649 research outputs found

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    Panel on future challenges in modeling methodology

    Get PDF
    This panel paper presents the views of six researchers and practitioners of simulation modeling. Collectively we attempt to address a range of key future challenges to modeling methodology. It is hoped that the views of this paper, and the presentations made by the panelists at the 2004 Winter Simulation Conference will raise awareness and stimulate further discussion on the future of modeling methodology in areas such as modeling problems in business applications, human factors and geographically dispersed networks; rapid model development and maintenance; legacy modeling approaches; markup languages; virtual interactive process design and simulation; standards; and Grid computing

    Software Reuse for Modeling and Simulation

    Get PDF
    In Modeling and Simulation, as a distinct area of software engineering, there is much interest in being able to reuse software components. However, the practice of simulation development and maintenance is different from software engineering because of several factors. In this paper, a brief overview of the foundations of interoperability, and how they apply to the reuse of model based software is explored, as well as examination of current practices to include M&S software repositories. Some recommendations, based on research at the Virginia Modeling Analysis and Simulation Center (VMASC) and practice at the Raytheon Company Network Centric Services, are made

    An Extended Interoperability Framework for Joint Composability

    Get PDF
    Interoperation of systems is defined by the aspects of integratability, interoperability, and composability. It is therefore needed, to address all levels of interoperation - from conceptual models via implemented systems to the supported infrastructure - accordingly in an interoperation framework. Several candidates are available and provide valuable part solution. This paper evaluates the Base Object Models (BOMs), Discrete Event Simulation Specifications (DEVS), Unified Language Model (UML) artifacts as used within the Test and Training Enabling Architecture (TENA), the Object-Process Methodology (OPM), and Conceptual Graphs (CG) regarding their contribution. Using the Levels of Conceptual Interoperability Model (LCIM), an extended interoperability framework based on the contributions of BOM, DEVS, UML/TENA, OPM, and CG will be proposed and gaps in support of joint composability are indentified

    Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering

    Get PDF
    The Levels of Conceptual Interoperability Model (LCIM) was developed to cope with the different layers of interoperation of modeling & simulation applications. It introduced technical, syntactic, semantic, pragmatic, dynamic, and conceptual layers of interoperation and showed how they are related to the ideas of integratability, interoperability, and composability. The model was successfully applied in various domains of systems, cybernetics, and informatics

    Towards Grid-Wide Modeling and Simulation

    Get PDF
    Modeling and simulation permeate all areas of business, science and engineering. With the increase in the scale and complexity of simulations, large amounts of computational resources are required, and collaborative model development is needed, as multiple parties could be involved in the development process. The Grid provides a platform for coordinated resource sharing and application development and execution. In this paper, we survey existing technologies in modeling and simulation, and we focus on interoperability and composability of simulation components for both simulation development and execution. We also present our recent work on an HLA-based simulation framework on the Grid, and discuss the issues to achieve composability.Singapore-MIT Alliance (SMA

    Models, Composability, and Validity

    Get PDF
    Composability is the capability to select and assemble simulation components in various combinations into simulation systems to satisfy specific user requirements. The defining characteristic of composability is the ability to combine and recombine components into different simulation systems for different purposes. The ability to compose simulation systems from repositories of reusable components has been a highly sought after goal among modeling and simulation developers. The expected benefits of robust, general composability include reduced simulation development cost and time, increased validity and reliability of simulation results, and increased involvement of simulation users in the process. Consequently, composability is an active research area, with both software engineering and theoretical approaches being developed. Composability exists in two forms, syntactic and semantic (also known as engineering and modeling). Syntactic composability is the implementation of components so that they can be connected. Semantic composability answers the question of whether the models implemented in the composition can be meaningfully composed

    On the Role of Assertions for Conceptual Modeling as Enablers of Composable Simulation Solutions

    Get PDF
    This research provides a much needed systematic review of the roles that assertions play in model composability and simulation interoperability. In doing so, this research contributes a partial solution to one of the problems of model composability and simulation interoperability—namely, why do simulation systems fail to achieve the maximum level of interoperability possible? It demonstrates the importance of the assertions that are made during model development and simulation implementation, particularly as they reflect the unique viewpoint of each developer or user. It hypothesizes that it is possible to detect composability conflicts by means of a four-step process developed by the author for capturing and comparing assertions. It demonstrates the process using a well understood example problem—the Falling Body Problem—developing a formal model of assertion, a strategy for assertion comparison, an inventory of forces, and a catalog of significant assertions that might be made for each term in the solution to the problem. Finally, it develops a software application to implement the strategy for comparing sets of assertions. The software successfully detects potential conflicts between ontologies that were otherwise determined to be ontologically consistent, thus proving the hypothesis
    • …
    corecore