1,269 research outputs found

    Constraint-Aware, Scalable, and Efficient Algorithms for Multi-Chip Power Module Layout Optimization

    Get PDF
    Moving towards an electrified world requires ultra high-density power converters. Electric vehicles, electrified aerospace, data centers, etc. are just a few fields among wide application areas of power electronic systems, where high-density power converters are essential. As a critical part of these power converters, power semiconductor modules and their layout optimization has been identified as a crucial step in achieving the maximum performance and density for wide bandgap technologies (i.e., GaN and SiC). New packaging technologies are also introduced to produce reliable and efficient multichip power module (MCPM) designs to push the current limits. The complexity of the emerging MCPM layouts is surpassing the capability of a manual, iterative design process to produce an optimum design with agile development requirements. An electronic design automation tool called PowerSynth has been introduced with ongoing research toward enhanced capabilities to speed up the optimized MCPM layout design process. This dissertation presents the PowerSynth progression timeline with the methodology updates and corresponding critical results compared to v1.1. The first released version (v1.1) of PowerSynth demonstrated the benefits of layout abstraction, and reduced-order modeling techniques to perform rapid optimization of the MCPM module compared to the traditional, manual, and iterative design approach. However, that version is limited by several key factors: layout representation technique, layout generation algorithms, iterative design-rule-checking (DRC), optimization algorithm candidates, etc. To address these limitations, and enhance PowerSynth’s capabilities, constraint-aware, scalable, and efficient algorithms have been developed and implemented. PowerSynth layout engine has evolved from v1.3 to v2.0 throughout the last five years to incorporate the algorithm updates and generate all 2D/2.5D/3D Manhattan layout solutions. These fundamental changes in the layout generation methodology have also called for updates in the performance modeling techniques and enabled exploring different optimization algorithms. The latest PowerSynth 2 architecture has been implemented to enable electro-thermo-mechanical and reliability optimization on 2D/2.5D/3D MCPM layouts, and set up a path toward cabinet-level optimization. PowerSynth v2.0 computer-aided design (CAD) flow has been hardware-validated through manufacturing and testing of an optimized novel 3D MCPM layout. The flow has shown significant speedup compared to the manual design flow with a comparable optimization result

    A 16 x 16 CMOS amperometric microelectrode array for simultaneous electrochemical measurements

    Get PDF
    There is a requirement for an electrochemical sensor technology capable of making multivariate measurements in environmental, healthcare, and manufacturing applications. Here, we present a new device that is highly parallelized with an excellent bandwidth. For the first time, electrochemical cross-talk for a chip-based sensor is defined and characterized. The new CMOS electrochemical sensor chip is capable of simultaneously taking multiple, independent electroanalytical measurements. The chip is structured as an electrochemical cell microarray, comprised of a microelectrode array connected to embedded self-contained potentiostats. Speed and sensitivity are essential in dynamic variable electrochemical systems. Owing to the parallel function of the system, rapid data collection is possible while maintaining an appropriately low-scan rate. By performing multiple, simultaneous cyclic voltammetry scans in each of the electrochemical cells on the chip surface, we are able to show (with a cell-to-cell pitch of 456 μm) that the signal cross-talk is only 12% between nearest neighbors in a ferrocene rich solution. The system opens up the possibility to use multiple independently controlled electrochemical sensors on a single chip for applications in DNA sensing, medical diagnostics, environmental sensing, the food industry, neuronal sensing, and drug discovery

    On the spectrometry of laser-accelerated particle bunches and laser-driven proton radiography

    Get PDF
    The increased availability of high-power laser systems operating with relatively high repetition rates (∼ 1 Hz), such as installed in the upcoming Centre for Advanced Laser Applications (CALA), are pushing laser-driven ion acceleration towards applications beyond fundamental research. With energies of laser-accelerated protons approaching 100 MeV, great interest in the community is devoted to biomedical applications like small-animal irradiation and imaging of biological samples. Such laser-accelerated ion bunches exhibit unique properties as compared to conventionally accelerated particles from electrostatic or radio-frequency driven accelerators. Among these characteristics are high beam intensities (∼ 10^9 protons/ns), a broad energy distribution (∼ 100%) and a strong electromagnetic pulse generated in the laser-plasma interaction. Due to these peculiar properties, conventional beam monitoring devices as installed e.g. in clinical ion beam facilities are not suitable for the characterization of laser-accelerated ion bunches and no system is available to date allowing for online beam monitoring simultaneous to an application. Within the framework of this thesis, two approaches for characterization of laser-accelerated proton bunches in terms of energy spectrum have been investigated and prototype systems have been developed and tested. The first setup is based on the time-of-flight (TOF) technique. The continuous energy distribution is deconvolved from the TOF signal current measured by a novel thin silicon detector which is exposed to temporally divergent polyenergetic proton bunches, taking into account the finite response function of the detector and the associated readout electronics. Measurements were performed in the energy range up to 20 MeV using nanosecond-short and passively energy-modulated proton bunches from a Tandem accelerator, as well as using laser-accelerated proton bunches obtained in experiments at the Laboratory for Extreme Photonics. A comparison of the reconstructed energy spectra to Monte Carlo simulations and measurements using a magnetic spectrometer has shown promising agreement. In the studied energy range and for the tested TOF distances, the reconstructed particle number and the mean reconstructed energy agreed with expectations within 12% and 2%, respectively. In the second investigated setup, the sensor chip of a hybrid pixel detector Timepix was irradiated edge-on with protons in the energy interval between 17 and 20 MeV. Spatial information along one axis perpendicular to the proton beam direction was obtained due to the pixelation of the detector. Although this spectrometric setup is only suitable for low proton fluences (< 7 × 10 3 protons/cm 2 ) per acquisition frame, which is far below typically obtained fluences from laser-ion acceleration experiments, the developed spectrum reconstruction method could be applied to other detector types providing a higher saturation limit than the used Timepix detector. As this thesis is dedicated to biomedical applications using laser-accelerated proton bunches, a feasibility study was performed to assess the applicability of laser-driven proton radiography of millimeter to centimeter sized objects using pixelated semiconductor detectors and polyenergetic proton bunches in the energy ranges up to 20 MeV and up to 100 MeV. The study was based on Monte Carlo simulations and was supported by a proof of principle experiment with an energy-modulated proton beam from a conventional Tandem accelerator. Sub-mm spatial resolution and density resolution below 3% were found for all objects investigated within this study and the optimized geometric distances. Motivated by the promising results obtained within this thesis, the TOF spectrometer will be implemented as diagnostic device in the laser-ion acceleration setup at CALA in the near future. Moreover, a radiographic imaging setup using laser-accelerated proton bunches and pixelated silicon detector, based on the results obtained within this thesis, is foreseen.Die vermehrte Verfügbarkeit von Hochleistungslasersystemen mit relativ hohen Pulswiederholungsraten (∼ 1 Hz), wie beispielsweise im Centre for Advanced Laser Applications (CALA), öffnen neue Wege für Anwendungen von Laser-Ionen-Beschleunigung, die über die Grundlagenforschung hinausreichen. Da sich die erzielten Energien von laser-beschleunigten Protonen den 100 MeV annähern, steigt das Interesse an biomedizinischen Anwendungen wie beispielsweise Kleintierbestrahlungen und Bildgebung von biologischen Proben. Die Eigenschaften solcher laser-beschleunigter Ionenpulse sind einzigartig verglichen mit konventionell beschleunigten Teilchen von elektrostatischen oder von Beschleunigern basierend auf elektromagnetischen Wechselfeldern. Zu den Merkmalen zählen die hohen Intensitäten (∼ 10^9 Protonen/ns), ein breites Energiespektrum (∼ 100%) und der starke elektromagnetische Puls, der in der Laser-Plasma-Interaktion erzeugt wird. Aufgrund dieser besonderen Eigenschaften sind herkömmliche Strahlüberwachungssysteme, wie beispielsweise in klinischen Ionenstrahleinrichtungen eingesetzt, nicht geeignet. Bisher ist kein System verfügbar, welches eine Echtzeitstrahlüberwachung parallel zu einer Anwendung erlaubt. Im Zuge dieser Arbeit wurden zwei Ansätze zur Charakterisierung laser-beschleunigter Protonenpulse hinsichtlich ihres Energiespektrums untersucht. Prototypen wurden entwickelt und getestet. Der erste Ansatz basiert auf der Flugzeitmessung (time-of-flight - TOF). Die kontinuierliche Energieverteilung wird aus dem gemessenen TOF-Signal herausgefaltet. Dieses wird mit Hilfe eines neuartigen dünnen Siliziumdetektors aufgezeichnet, der dem zeitlich auseinanderlaufenden polyenergetischen Protonenpuls exponiert ist. Die Ansprechfunktion des Detektors und der zugehörigen Ausleseelektronik wird hierbei berücksichtigt. Messungen wurden im Energiebereich bis 20 MeV mit nanosekunden-kurzen und passiv Energie-modulierten Protonenpulsen eines Tandem-Beschleunigers, sowie mit laser-beschleunigten Protonenpulsen am Laboratory for Extreme Photonics, durchgeführt. Vielversprechende Übereinstimmungen wurden beim Vergleich der rekonstruierten Energieverteilung zu Monte-Carlo Simulationen und zu Messungen mit Hilfe eines Magnetspektrometers gefunden. Für den getesteten Energiebereich und TOF-Distanzen waren die Abweichungen zwischen Rekonstruktion und Erwartungen bei Teilchenzahl und mittlerer Energie kleiner als 12%, beziehungsweise 2%. Im zweiten untersuchten Aufbau wurde die Sensorchipkante des hybriden Pixeldetektors Timepix mit Protonen im Energieintervall zwischen 17 und 20 MeV bestrahlt. Räumliche Information entlang einer Achse senkrecht zur Strahlrichtung wurde aufgrund der Pixelierung des Detektors erhalten. Dieser spektrometrische Aufbau ist nur für niedrige Protonenfluenzen (< 7 × 10 3 Protonen/cm 2 ) pro Aufnahmebild, welche weit unter typischen Fluenzen in Laser-Ionen-Beschleunigung liegt, geeignet. Dennoch kann die in dieser Arbeit entwickelte Rekonstruktionsmethode für andere Detektortypen, mit höherer Sättigungsgrenze als der Timepix-Detektor, angewandt werden. Da diese Dissertation das Ziel einer biomedizinische Anwendung von laser-beschleunigten Protonenpulsen verfolgt, wurde eine Studie durchgeführt um die Machbarkeit von laserbeschleunigter Protonenradiographie von Millimeter- bis Zentimeter-großen Objekten und pixelierten Halbleiterdetektoren zu eruieren. Der Energiebereich der polyenergetischen Protonenpulse war hierbei bis 20 MeV und bis 100 MeV. Die Studie basiert auf Monte-Carlo Simulationen und wurde durch ein Proof-of-Principle Experiment mit einem Energiemodulierten Protonenstrahl von einem Tandembeschleuniger unterstützt. Die gefundene räumliche Auflösung und die Dichteauflösung war im sub-Millimeterbereich, bzw. besser als 3% für alle in dieser Studie getesteten Objekte und für die optimierten geometrischen Abstände. Aufgrund der vielversprechenden Ergebnisse, die im Zuge dieser Arbeit gewonnen wurden, wird das Flugzeitspektrometer als diagnostisches System für die Laser-Ionen-Beschleunigung an CALA in naher Zukunft eingesetzt. Desweiteren ist ein Aufbau zur Bildgebung mittels laser-beschleunigter Protonen und einem pixelierten Siliziumdetektor, basierend auf den in dieser Arbeit erzielten Ergebnisse, vorgesehen

    High Resolution Neutron Imaging with Li-glass Multicore Scintillating Fiber and Diffusion Studies to Enable Improved Neutron Imaging

    Get PDF
    High resolution neutron imaging is an essential tool used for fundamental characterization of novel x-ray opaque microstructures. Currently, advanced neutron scattering facilities enable users to image materials with state-of-the-art neutron radiography spatial resolutions of approximately 10-15 microns. Continued progress towards micron resolution is limited by the intensity and the linearity of available thermal neutron fluxes. This places an emphasis on increasing neutron conversion/detection efficiency while maintaining the spatial accuracy of the projected radiograph.This dissertation reports the results of experimental fabrication and characterization of a microstructured multicore 6-lithium-glass scintillating fiber as a proof-of-concept high resolution neutron imager. The approach towards micron–level thermal neutron imaging and fundamental scintillator materials research for relevant imaging technologies are presented. Fabrication trials and neutron/gamma discrimination observations for an initial square-packed multicore design are described first. Then the fabrication process used for a proof-of-concept hexagonal-packed multicore design,and an evaluation of its radioluminescence and chemical stability is presented. Scintillation characteristics of a neutron imaging face plate were estimated, and its spatial resolution was experimentally measured. The ultimate resolving power of the proof-of-concept multicore was comparable to the state-of-the-art. The impact of even higher resolution designs, with potential to track neutron conversion particles using smaller core pitch or different cladding material, is discussed. Neutron imaging often requires nonlinear detection systems that can accurately represent the spatial features of an irradiated object. While thin film and microchannel plate detectors have been heavily researched for this application, little effort has been made to create selective scintillating regions within structured silicate glass detectors. This dissertation presents the continued research of diffusing trivalent cerium in lithium loaded glass. The creation of near surface regions of scintillation with thermal diffusion of the Ce3+ activator into 6Li glass is presented, and its use for neutron imaging with a bent optical fiber taper is discussed. The activation energy of Ce within the silicate is calculated and its valance state is observed as a function of diffusion depth. The diffusion process is then adopted for use with YAP (YAlO3:Ce) for associated particle imaging applications

    On the spectrometry of laser-accelerated particle bunches and laser-driven proton radiography

    Get PDF
    The increased availability of high-power laser systems operating with relatively high repetition rates (∼ 1 Hz), such as installed in the upcoming Centre for Advanced Laser Applications (CALA), are pushing laser-driven ion acceleration towards applications beyond fundamental research. With energies of laser-accelerated protons approaching 100 MeV, great interest in the community is devoted to biomedical applications like small-animal irradiation and imaging of biological samples. Such laser-accelerated ion bunches exhibit unique properties as compared to conventionally accelerated particles from electrostatic or radio-frequency driven accelerators. Among these characteristics are high beam intensities (∼ 10^9 protons/ns), a broad energy distribution (∼ 100%) and a strong electromagnetic pulse generated in the laser-plasma interaction. Due to these peculiar properties, conventional beam monitoring devices as installed e.g. in clinical ion beam facilities are not suitable for the characterization of laser-accelerated ion bunches and no system is available to date allowing for online beam monitoring simultaneous to an application. Within the framework of this thesis, two approaches for characterization of laser-accelerated proton bunches in terms of energy spectrum have been investigated and prototype systems have been developed and tested. The first setup is based on the time-of-flight (TOF) technique. The continuous energy distribution is deconvolved from the TOF signal current measured by a novel thin silicon detector which is exposed to temporally divergent polyenergetic proton bunches, taking into account the finite response function of the detector and the associated readout electronics. Measurements were performed in the energy range up to 20 MeV using nanosecond-short and passively energy-modulated proton bunches from a Tandem accelerator, as well as using laser-accelerated proton bunches obtained in experiments at the Laboratory for Extreme Photonics. A comparison of the reconstructed energy spectra to Monte Carlo simulations and measurements using a magnetic spectrometer has shown promising agreement. In the studied energy range and for the tested TOF distances, the reconstructed particle number and the mean reconstructed energy agreed with expectations within 12% and 2%, respectively. In the second investigated setup, the sensor chip of a hybrid pixel detector Timepix was irradiated edge-on with protons in the energy interval between 17 and 20 MeV. Spatial information along one axis perpendicular to the proton beam direction was obtained due to the pixelation of the detector. Although this spectrometric setup is only suitable for low proton fluences (< 7 × 10 3 protons/cm 2 ) per acquisition frame, which is far below typically obtained fluences from laser-ion acceleration experiments, the developed spectrum reconstruction method could be applied to other detector types providing a higher saturation limit than the used Timepix detector. As this thesis is dedicated to biomedical applications using laser-accelerated proton bunches, a feasibility study was performed to assess the applicability of laser-driven proton radiography of millimeter to centimeter sized objects using pixelated semiconductor detectors and polyenergetic proton bunches in the energy ranges up to 20 MeV and up to 100 MeV. The study was based on Monte Carlo simulations and was supported by a proof of principle experiment with an energy-modulated proton beam from a conventional Tandem accelerator. Sub-mm spatial resolution and density resolution below 3% were found for all objects investigated within this study and the optimized geometric distances. Motivated by the promising results obtained within this thesis, the TOF spectrometer will be implemented as diagnostic device in the laser-ion acceleration setup at CALA in the near future. Moreover, a radiographic imaging setup using laser-accelerated proton bunches and pixelated silicon detector, based on the results obtained within this thesis, is foreseen.Die vermehrte Verfügbarkeit von Hochleistungslasersystemen mit relativ hohen Pulswiederholungsraten (∼ 1 Hz), wie beispielsweise im Centre for Advanced Laser Applications (CALA), öffnen neue Wege für Anwendungen von Laser-Ionen-Beschleunigung, die über die Grundlagenforschung hinausreichen. Da sich die erzielten Energien von laser-beschleunigten Protonen den 100 MeV annähern, steigt das Interesse an biomedizinischen Anwendungen wie beispielsweise Kleintierbestrahlungen und Bildgebung von biologischen Proben. Die Eigenschaften solcher laser-beschleunigter Ionenpulse sind einzigartig verglichen mit konventionell beschleunigten Teilchen von elektrostatischen oder von Beschleunigern basierend auf elektromagnetischen Wechselfeldern. Zu den Merkmalen zählen die hohen Intensitäten (∼ 10^9 Protonen/ns), ein breites Energiespektrum (∼ 100%) und der starke elektromagnetische Puls, der in der Laser-Plasma-Interaktion erzeugt wird. Aufgrund dieser besonderen Eigenschaften sind herkömmliche Strahlüberwachungssysteme, wie beispielsweise in klinischen Ionenstrahleinrichtungen eingesetzt, nicht geeignet. Bisher ist kein System verfügbar, welches eine Echtzeitstrahlüberwachung parallel zu einer Anwendung erlaubt. Im Zuge dieser Arbeit wurden zwei Ansätze zur Charakterisierung laser-beschleunigter Protonenpulse hinsichtlich ihres Energiespektrums untersucht. Prototypen wurden entwickelt und getestet. Der erste Ansatz basiert auf der Flugzeitmessung (time-of-flight - TOF). Die kontinuierliche Energieverteilung wird aus dem gemessenen TOF-Signal herausgefaltet. Dieses wird mit Hilfe eines neuartigen dünnen Siliziumdetektors aufgezeichnet, der dem zeitlich auseinanderlaufenden polyenergetischen Protonenpuls exponiert ist. Die Ansprechfunktion des Detektors und der zugehörigen Ausleseelektronik wird hierbei berücksichtigt. Messungen wurden im Energiebereich bis 20 MeV mit nanosekunden-kurzen und passiv Energie-modulierten Protonenpulsen eines Tandem-Beschleunigers, sowie mit laser-beschleunigten Protonenpulsen am Laboratory for Extreme Photonics, durchgeführt. Vielversprechende Übereinstimmungen wurden beim Vergleich der rekonstruierten Energieverteilung zu Monte-Carlo Simulationen und zu Messungen mit Hilfe eines Magnetspektrometers gefunden. Für den getesteten Energiebereich und TOF-Distanzen waren die Abweichungen zwischen Rekonstruktion und Erwartungen bei Teilchenzahl und mittlerer Energie kleiner als 12%, beziehungsweise 2%. Im zweiten untersuchten Aufbau wurde die Sensorchipkante des hybriden Pixeldetektors Timepix mit Protonen im Energieintervall zwischen 17 und 20 MeV bestrahlt. Räumliche Information entlang einer Achse senkrecht zur Strahlrichtung wurde aufgrund der Pixelierung des Detektors erhalten. Dieser spektrometrische Aufbau ist nur für niedrige Protonenfluenzen (< 7 × 10 3 Protonen/cm 2 ) pro Aufnahmebild, welche weit unter typischen Fluenzen in Laser-Ionen-Beschleunigung liegt, geeignet. Dennoch kann die in dieser Arbeit entwickelte Rekonstruktionsmethode für andere Detektortypen, mit höherer Sättigungsgrenze als der Timepix-Detektor, angewandt werden. Da diese Dissertation das Ziel einer biomedizinische Anwendung von laser-beschleunigten Protonenpulsen verfolgt, wurde eine Studie durchgeführt um die Machbarkeit von laserbeschleunigter Protonenradiographie von Millimeter- bis Zentimeter-großen Objekten und pixelierten Halbleiterdetektoren zu eruieren. Der Energiebereich der polyenergetischen Protonenpulse war hierbei bis 20 MeV und bis 100 MeV. Die Studie basiert auf Monte-Carlo Simulationen und wurde durch ein Proof-of-Principle Experiment mit einem Energiemodulierten Protonenstrahl von einem Tandembeschleuniger unterstützt. Die gefundene räumliche Auflösung und die Dichteauflösung war im sub-Millimeterbereich, bzw. besser als 3% für alle in dieser Studie getesteten Objekte und für die optimierten geometrischen Abstände. Aufgrund der vielversprechenden Ergebnisse, die im Zuge dieser Arbeit gewonnen wurden, wird das Flugzeitspektrometer als diagnostisches System für die Laser-Ionen-Beschleunigung an CALA in naher Zukunft eingesetzt. Desweiteren ist ein Aufbau zur Bildgebung mittels laser-beschleunigter Protonen und einem pixelierten Siliziumdetektor, basierend auf den in dieser Arbeit erzielten Ergebnisse, vorgesehen

    The Conference on High Temperature Electronics

    Get PDF
    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment

    Wireless Telemetry System for Implantable Sensors

    Get PDF
    Advanced testing of medical treatments involves experimentation on small laboratory animals, such as genetically modified mice. These subjects are used to help researchers develop medication and cures for humans. To understand the effects of the treatments, innovative telemetry systems are developed, that enable remote real-time cardiac monitoring. The latest research in the field of cardiac monitoring has revealed two major limitations with wireless implantable systems: a) the current size of implantable electronics limits the physical size of the system to larger subjects; and b) the systems only interface with one sensor type (e.g., pressure sensor only). This research focuses on the design of a wireless telemetry system architecture, intended to retrieve blood pressure and volume data. A physical prototype is created that is 2.475 cm3 and weights 4.01 g. This thesis will enable a path towards miniaturization, leading to the incorporation of a wireless system into small laboratory animals

    Design-for-Test and Test Optimization Techniques for TSV-based 3D Stacked ICs

    Get PDF
    <p>As integrated circuits (ICs) continue to scale to smaller dimensions, long interconnects</p><p>have become the dominant contributor to circuit delay and a significant component of</p><p>power consumption. In order to reduce the length of these interconnects, 3D integration</p><p>and 3D stacked ICs (3D SICs) are active areas of research in both academia and industry.</p><p>3D SICs not only have the potential to reduce average interconnect length and alleviate</p><p>many of the problems caused by long global interconnects, but they can offer greater design</p><p>flexibility over 2D ICs, significant reductions in power consumption and footprint in</p><p>an era of mobile applications, increased on-chip data bandwidth through delay reduction,</p><p>and improved heterogeneous integration.</p><p>Compared to 2D ICs, the manufacture and test of 3D ICs is significantly more complex.</p><p>Through-silicon vias (TSVs), which constitute the dense vertical interconnects in a</p><p>die stack, are a source of additional and unique defects not seen before in ICs. At the same</p><p>time, testing these TSVs, especially before die stacking, is recognized as a major challenge.</p><p>The testing of a 3D stack is constrained by limited test access, test pin availability,</p><p>power, and thermal constraints. Therefore, efficient and optimized test architectures are</p><p>needed to ensure that pre-bond, partial, and complete stack testing are not prohibitively</p><p>expensive.</p><p>Methods of testing TSVs prior to bonding continue to be a difficult problem due to test</p><p>access and testability issues. Although some built-in self-test (BIST) techniques have been</p><p>proposed, these techniques have numerous drawbacks that render them impractical. In this dissertation, a low-cost test architecture is introduced to enable pre-bond TSV test through</p><p>TSV probing. This has the benefit of not needing large analog test components on the die,</p><p>which is a significant drawback of many BIST architectures. Coupled with an optimization</p><p>method described in this dissertation to create parallel test groups for TSVs, test time for</p><p>pre-bond TSV tests can be significantly reduced. The pre-bond probing methodology is</p><p>expanded upon to allow for pre-bond scan test as well, to enable both pre-bond TSV and</p><p>structural test to bring pre-bond known-good-die (KGD) test under a single test paradigm.</p><p>The addition of boundary registers on functional TSV paths required for pre-bond</p><p>probing results in an increase in delay on inter-die functional paths. This cost of test</p><p>architecture insertion can be a significant drawback, especially considering that one benefit</p><p>of 3D integration is that critical paths can be partitioned between dies to reduce their delay.</p><p>This dissertation derives a retiming flow that is used to recover the additional delay added</p><p>to TSV paths by test cell insertion.</p><p>Reducing the cost of test for 3D-SICs is crucial considering that more tests are necessary</p><p>during 3D-SIC manufacturing. To reduce test cost, the test architecture and test</p><p>scheduling for the stack must be optimized to reduce test time across all necessary test</p><p>insertions. This dissertation examines three paradigms for 3D integration - hard dies, firm</p><p>dies, and soft dies, that give varying degrees of control over 2D test architectures on each</p><p>die while optimizing the 3D test architecture. Integer linear programming models are developed</p><p>to provide an optimal 3D test architecture and test schedule for the dies in the 3D</p><p>stack considering any or all post-bond test insertions. Results show that the ILP models</p><p>outperform other optimization methods across a range of 3D benchmark circuits.</p><p>In summary, this dissertation targets testing and design-for-test (DFT) of 3D SICs.</p><p>The proposed techniques enable pre-bond TSV and structural test while maintaining a</p><p>relatively low test cost. Future work will continue to enable testing of 3D SICs to move</p><p>industry closer to realizing the true potential of 3D integration.</p>Dissertatio
    corecore