

FIGURE 2. Advanced PCALE Design Flow ... ?

PIGURE 3. Concept emulation flow ... 11

PIGURE 4. VHDL subsets .. 12

PIGURE 5. DSA VHDL subset ... 12

PI GURE 6. Standard emulation flow .. 13

PI GURE 7. CORE and synthesis libraries ... 17

FIGURE 8. Emulation flow for designs with large memory requirements 21

FIGURE 9. Place of design description in VHDL subsets before conversion 24

PI GURE 10. Place of design description in VHDL subsets after conversion 24

PI GURE 11. Schematic model of a RAM ... 25

FIGURE 12. Schematic modelsof a one-dimensional and a two-dimensional register 26

PI GURE 13. Constraint relative to last active clock edge ... 27

FIGURE 14. Constraint relative to next active clock edge .. 27

PIGURE 15. Timing diagram of a RAM ... 28

FIGURE 16. Start of iterative constraint determination .. 30

FIGURE 17. End of iterative constraint determination ... 30

PIGURE 18. Template for declaration of one-dimensional register 42

FIGURE 19. Template for declaration of two-dimensional register42

FIGURE 20. Template for one-dimensional register assignment.. 43

FIGURE 21. Template for two-dimensional register assignment43

PIGURE 22. Template for one-dimensional register access .. .44

PIGURE 23. Template for two-dimensional register access .. .44

FIGURE 24. Template when the next clock cycle contains a register access44

PIGURE 25. Template 1 for lP-statements .. .45

PIGURE 26. Template 2 for lP-statements .. .46

PIGURE 27. Template 1 for CASE-statements .. .47

FIGURE 28. Template 2 for CASE-statements .. .47

FIGURE 29. Example of a Demultiplexer/Descrambler system contiguration 50

PI GURE 30. Demultiplexer/Descrambler functional block diagram 51

Emulation flow for designs with large memory requirements 77

Framework of definitions package

Appendix C. Framework of definitions package
-- de.finitions package framework; to be adapted by reptacement toot
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

PACKAGE definitions IS

-- constantsjor symbolic use
CONSTANT numb_of_addr_bits

CONSTANT numb_of_ words

CONSTANT ENABLED

CONSTANT responsetime

CONSTANT registerlength

CONSTANT wordlength

CONSTANT READ

CONSTANT WRITE

:INTEGER .

:INTEGER :=
:bit

:TIME

:INTEGER

:INTEGER

:bit

:bit

.-
·-.-

·-.-
.-

FUNCTION logictoint(x : std_ulogic_ vector) RETURN INTEGER;

END definitions;

PACKAGE BODY definitions IS

FUNCTION logictoint(x: std_ulogic_vector) RETURN INTEGER IS

VARIABLE y: INTEGER;

BEGIN

y :=0;
FOR i IN x'LENGTH-1 DOWNTO 0 LOOP

IF x(i) = '1' THEN

y := y + 2**i;

ENDIF;

END LOOP;

RETURNy;

END logictoint;

END definitions;

Emulation flow for designs with large memory requirements

February 18, 1994

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

79

Examp1e of definitions package

Appendix D. Example of definitions package
-- definitions package; created by rep/acement tooi
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

PACKAGE definitions IS

-- constants for symbolic use
CONSTANT numb_of_addr_bits : INTEGER := 12;

CONSTANT numb_of_words

CONSTANT ENABLED

CONSTANT responsetime

: INTEGER := 4096;

CONSTANT registerlength

CONSTANT wordlength

CONSTANT READ

CONSTANT WRI1E

:bit

:TIME

:INTEGER

:INTEGER

:bit

:bit

:= '0';

:= 25 ns;

:= 16;

:=4;

:= '1';

:= '0';

FUNCTION logictoint(x: std_ulogic_vector) RETURN INTEGER;

END definitions;

PACKAGE BODY definitions IS

FUNCTION logictoint(x : std_ulogic_ vector) RETURN INTEGER IS

VARIABLE y: INTEGER;

BEGIN

y:=O;

FOR i IN x 'LENGTH-1 DOWNTO 0 LOOP

IF x(i) = '1' THEN

y := y + 2**i;

ENDIF;

END LOOP;

RETURNy;

END logictoint;

END definitions;

Emulation flow for designs with large memory requirements

February 18, 1994

-- SIM-UNE

-- SIM-LINE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-UNE

-- SIM-LINE

-- SIM-UNE

-- SIM-UNE

81

VHDL model of memory

Appendix E. VHDL model of memory

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE work.definitions.ALL;

ENTITY memory IS

PORT (address : IN std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0);

data_ram_in :IN std_ulogic_vector(wordlength-1 DOWNTO 0);

r_w :IN bit;

ce :IN bit;

data_ram_out :OUT std_ulogic_vector(wordlength-1 DOWNTO 0)

);

END memory;

ARCHITECTURE registerlevel OF memory IS

SUBTYPE dataword_type IS std_ulogic_vector(wordlength-1 DOWNTO 0);

TYPE memory_type IS ARRAY(O TO numb_of_words-1) OF dataword_type;

SIGNAL mem: memory_type;

BEGIN

operation: PROCESS(address)

BEGIN

IF address'EVENT THEN -- RAM has to perform new action

IF r_ w = WRITE THEN -- write operation

mem(logictoint(address)) <= data_ram_in AFTER responsetime;

ELSE -- read operation

data_ram_out <= mem(logictoint(address)) AFTER responsetime;

ENDIF;

ENDIF;

END PROCESS;

END registerlevel;

Emulation flow for designs with large memory requirements

February 18, 1994

83

VHDL models of addressgenerator February 18, 1994

Appendix F. VHDL models of addressgenerator

This appendix contains two examples of the VHDL model of the addressgenerator. The
first example is of a one-dimensional register, the second example is of a two-dimensional
register.

Example of VHDL model of addressgenerator for a one-dimensional register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE work.definitions.ALL;

USE work.exemplar_1164.ALL;

ENTITY addr_gen IS

PORT(address_in :IN INTEGER RANGE 0 TO registerlength-1;

address_out :OUT std_ulogic_vector(numb_of_addr_bits-1 DOWNTO 0);

ce :OUT bit

);

END addr_gen;

ARCHITECTURE registerlevel OF addr_gen IS

BEGIN

-- RAM is always enabled

ce <= ENABLED;

-- the conversionfunction int2evec is defined in the exemplar _1164 package and is exemplar specific

conv _addr : PROCESS(address_in)

VARIABLE temp_ var: std_ulogic_vector(3 DOWNTO 0);

BEGIN

temp_ var:= int2evec(address_in,4);

address_out(1 DOWNTO 0) <= temp_var(3 DOWNTO 2);

address_out(numb_of_addr_bits-1 DOWNTO 2) <= "0000000000";

END PROCESS;

END registerlevel;

Emulation flow for designs with large memory requirements 85

February 18, 1994 VHDL models of addressgenerator

Example of VHDL model of addressgenerator for a two-dimensional register

86

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE work.definitions.ALL;

USE work.exemplar_1164.ALL;

ENTITY addr_gen IS

PORT(address_in :IN INTEGER RANGE 0 TO registerlength-1;

address_out : OUT std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0);

ce : OUTbit

);

END addr_gen;

ARCHITECTURE registerlevel OF addr_gen IS

BEGIN

-- RAM is always enabled

ce <= ENABLED;

-- the conversionfunction int2evec is defined in the exemplar _1164 package and is exemplar specific

conv_addr: PROCESS(address_in)

BEGIN

address_out(S DOWNTO 0) <= int2evec(address_in,6);

address_out(numb_of_addr_bits-1 DOWNTO 6) <= "000000";

END PROCESS;

END registerlevel;

Emulation flow for designs with large memory requirements

Listing of simple testcase February 18, 1994

Appendix G. Listing of simple testcase

This appendix contains three VHDL descriptions of the simple testcase. The fiTst descrip
tion is the testcase before register replacement has been performed. The other two descrip
tions are the testcase after the replacement: the fi.rst description is used for simulation and
the second description is used for synthesis.

Testcase before register replacement
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE work.definitions.ALL;

ENTITY dsn IS

PORT(clk

END dsn;

rst

data_read

);

: IN std_ulogic;

: IN std_ulogic;

: OUT std_ulogic_ vector(wordlength-1 DOWNTO 0)

ARCHITECTURE dsnreg OF dsn IS

BEGIN

regpcs : PROCESS(clk)

VARIABLE index

VARIABLE repl_reg

TYPE state_type IS

VARIABLE state

BEGIN

:INTEGER RANGE 0 TO registerlength-1;

: std_ulogic _ vector(registerlength-1 DOWNTO 0);

(RST,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,

TEN,ELEVEN,TWELVE,THIRTEEN,FOURTEEN,FIFTEEN);

: state_type;

IF clk'EVENT AND elk= '1' THEN

IF rst = '1' THEN

state:= RST;

ENDIF;

CASE state IS

WHENRST

WHENONE

WHENTWO

WHENTHREE

=> state := ONE;

=> -- writing of first data
repl_reg(index+wordlength-1 DOWNTO index):= "0001";

index:= index+wordlength;

state <= TWO;

=> -- writing of second data

repl_reg(index+wordlength-1 DOWNTO index):= "0010";

index:= index+wordlength;

state <= THREE;

=> -- writing of third data
repl_reg(index+wordlength-1 DOWNTO index):= "0100";

Emulation flow for designs with large memory requirements 87

February 18, 1994 lisring of simple testcase

WHENPOUR

WHENPIVE

WHENSIX

WHENSEVEN

WHENEIGHT

WHENNINE

WHENTEN

WHENELEVEN

index:= index+wordlength;

state<= POUR;

=> -- writing offourth data

repl_reg(index+wordlength-1 DOWNTO index):= "1000";

index:= 0;

state<= FIVE;

=> state <= SIX;

=>state<= SEVEN;

=> state <= EIGHT;

=> state <= NINE;

=> state <= TEN;

=>state<= ELEVEN;

=>--reading offirst data

data_read <= repl_reg(index+wordlength-1 DOWNTO index);

index := index+wordlength;

state<= TWELVE;

WHEN TWELVE => -- reading of second data

data_read <= repl_reg(index+wordlength-1 DOWNTO index);

index := index+wordlength;

state <= THIRTEEN;

WHEN THIRTEEN => -- reading of third data

data_read <= repl_reg(index+wordlength-1 DOWNTO index);

index:= index+wordlength;

state<= POURTEEN;

WHEN POURTEEN => -- reading of fourth data

data_read <= repl_reg(index+wordlength-1 DOWNTO index);

index:= 0;

state <= PIPTEEN;

WHEN PIPTEEN => state<= ONE;

END CASE;

END IF; --RISING_EDGE(clk)

END PROCESS; -- regpcs

END dsnreg;

Testcase for simulation after replacement

LIBRARY ieee;

88

USE ieee.std_logic_1164.ALL;

USE work.definitions.ALL;

ENTITY dsn IS

PORT(clk : IN std_ulogic;

: IN std_ulogic; rst

data_read

);

:OUT std_ulogic_vector(wordlength-1 DOWNTO 0)

ENDdsn;

Emulation flow for designs with large memory requirements

Listing of simple testcase February 18, 1994

ARCHITECTURE dsnram OF dsn IS

COMPONENT memory

PORT (address

data_ram_in

r_w

ce

data_ram_out

);

:IN std_u1ogic_vector(numb_of_addr_bits-1 DOWNTO 0);

:IN std_u1ogic_vector(wordlength-1 DOWNTO 0);

:IN bit;

:IN bit;

:OUT std_ulogic_vector(wordlength-1 DOWNTO 0)

:IN INTEGER RANGE 0 TO registerlength-1;

END COMPONENT;

COMPONENT addr__gen

PORT (address_in

address_out

ce

:OUT std_ulogic_vector(numb_of_addr_bits-1 DOWNTO 0);

: OUTbit

);

END COMPONENT;

FOR ALL : memory USE ENTITY work.memory;

FOR ALL : addr__gen USE ENTITY work.addr__gen;

SIGNAL address

SIGNAL data_ram_in

SIGNALr_w

SIGNAL data_ram_out

SIGNAL ce

SIGNAL address_to_ram

BEGIN

: INTEGER RANGE 0 TO registerlength-1;

: std_ulogic_vector(wordlength-1 DOWNTO 0);

:bit;

: std_ulogic_vector(wordlength-1 DOWNTO 0);

:bit;

: std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0);

-- send address for conversion to address _generator
ag1 : addr__gen

PORT MAP(address,address_to_ram,ce);

-- send data to and receive data from memory
ram1: memory

PORT MAP(address_to_ram,data_ram_in,r_ w,ce,data_ram_out);

rampcs : PROCESS(clk)

VARIABLE index :INTEGER RANGE 0 TO registerlength-1;

VARIABLE sample_reg : std_ulogic_vector(wordlength-1 DOWNTO 0);

TYPE state_type IS (RST,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,

VARIABLE state

BEGIN

TEN,ELEVEN,TWELVE,THIRTEEN,FOURTEEN,FIFTEEN);

: state_type;

IF clk'EVENT AND elk= '1' THEN

r_w<=READ;

sample_reg := data_ram_out;

Emulation flow for designs with large memory requirements 89

February 18, 1994

90

IF rst = '1' THEN

state := RST;

ENDIF;

CASE state IS

WHENRST

WHENONE

WHENTWO

WHENTHREE

WHENFOUR

WHENFIVE

WHENSIX

WRENSEVEN

WHENEIGHT

WHENNINE

WHENTEN

WHENELEVEN

=> address <= registerlength-l;

r_w<=READ;

state := ONE;

=> -- writing offirst data

data_ram_in <= "0001 ";

index:= 0;
address <= index;

r_w <= WRITE;

state := TWO;

=> -- writing of second data

data_ram_in <= "0010";

index := index+wordlength;

address <= index;

r_ w <= WRITE;

state := THREE;

=> -- writing of third data

data_ram_in <= "0100";

index:= index+wordlength;

address <= index;

r_ w <= WRITE;

state := FOUR;

=> -- writing offourth data

data_ram_in <= "1000";

index:= index+wordlength;

address <= index;

r_ w <= WRITE;

state:= FIVE;

=> state := SIX;

=>state:= SEVEN;

=> state := EIGHT;

=> state := NINE;

=> state :=TEN;

=> -- address for next read operation

index:= 0;

address <= index;

state:= ELEVEN;

=>--reading offirst data

data_read <= sample_reg;

index := index+wordlength;

address <= index;

state:= TWELVE;

Lisring of simple testcase

Emulation flow for designs with large memory requirements

Listing of simple testcase February 18, 1994

WHEN TWELVE =>--reading of second data

data_read <= sample_reg;

index := index+wordlength;

address <= index;

state := THIRTEEN;

WHEN THIRTEEN => -- reading of third data
data_read <= sample_reg;

index := index+wordlength;

address <= index;

state := FOURTEEN;

WHEN FOURTEEN =>--reading offourth data
data_read <= sample_reg;

state:= FIFTEEN;

WHEN FIFTEEN => state := ONE;

END CASE;

END IF; -- RISING _ EDGE(elk)

END PROCESS; -- rampcs
END dsnram;

Testcase for synthesis after replacement

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE work.definitions.ALL;

ENTITY dsn IS

PORT(clk :IN std_ulogic;

rst : IN std_ulogic;

data_read :OUT std_ulogic_vector(wordlength-1 DOWNTO 0);

data_ram_out :IN std_ulogic_vector(wordlength-1 DOWNTO 0);

data_ram_in :OUT std_ulogic_vector(wordlength-1 DOWNTO 0);

address_to_ram: OUT std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0);

r_ w : OUT bit;

ce : OUTbit

);

END dsn;

ARCHITECTURE dsnram OF dsn IS

COMPONENT memory

PORT (address

data_ram_in

r_w

ce

data_ram_out

);

END COMPONENT;

:IN std_ulogic_vector(numb_of_addr_bits-1 DOWNTO 0);

:IN std_ulogic_vector(wordlength-1 DOWNTO 0);

:IN bit;

:IN bit;

:OUT std_ulogic_vector(wordlength-1 DOWNTO 0)

Emulation flow for designs with large memory requirements 91

February 18, 1994 listing of simple testcase

92

COMPONENT addr_gen

PORT (address_in

address_out

ce

);

:IN INTEGER RANGE 0 TO registerlength-1;

: OUT std_ulogic_ vector(numb_of_addr_bits-1 DOWNTO 0);

:OUT bit

END COMPONENT;

FOR ALL : memory

FOR ALL : addr_gen

USE ENTITY work.memory;

USE ENTITY work.addr_gen;

SIGNAL address :INTEGER RANGE 0 TO registerlength-1;

SIGNAL data_ram_in : std_ulogic_vector(wordlength-1 DOWNTO 0);

SIGNAL r_w :bit;

SIGNAL data_ram_out : std_ulogic_vector(wordlength-1 DOWNTO 0);

SIGNAL ce :bit;

SIGNAL address_to_ram : std_ulogic_vector(numb_of_addr_bits-1 DOWNTO 0);

BEGIN

-- send address for conversion to address _generator
agl : addr_gen

PORT MAP(address,address_to_ram,ce);

-- send data to and receive datafrom memory
ram 1 : memory

PORT MAP(address_to_ram,data_ram_in,r_w,ce,data_ram_out);

rampcs: PROCESS(clk)

VARIABLE index

VARIABLE sample_reg

TYPE state_type IS

VARIABLE state

BEGIN

:INTEGER RANGE 0 TO registerlength-1;

: std_ulogic_vector(wordlength-1 DOWNTO 0);

(RST,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,

TEN,ELEVEN,TWELVE,THIRTEEN,FOURTEEN,FIFTEEN);

: state_type;

IF clk'EVENT AND elk= '1' THEN

r_w<=READ;

sample_reg := data_ram_out;

IF rst = '1' THEN

state := RST;

ENDIF;

CASE state IS

WHENRST

WHENONE

=> address <= registerlength-l;

r_w<=READ;

state := ONE;

=> -- writing of first data
data_ram_in <= "0001";

Emulation flow for designs with large memory requirements

Lisring of simple testcase

WHENTWO

WHENTHREE

WHENFOUR

WHENFIVE
WHENSIX
WHENSEVEN

WHENEIGHT
WHENNINE
WHENTEN

WHENELEVEN

WHENTWELVE

index:= 0;

address <=index;
r_w <= WRITE;

state := TWO;

=> -- writing of second data

data_ram_in <= "0010";

index:= index+wordlength;

address <= index;
r_ w <= WRITE;
state:= THREE;

=> -- writing of third data

data_ram_in <= "0100";

index:= index+wordlength;

address <= index;
r_ w <= WRITE;

state := FOUR;

=> -- writing offourth data

data_ram_in <= "1000";
index:= index+wordlength;

address <= index;
r_ w <= WRITE;
state := FIVE;

=> state := SIX;
=>state:= SEVEN;
=>state:= EIGHT;

=> state := NINE;
=>state:= TEN;
=> -- address for next re ad operation

index:= 0;

address <= index;
state := ELEVEN;

=> -- reading of first data

data_read <= sample_reg;
index := index+wordlength;

address <=index;
state:= TWELVE;

=> -- reading of second data

data_read <= sample_reg;
index := index+wordlength;

address <=index;
state := THIRTEEN;

WHEN THIRTEEN => -- reading of third data

data_read <= sample_reg;

index:= index+wordlength;

address <= index;
state:= FOURTEEN;

Emulation flow for designs with large memory requirements

February 18, 1994

93

February 18, 1994

WHEN FOURTEEN =>--reading offourth data

data_read <= sample_reg;
state:= FIFIEEN;

WHEN FIFIEEN

END CASE;

=>state:= ONE;

END IF; -- RISING _ EDGE(elk)

END PROCESS; -- rampcs
END dsnram;

listing of simple testcase

94 Emulation How for designs with large memory requirements

Example of control file February 18, 1994

Appendix H. Example of control file
The necessary parameters, mandatory and optional, are passed on to the reptacement tooi
by means of a control file.

Below an example of such a control file is given. The reptacement tool considers alllines
starting with a #-symbol as comment lines. Any number of comment lines and empty lines
is allowed; they are ignored by the reptacement tooi. The syntax for non-comment, non
empty lines is: <parameter> <Value>.

MANDATORY PARAMETERS; MUST BE SPECIFIED #

The clock frequency (in MHz) on which the total design must function
CLOCK_FREQUENCY 30

The register that is being replaced
REGISTER_TO_REPLACE

Length of the above register
REGISTER_LENGTH

priv _segm_reg

16000

Variabie that is used for indexing the register that is being replaced
INDEX_ VARIABLE write_pointer

Length of the above variabie
INDEX_LENGTH

#String to use for detection of active edge
ACTIVE_EDGE_MARK

8

IF (clk'EVENT AND elk= '1 ') THEN

MANDATORY PARAMETER FOR TWO-DIMENSIONAL REGISTERS #

Name of type declaration in case of a two-dimensional register
2D_TYPE reg_type

OPTIONAL PARAMETERS; NEED NOT BE SPECIFIED #
#############################lllllllllf/1#################
#Name of the RAM, present in the RAM library, to u se for reptacement
RAM_NAME CY7C171

Extension for output simulation files; default= ".sim.vhdl"
SIMULATION_FILES_EXTENSION .sim.vhdl

Extension for output synthesis files; default= ".syn.vhdl"
SYNTHESIS_FILES_EXTENSION .syn.vhdl

Extension for temporary re sult files; default = ".r2r"
TEMPORARY _FILES_EXTENSION .r2r

Emulatioo flow for designs with large memory requirements 95

February 18, 1994 Example of control file

Extension for temporary files containing procedure bodies; default= ".pbf'
PROCEDURE_BODY _FILES_EXTENSION .pbf

#Name of package file containing constants, etcetera; default= "definitions.vhdl"
PACKAGE_ FILE definitions. vhdl

#Name of file containing framework for package file; default= "definitions.vhdl.frame"
PACKAGE_FRAME_FILE definitions. vhdl.frame

#Name of file containing addressgenerator; default= "ram.vhdl"
ADDR_GEN_FlLE ram.vhdl

#Name of file containing framework for addressgenerator; default= "ram.vhdl.frame"
ADDR_ GEN_FRAME_FILE ram. vhdl.frame

#Name of file containing RAMs toselect from; default= "ram.library"
RAM_LIBRARY _FILE ram.library

#Name of file to write transcript to; default= "transcript.r2r"
TRANSCRIPT_FILE transcript.r2r

#Name of constant indicating lengthof wordsof RAM; default= "wordlength"
WORDLENGTH_CONSTANT_NAME wordlength

Name of constant indicating number of address bits of RAM;
#default = "numb_of_addr_bits"
NUMB_OF _ADDR_BITS_CONSTANT_NAME numb_of_addr_bits

#Name of constant indicating number of wordsof RAM; default= "numb_of_words"
NUMB_OF _ WORDS_CONSTANT_NAME numb_of_words

Name of constant indicating registerlength; default = "registerlength"
REGISTERLENGTH_CONSTANT_NAME registerlength

#Name of sampling register that is inserted; default= "sample_reg"
SAMPLING_REGISTER_NAME sample_reg

#Name of address signalas input for addressgenerator that is inserted; default= "address"
ADDRESS_TO_ADDR_GEN_SIGNAL_NAME address

#Name of data_ram_in signal that is inserted; default= "data_ram_in"
DATA_RAM_IN_SIGNAL_NAME data_ram_in

#Name ofread_write signal that is inserted; default= "r_w"
READ _ WRITE_SIGNAL_NAME r_ w

#Name of data_ram_out signal that is inserted; default= "data_ram_out"
DATA_RAM_OUT_SIGNAL_NAME data_ram_out

#Name of RAM enable signal that is inserted; default= "ce"
RAM_ENABLE_SIGN AL_NAME ce

#Name of address_to_ram signal that is inserted; default= "address_to_ram"
ADDRESS_TO_RAM_SIGNAL_NAME address_to_ram

96 Emulation flow for designs with large memory requirements

Example of files file February 18, 1994

Appendix I. Example of files file

Since a design can be distributed over multiple files, all these files have to be known to the
reptacement tool. Therefore all files have to be stated in a "files file".

Below an example of such a files file is given. The reptacement tool considers alllines
starting with a #-symbol as comment lines. Any number of comment lines and empty lines
is allowed; they are ignored by the reptacement tool. The syntax for non-comment, non
empty lines is: <file name>.

This file defines all the files to consider when converting a registertoa RAM

#packages
demux_pack.vhdl

1/0 routines
demux_data_io.vhdl

demux parser
parser_ wd930612.vhdl

Emulation flow for designs with large memory requirements 97

Example of RAM library February 18, 1994

Appendix J. Example of RAM library

Every replacement may require its own specific RAM. All characteristics of the RAM that
is used for the replacement have to be known to the replacement tooi. The most flexible
solution is to state all characteristics of all possible RAMs in a separate file: a RAM
library.

Below an example of such a RAM library is given. The replacement tooi considers all
lines starting with a #-symbol as cornrnent lines. Any number of comment lines and empty
lines is allowed; they are ignored by the reptacement tooi. The syntax for non-comment,
non-empty lines is: <characteristic> <value>.

This file is a RAM library

RAM_NAME

WORD_LENGTH

NUMB_OF _ADDR_BITS

NUMB_OF _ WORDS

ENABLE_ VALUE

RESPONSE_ TIME

READ_VALUE

WRITE_ VALUE

STATUS

CY7C171

4
12

4096

0
25

1
0
AVAILABLE

Note that the order of stating the characteristics can be changed

RAM_NAME CY7C167

STATUS NOT AVAILABLE

RESPONSE_ TIME 25

READ_VALUE 1

WRITE_ VALUE 0
ENABLE_ VALUE 0
WORD_LENGTH 1

NUMB_OF _ WORDS 16384

NUMB_OF _ADDR_BITS 14

Emulation flow for designs with large memory requirements 99

Glossary February 18, 1994

Appendix K. Glossary
architecture

ASIC

benchmark

bit

BRD

bread board

byte

constraint

COST

CRC

DSA

DVB

DVP

EDIF

emulation

entity

EPLD

FIFO

flip-flop

FDM

function

gate array

gate level

hardware

HD

- defines the relationships between input and outputs of an entity

- Application S,pecific Integrated Circuit

- well-known and well-defined design used as standard testcase; compar-
ison between software tools, hardware modules etcetera, is usually
based on benchmarks

- .Qinary digi!

- Bandwidth Restoration Decoder, decoder in an HD-MAC receiver

-circuit board for system development and testing

- group of bits (usually eight)

- limitation of possible val u es

- function for partitioning hardware and software, taking into account
Customer requirements, Overall development cost, .S.ilicon area &
package and Time-To-Market

- Cyclic Redundancy Check, error detecting code

- Design .S.tyle Assistant, tooi developed for bridging the gap between an
HL description of an IC and synthesis tools as part of the Advanced
PCALE Design Flow, subject of this Master's Thesis

- Digital Video Broadcasting

- Digital Video f.rocessing, design group at PCALE

- E.lectronic Design Interchange Eormat

- design functionality check by means of hardware

- primary hardware abstraction in VHDL

- Erasable f.rogrammable Logic Device

- Eirst In Eirst Out

- hardware element, capable of retaining one logic value

- Erequency Division Multiplexing, multiplexing on basis of different
frequencies

- VHDL construct, used for abstraction of an algorithm (or part of it) to a
single expression

- half-fabricated ICs: the logic cells are already fabricated but the inter-
connections (wiring) still have to be made through two final IC masks

- logic gate description level

- circuit board(s)

- High Definition

Emulation flow for designs witb large memory requirements lOl

February 18, 1994

HDL

HD-MAC

HDTV

HL

Hz

IC

IEEE

I/0

ISO

library

LL

Jlc
Mbit

MHz

ML

modulation

MPEG

MPEG-1

MPEG-2

multiplexing

netlist

package

PC ALE

PLD

PREP

102

Glossary

- Hardware Description Language

- High Definition Multiplexed Analogue Components, compatible
HDTV standard developed in the European Eureka_95 project

- High Definition Ieleyision

- High Level description of a design

-Hertz, unit offrequency (s-1)

-Integrated Circuit (chip)

- Institute of Electrical and Electronics Engineers

- Input/Output

- International S.tandards Organization

- coneetion of similar objects

- Library Level description of a design

- micro-controller

- 106 bit

-106 Hz

- Medium Level description of a design

- shifting information to a higher frequency to improve transmission

- Moving fictures Expert Group, standard for compression of digital
image data

- version 1 of the MPEG-standard, digital image compression algorithm
originally intended for digital storage media, capable of reproducing
full motion video at bit rates of about 1.5 Mbit/s

- version 2 of the MPEG-standard, extension to version 1 in the sense
that it enables full motion image reproduetion at bit rates up to and
including 15 Mbit/s, aimed at digital TV broadcast systems

- mixing of different data signals into one signal

- listing of a gate level implementation of an IC, containing gates and
in terconnection

- VHDL construct, provides a means of defining subprograms and other
resources in a way that allows different design units to share the same
declarations; also the packing of an IC

- froduct Concept and Application Laboratory of Philips Semiconduc
tors in Eindhoven

- frogrammable Logic Device

- Programmabie Electronic ferformance Corporation, a consortium of
13 prominent suppliers of programmabie logic and tools

Emulation flow for designs with large memory requirements

Glossary February 18, 1994

procedure - VHDL construct, used for abstraction of an algorithm (or part of it) toa
single statement

RAM - Random Access Memory

register - group of flip-flops, used for retaining some logic values

RTL - Register Iransfer .!::evel, descrihing a design at this level means that the
complete structure of the design is described

SIL - .Sprite Input Language, an intermediate language between high level
specification languages and synthesis tools

simulation - design functionality check by means of software

software -computer program(s)

subprogram - procedure or function as part of a VHDL description, defines algorithm
for computing values or exhibiting behaviour

synthesis - creation of an implementation of an IC from a description of an IC

synthesis library - library containing all primitive building blocks that can be used by a
synthesis tool to synthesize a design description

synthesis tool - software used for (semi-)automatic creation of an implementation of an
IC from a description of an IC

TDM - Iime Division Multiplexing, multiplexing on basis of time sharing

template - prescribed framework

tool - software for performing a specific task

TUE -Eindhoven University of Iechnology

TV - Ieleyision

TXT - Teletext

VHDL - VHSIC Hardware Description Language

VHSIC - Very High Speed !ntegrated Circuit

VLSI - Very Large ,.Scale !ntegration

Emulation flow for designs with large memory requirements 103

