9,578 research outputs found

    Towards A Novel Unified Framework for Developing Formal, Network and Validated Agent-Based Simulation Models of Complex Adaptive Systems

    Get PDF
    Literature on the modeling and simulation of complex adaptive systems (cas) has primarily advanced vertically in different scientific domains with scientists developing a variety of domain-specific approaches and applications. However, while cas researchers are inherently interested in an interdisciplinary comparison of models, to the best of our knowledge, there is currently no single unified framework for facilitating the development, comparison, communication and validation of models across different scientific domains. In this thesis, we propose first steps towards such a unified framework using a combination of agent-based and complex network-based modeling approaches and guidelines formulated in the form of a set of four levels of usage, which allow multidisciplinary researchers to adopt a suitable framework level on the basis of available data types, their research study objectives and expected outcomes, thus allowing them to better plan and conduct their respective research case studies. Firstly, the complex network modeling level of the proposed framework entails the development of appropriate complex network models for the case where interaction data of cas components is available, with the aim of detecting emergent patterns in the cas under study. The exploratory agent-based modeling level of the proposed framework allows for the development of proof-of-concept models for the cas system, primarily for purposes of exploring feasibility of further research. Descriptive agent-based modeling level of the proposed framework allows for the use of a formal step-by-step approach for developing agent-based models coupled with a quantitative complex network and pseudocode-based specification of the model, which will, in turn, facilitate interdisciplinary cas model comparison and knowledge transfer. Finally, the validated agent-based modeling level of the proposed framework is concerned with the building of in-simulation verification and validation of agent-based models using a proposed Virtual Overlay Multiagent System approach for use in a systematic team-oriented approach to developing models. The proposed framework is evaluated and validated using seven detailed case study examples selected from various scientific domains including ecology, social sciences and a range of complex adaptive communication networks. The successful case studies demonstrate the potential of the framework in appealing to multidisciplinary researchers as a methodological approach to the modeling and simulation of cas by facilitating effective communication and knowledge transfer across scientific disciplines without the requirement of extensive learning curves

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Sustainability of systems interoperability in dynamic business networks

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de ComputadoresCollaborative networked environments emerged with the spread of the internet, contributing to overcome past communication barriers, and identifying interoperability as an essential property to support businesses development. When achieved seamlessly, efficiency is increased in the entire product life cycle support. However, due to the different sources of knowledge, models and semantics, enterprise organisations are experiencing difficulties exchanging critical information, even when they operate in the same business environments. To solve this issue, most of them try to attain interoperability by establishing peer-to-peer mappings with different business partners, or use neutral data and product standards as the core for information sharing, in optimized networks. In current industrial practice, the model mappings that regulate enterprise communications are only defined once, and most of them are hardcoded in the information systems. This solution has been effective and sufficient for static environments, where enterprise and product models are valid for decades. However, more and more enterprise systems are becoming dynamic, adapting and looking forward to meet further requirements; a trend that is causing new interoperability disturbances and efficiency reduction on existing partnerships. Enterprise Interoperability (EI) is a well established area of applied research, studying these problems, and proposing novel approaches and solutions. This PhD work contributes to that research considering enterprises as complex and adaptive systems, swayed to factors that are making interoperability difficult to sustain over time. The analysis of complexity as a neighbouring scientific domain, in which features of interoperability can be identified and evaluated as a benchmark for developing a new foundation of EI, is here proposed. This approach envisages at drawing concepts from complexity science to analyse dynamic enterprise networks and proposes a framework for sustaining systems interoperability, enabling different organisations to evolve at their own pace, answering the upcoming requirements but minimizing the negative impact these changes can have on their business environment

    Towards Agent-Based Model Specification of Smart Grid: A Cognitive Agent-Based Computing Approach

    Get PDF
    A smart grid can be considered as a complex network where each node represents a generation unit or a consumer, whereas links can be used to represent transmission lines. One way to study complex systems is by using the agent-based modeling paradigm. The agent-based modeling is a way of representing a complex system of autonomous agents interacting with each other. Previously, a number of studies have been presented in the smart grid domain making use of the agent-based modeling paradigm. However, to the best of our knowledge, none of these studies have focused on the specification aspect of the model. The model specification is important not only for understanding but also for replication of the model. To fill this gap, this study focuses on specification methods for smart grid modeling. We adopt two specification methods named as Overview, design concept, and details and Descriptive agent-based modeling. By using specification methods, we provide tutorials and guidelines for model developing of smart grid starting from conceptual modeling to validated agent-based model through simulation. The specification study is exemplified through a case study from the smart grid domain. In the case study, we consider a large set of network, in which different consumers and power generation units are connected with each other through different configuration. In such a network, communication takes place between consumers and generating units for energy transmission and data routing. We demonstrate how to effectively model a complex system such as a smart grid using specification methods. We analyze these two specification approaches qualitatively as well as quantitatively. Extensive experiments demonstrate that Descriptive agent-based modeling is a more useful approach as compared with Overview, design concept, and details method for modeling as well as for replication of models for the smart grid

    Emergence of a Snake-Like Structure in Mobile Distributed Agents: An Exploratory Agent-Based Modeling Approach

    Get PDF
    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems

    Special Session on Industry 4.0

    Get PDF
    No abstract available
    corecore