20 research outputs found

    Reliable and Low-Latency Fronthaul for Tactile Internet Applications

    Get PDF
    With the emergence of Cloud-RAN as one of the dominant architectural solutions for next-generation mobile networks, the reliability and latency on the fronthaul (FH) segment become critical performance metrics for applications such as the Tactile Internet. Ensuring FH performance is further complicated by the switch from point-to-point dedicated FH links to packet-based multi-hop FH networks. This change is largely justified by the fact that packet-based fronthauling allows the deployment of FH networks on the existing Ethernet infrastructure. This paper proposes to improve reliability and latency of packet-based fronthauling by means of multi-path diversity and erasure coding of the MAC frames transported by the FH network. Under a probabilistic model that assumes a single service, the average latency required to obtain reliable FH transport and the reliability-latency trade-off are first investigated. The analytical results are then validated and complemented by a numerical study that accounts for the coexistence of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency (URLLC) services in 5G networks by comparing orthogonal and non-orthogonal sharing of FH resources.Comment: 11pages, 13 figures, 3 bio photo

    Enabling virtual radio functions on software defined radio for future wireless networks

    Get PDF
    Today's wired networks have become highly flexible, thanks to the fact that an increasing number of functionalities are realized by software rather than dedicated hardware. This trend is still in its early stages for wireless networks, but it has the potential to improve the network's flexibility and resource utilization regarding both the abundant computational resources and the scarce radio spectrum resources. In this work we provide an overview of the enabling technologies for network reconfiguration, such as Network Function Virtualization, Software Defined Networking, and Software Defined Radio. We review frequently used terminology such as softwarization, virtualization, and orchestration, and how these concepts apply to wireless networks. We introduce the concept of Virtual Radio Function, and illustrate how softwarized/virtualized radio functions can be placed and initialized at runtime, allowing radio access technologies and spectrum allocation schemes to be formed dynamically. Finally we focus on embedded Software-Defined Radio as an end device, and illustrate how to realize the placement, initialization and configuration of virtual radio functions on such kind of devices

    Tutorial on LTE/LTE-A Cellular Network Dimensioning Using Iterative Statistical Analysis

    Get PDF
    LTE is the fastest growing cellular technology and is expected to increase its footprint in the coming years, as well as progress toward LTE-A. The race among operators to deliver the expected quality of experience to their users is tight and demands sophisticated skills in network planning. Radio network dimensioning (RND) is an essential step in the process of network planning and has been used as a fast, but indicative, approximation of radio site count. RND is a prerequisite to the lengthy process of thorough planning. Moreover, results from RND are used by players in the industry to estimate preplanning costs of deploying and running a network; thus, RND is, as well, a key tool in cellular business modelling. In this work, we present a tutorial on radio network dimensioning, focused on LTE/LTE-A, using an iterative approach to find a balanced design that mediates among the three design requirements: coverage, capacity, and quality. This approach uses a statistical link budget analysis methodology, which jointly accounts for small and large scale fading in the channel, as well as loading due to traffic demand, in the interference calculation. A complete RND manual is thus presented, which is of key importance to operators deploying or upgrading LTE/LTE-A networks for two reasons. It is purely analytical, hence it enables fast results, a prime factor in the race undertaken. Moreover, it captures essential variables affecting network dimensions and manages conflicting targets to ensure user quality of experience, another major criterion in the competition. The described approach is compared to the traditional RND using a commercial LTE network planning tool. The outcome further dismisses the traditional RND for LTE due to unjustified increase in number of radio sites and related cost, and motivates further research in developing more effective and novel RND procedures

    A tutorial on the characterisation and modelling of low layer functional splits for flexible radio access networks in 5G and beyond

    Get PDF
    The centralization of baseband (BB) functions in a radio access network (RAN) towards data processing centres is receiving increasing interest as it enables the exploitation of resource pooling and statistical multiplexing gains among multiple cells, facilitates the introduction of collaborative techniques for different functions (e.g., interference coordination), and more efficiently handles the complex requirements of advanced features of the fifth generation (5G) new radio (NR) physical layer, such as the use of massive multiple input multiple output (MIMO). However, deciding the functional split (i.e., which BB functions are kept close to the radio units and which BB functions are centralized) embraces a trade-off between the centralization benefits and the fronthaul costs for carrying data between distributed antennas and data processing centres. Substantial research efforts have been made in standardization fora, research projects and studies to resolve this trade-off, which becomes more complicated when the choice of functional splits is dynamically achieved depending on the current conditions in the RAN. This paper presents a comprehensive tutorial on the characterisation, modelling and assessment of functional splits in a flexible RAN to establish a solid basis for the future development of algorithmic solutions of dynamic functional split optimisation in 5G and beyond systems. First, the paper explores the functional split approaches considered by different industrial fora, analysing their equivalences and differences in terminology. Second, the paper presents a harmonized analysis of the different BB functions at the physical layer and associated algorithmic solutions presented in the literature, assessing both the computational complexity and the associated performance. Based on this analysis, the paper presents a model for assessing the computational requirements and fronthaul bandwidth requirements of different functional splits. Last, the model is used to derive illustrative results that identify the major trade-offs that arise when selecting a functional split and the key elements that impact the requirements.This work has been partially funded by Huawei Technologies. Work by X. Gelabert and B. Klaiqi is partially funded by the European Union's Horizon Europe research and innovation programme (HORIZON-MSCA-2021-DN-0) under the Marie Skłodowska-Curie grant agreement No 101073265. Work by J. Perez-Romero and O. Sallent is also partially funded by the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union’s Horizon Europe research and innovation programme under Grant Agreements No. 101096034 (VERGE project) and No. 101097083 (BeGREEN project) and by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 under ARTIST project (ref. PID2020-115104RB-I00). This last project has also funded the work by D. Campoy.Peer ReviewedPostprint (author's final draft

    Joint access-backhaul mechanisms in 5G cell-less architectures

    Get PDF
    Older generations of wireless networks, such as 1G and 2G were deployed using leased line, copper or fibre line as backhaul. Later, in 3G and 4G, microwave wireless links have also worked as backhaul links while the backbone of the network was still wireline-based. However, due to multiple different use cases and deployment scenarios of 5G, solo wireline based backhaul network is not a cost-efficient option for the operators anymore. For cost-efficient and fast deployment, wireless backhaul options are very attractive. As drawbacks, wireless backhaul links have capacity and distance limitations. To take the advantages of both the solutions, i.e., wired and wireless, 5G transport networks are anticipated to be a heterogeneous, complex, and with stringent performance requirements. To address the aforementioned challenges, wireless backhaul options are providing more attractive solutions, and hence, technologies using the same resources (e.g., frequency channels) may be used by both access and backhaul networks. In this scenario, blurring the separation line between access and backhaul networks allows resource sharing and cooperation between both the networks and minimizes the network deployment and maintenance cost significantly. Therefore, in 5G, the access and backhaul networks cannot be seen as separate entities; rather, we seek to integrate them together to ensure the best use of resources. In this thesis, firstly, we investigate the challenges and potential technologies of 5G transport network. Later, to address these challenges, we identify and present different approaches to perform joint access-backhaul mechanism. An initial performance evaluation of access-aware backhaul optimization is presented, where backhaul network is dynamically assigned with the required resources to serve the dynamic requirements of a 5G access network. The evaluation results and discussions manifest the resource efficiency of joint access-backhaul mechanisms. Functional splits in different layers of the access network comes as an intelligent solution to reduce the enormous capacity requirements of the transport network in a centralized radio access network approach, which tends to centralize almost all the functionalities into a central unit, leaving only radio frequency functions at the access points. From the joint access-backhaul mechanism perspective, we propose a novel technique, which takes the benefit of functional splits at physical layer, to design a heterogeneous transport network in an economical budget-limited and capacity-limited scenario. Till today, the limited capacity of the wireless backhaul links remains a challenge, and hence, frequency spectrum becomes scarce, and requires efficient utilization. To address this challenge, a joint spectrum sharing technique to implement joint accessbackhaul mechanism is presented. Evaluation results show that our proposed joint spectrum sharing technique, where spectrum allocation in the backhaul network follows the access network's traffic load, is fair and efficient in terms of spectrum utilization. We also propose a machine learning technique, which analyses data from a real network and estimates access network's traffic pattern, and subsequently, assigns bandwidth in the access network according to the traffic estimations. Presented evaluation results show that a well-trained machine learning model can be very efficient to obtain an efficient utilization of frequency spectrum.Las primeras generaciones de redes móviles, se implementaron utilizando líneas de cobre o fibra para la conexión entre la red de acceso y el núcleo de la red (conexión backhaul). Más tarde, los enlaces inalámbricos también han funcionado como backhaul mientras que la columna vertebral de la red seguía basada en cable. Sin embargo, debido a los múltiples escenarios de implementación de 5G, una red de backhaul basada solamente en cable ya no es una opción rentable para los operadores. Para una implementación rentable y rápida, las opciones de backhaul inalámbrico son muy atractivas. Como inconvenientes, los enlaces backhaul inalámbricos tienen limitaciones de capacidad y distancia. Para aprovechar las ventajas de ambas soluciones, es decir, cableadas e inalámbricas, se prevé que las redes de transporte 5G sean heterogéneas, complejas y con estrictos requisitos de rendimiento. Para abordar los desafíos antes mencionados, las opciones de backhaul inalámbrico brindan soluciones más atractivas y, por lo tanto, las tecnologías que usan los mismos recursos (por ejemplo, canales de frecuencia) pueden usarse tanto en las redes de acceso como en las de backhaul. En este escenario, desdibujar la línea de separación entre las redes de acceso y backhaul permite el intercambio de recursos y la cooperación entre ambas redes, y minimiza significativamente los costes de implementación y mantenimiento de la red. Por lo tanto, en 5G las redes de acceso y backhaul no pueden verse como entidades separadas; más bien consideraremos su integración para asegurar el mejor uso de los recursos. En esta tesis, en primer lugar, investigamos los desafíos y las tecnologías potenciales para la implementación de la red de backhaul 5G. Más tarde, para abordar dichos desafíos, identificamos diferentes enfoques para un mecanismo conjunto de gestión de la red de acceso y backhaul. Se presenta una evaluación de rendimiento inicial para la optimización de backhaul que tiene en cuenta el estado de la red de acceso, donde la red de backhaul se equipa dinámicamente con los recursos necesarios para cumplir con los requisitos de la red de acceso 5G. Los resultados de la evaluación manifiestan la mayor eficiencia de los mecanismos de gestión de recursos que consideran redes de acceso y backhaul conjuntamente. Las divisiones funcionales en diferentes capas de la red de acceso (functional splits) se presentan como una solución inteligente para reducir los enormes requisitos de capacidad de la red de transporte en un enfoque de red de acceso, que tiende a centralizar casi todas las funcionalidades en una unidad central, dejando solo las funciones más relacionadas con la transmisión/recepción de señales en los puntos de acceso. Desde la perspectiva del mecanismo conjunto de red de acceso y backhaul, proponemos una técnica novedosa, que aprovecha las divisiones funcionales en la capa física para diseñar una red de transporte heterogénea con un presupuesto económico y un escenario de capacidad limitada. Hasta el día de hoy, la capacidad limitada de los enlaces inalámbricos sigue siendo un desafío, dado que el espectro de frecuencias es escaso y requiere una utilización eficiente. Para hacer frente a este desafío, se presenta una técnica de gestión de recursos espectrales compartidos entre red de acceso y backhaul. Los resultados de la evaluación muestran que nuestra propuesta, donde la asignación de espectro en la red de backhaul se hace de acuerdo a la carga de tráfico de la red de acceso, es justa y eficiente. También proponemos una técnica de aprendizaje automático, que analiza datos de una red real y estima el patrón de tráfico de la red de acceso para, posteriormente, asignar ancho de banda en la red de acceso de acuerdo con dichas estimaciones. Los resultados de la evaluación presentados muestran que un modelo de aprendizaje automático bien entrenado puede ser una herramienta muy útil a la hora de obtener una utilización eficiente del espectro de frecuencias.Postprint (published version

    On the analysis of joint scheduling and functional split selection over C-RAN architectures

    Get PDF
    ABSTRACT: The incessant growth of the traffic that current mobile networks must carry brings a change of the radio access network architecture really necessary. Cloud-RAN is one of the proposals to achieve higher capacities, better latencies, energy improvements, and greater coordination capacity between base stations, due to the benefits of virtualizing and centralizing baseband processing in data centers. However, it has one main drawback, the need for very high-performance links in the fronthaul network. In order to reduce the requirements imposed by these links, recent works propose to divide the tasks between the controller and the base stations, so that not all the processing is carried out in the centralized entity, in what is known as a functional split. In this way, it is possible to maintain some advantages of C-RAN and reduce the cost of the fronthaul network. There is also the possibility of choosing the functional split level based on the particular network status, which adds greater flexibility to the system and improvements when adapting to different traffic patterns. In this project we implement a scheduler capable of exploiting these advantages.RESUMEN: El incesante crecimiento del tráfico que deben cursar las redes móviles actuales hace cada vez más necesaria un cambio en la arquitectura de la red de acceso radio. La Cloud-RAN es una de las propuestas para lograr mayores capacidades, mejores latencias, mejoras energéticas y mayor capacidad de coordinación entre estaciones base, gracias a la premisa de virtualizar y centralizar el procesado en banda base en centros de datos. Sin embargo, presenta un principal inconveniente, la necesidad de enlaces de muy altas prestaciones en la red fronthaul. Para lograr reducir los requisitos impuestos sobre estos enlaces se propone dividir las tareas entre el controlador y las estaciones base, de forma que no todo el procesado se realice en la entidad centralizada, en lo que se conoce como división funcional. De este modo, se logra mantener parte de las ventajas de C-RAN, y reducir el coste de la red fronthaul. Existe también la posibilidad de elegir el nivel de división funcional en base al estado de la red, lo que añade una mayor flexibilidad al sistema, y mejoras en el momento de adaptarse a los diferentes patrones de tráfico. En este trabajo se implementará un scheduler capaz de explotar dichas ventajas.Máster en Ingeniería de Telecomunicació
    corecore