63,981 research outputs found

    Towards a Smart City based on Cloud of Things

    Get PDF
    International audienceSmart City represents one of the most promising and prominent Internet of Things (IoT) applications. In the last few years, indeed, smart city concept has played an important role in academic and industry fields, with the development and deployment of various middleware platforms. However, this expansion has followed distinct approaches creating, therefore, a fragmented scenario, in which different IoT ecosystems are not able to communicate between them. To fill this gap, there is a need to re-visit the smart city IoT semantic and offer a global common approach. To this purpose, this paper browses the semantic annotation of the sensors in the cloud, and innovative services can be implemented and considered by bridging Clouds and Internet of Things. Things-like semantic will be considered to perform the aggregation of heterogeneous resources by defining the Clouds of Things paradigm. We survey the smart city vision, providing information on the main requirements and highlighting the benefits of integrating different IoT ecosystems within the cloud under this new CoT vision. This paper also discusses relevant challenges in this research area

    Towards a smart city based on cloud of things, a survey on the smart city vision and paradigms

    Get PDF
    International audienceSmart City represents one of the most promising, prominent and challenging Internet of Things (IoT) applications. In the last few years, indeed, the smart city concept has played an important role in academic and industry fields, with the development and deployment of various middleware platforms and IoT-based infrastructures. However, this expansion has followed distinct approaches creating, therefore, a fragmented scenario, in which different IoT ecosystems are not able to communicate between them. To fill this gap, there is a need to re-visit the smart city IoT semantic and offer a global common approach. To this purpose, this paper browses the semantic annotation of the sensors in the cloud, and innovative services can be implemented and considered by bridging Cloud and Internet of Things. Things-like semantic will be considered to perform the aggregation of heterogeneous resources by defining the Cloud of Things (CoT) paradigm. We survey the smart city vision, providing information on the main requirements and highlighting the benefits of integrating different IoT ecosystems within the cloud under this new CoT vision. This paper also discusses relevant challenges in this research area

    Sensing as a Service Model for Smart Cities Supported by Internet of Things

    Full text link
    The world population is growing at a rapid pace. Towns and cities are accommodating half of the world's population thereby creating tremendous pressure on every aspect of urban living. Cities are known to have large concentration of resources and facilities. Such environments attract people from rural areas. However, unprecedented attraction has now become an overwhelming issue for city governance and politics. The enormous pressure towards efficient city management has triggered various Smart City initiatives by both government and private sector businesses to invest in ICT to find sustainable solutions to the growing issues. The Internet of Things (IoT) has also gained significant attention over the past decade. IoT envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities. Today infrastructure, platforms, and software applications are offered as services using cloud technologies. In this paper, we explore the concept of sensing as a service and how it fits with the Internet of Things. Our objective is to investigate the concept of sensing as a service model in technological, economical, and social perspectives and identify the major open challenges and issues.Comment: Transactions on Emerging Telecommunications Technologies 2014 (Accepted for Publication

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Towards NFC payments using a lightweight architecture for the Web of Things

    Get PDF
    The Web (and Internet) of Things has seen the rapid emergence of new protocols and standards, which provide for innovative models of interaction for applications. One such model fostered by the Web of Things (WoT) ecosystem is that of contactless interaction between devices. Near Field Communication (NFC) technology is one such enabler of contactless interactions. Contactless technology for the WoT requires all parties to agree one common definition and implementation and, in this paper, we propose a new lightweight architecture for the WoT, based on RESTful approaches. We show how the proposed architecture supports the concept of a mobile wallet, enabling users to make secure payments employing NFC technology with their mobile devices. In so doing, we argue that the vision of the WoT is brought a step closer to fruition

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism
    • …
    corecore