
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Computational Modeling & Simulation 
Engineering Theses & Dissertations 

Computational Modeling & Simulation 
Engineering 

Spring 2009 

On the Role of Assertions for Conceptual Modeling as Enablers of On the Role of Assertions for Conceptual Modeling as Enablers of 

Composable Simulation Solutions Composable Simulation Solutions 

Robert Dennis King 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds 

 Part of the Computer Sciences Commons, and the Systems Engineering Commons 

Recommended Citation Recommended Citation 
King, Robert D.. "On the Role of Assertions for Conceptual Modeling as Enablers of Composable 
Simulation Solutions" (2009). Doctor of Philosophy (PhD), Dissertation, Computational Modeling & 
Simulation Engineering, Old Dominion University, DOI: 10.25777/vqkg-w054 
https://digitalcommons.odu.edu/msve_etds/35 

This Dissertation is brought to you for free and open access by the Computational Modeling & Simulation 
Engineering at ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation 
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, 
please contact digitalcommons@odu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/217299413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/35?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


ON THE ROLE OF ASSERTIONS FOR CONCEPTUAL MODELING 

AS ENABLERS OF COMPOSABLE SIMULATION SOLUTIONS 

by 

Robert Dennis King 

B.S. June 1973, Marquette University 

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirement for the Degree of 

DOCTOR OF PHILOSOPHY 

MODELING AND SIMULATION 

OLD DOMINION UNIVERSITY 
May 2009 

Approved^ by: 

Andreas Tolk (Director)

Ghaith Rabadi 

John Sokolowski (Member) 



UMI Number: 3357399 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

UMI8 

UMI Microform 3357399 
Copyright 2009 by ProQuest LLC 

All rights reserved. This microform edition is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



ABSTRACT 

ON THE ROLE OF ASSERTIONS FOR CONCEPTUAL MODELING 
AS ENABLERS OF COMPOSABLE SIMULATION SOLUTIONS 

Robert Dennis King 
Old Dominion University, 2009 

Director: Dr. Andreas Tolk 

This research provides a much needed systematic review of the roles that assertions 

play in model composability and simulation interoperability. In doing so, this research 

contributes a partial solution to one of the problems of model composability and 

simulation interoperability—namely, why do simulation systems fail to achieve the 

maximum level of interoperability possible? It demonstrates the importance of the 

assertions that are made during model development and simulation implementation, 

particularly as they reflect the unique viewpoint of each developer or user. It 

hypothesizes that it is possible to detect composability conflicts by means of a four-step 

process developed by the author for capturing and comparing assertions. It demonstrates 

the process using a well understood example problem—the Falling Body Problem— 

developing a formal model of assertion, a strategy for assertion comparison, an inventory 

of forces, and a catalog of significant assertions that might be made for each term in the 

solution to the problem. Finally, it develops a software application to implement the 

strategy for comparing sets of assertions. The software successfully, detects potential 

conflicts between ontologies that were otherwise determined to be ontologically 

consistent, thus proving the hypothesis. 
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1. INTRODUCTION 

The Modeling and Simulation community generally recognizes that the issues of 

composability (models that fail to compose) and interoperability (simulations that fail to 

interoperate) represent unsolved problems, but there is not a consensus in how best to 

solve them. Among the specific problems is that undetected conflicts can exist between 

components that result in hidden, unintended behaviors. There is a need, then, for a 

system or method to detect these conflicts. Furthermore, interoperability of systems 

requires composability not only to ensure correctness but more importantly to permit 

software agents to reason about model concepts in an unambiguous, machine 

understandable form. Therefore, one of the goals of this research is to contribute a 

method for standardized representation and use of assertions so that a conceptual model 

can be annotated with a list of critical assertions that the system relies upon. If this is 

achievable, then it becomes possible to create software agents that detect mismatches in 

conceptual models (at least with respect to the listed assertions). 

This dissertation documents the author's research into the causes of interoperability 

problems and into the requirements for achieving real world model composability. The 

remainder of this section frames the research question. Section 2 reviews the pertinent 

literature and demonstrates that this research is a logical extension of accepted work. 

Section 3 provides the theoretical context for reasoning about assertions. Section 4 

presents a framework developed by the author to capture and compare sets of assertions. 

Section 5 applies the framework process to a well understood example problem. Section 

6 demonstrates conflict detection using the process and presents experimental results for 

validation. Section 7 discusses the results, implications with respect to the science of 

modeling and simulation, and topics for future research. 

1.1 Background 

In many instances, the conflicts that prevent interoperation can be traced to a failure 

to capture and communicate the details of assertions (modeling decisions) made at all 

stages of development. Surprisingly, comparatively little research has focused 

Citation format for this manuscript is taken from the journal SIMULATION: Transactions of the Society 
for Modeling and Simulation International. 
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specifically on assertions and the roles they play in the development of models and 

simulations. 

Among the reasons for little research is that assertions are so much a fundamental part 

of formulating a system solution that they are used in many different ways. To illustrate, 

consider various ways authors treat assumptions, which are a type of assertion: 

• Some authors treat a list of assumptions as though it were a theory of the world. A list 

of assumptions does not constitute a theory; this way of listing assumptions is very 

likely to present an incomplete view. 

• Some authors treat a list of assumptions as if it were a conceptual model. It is not, but 

a conceptual model should include a list of its assumptions. 

• Some authors take a shotgun approach in constructing a list of assumptions, listing 

each one that occurs in their mind. This approach generally lacks organization and 

focus. 

• Some authors correctly use a list of assumptions to specify restrictions on (and 

characteristics of) a problem solution. 

• Assumptions are a fundamental part of every problem solution: a first step in problem 

solving is for the analyst to identify the problem's assumptions. Many assumptions 

remain hidden and unrecognized until a deliberate effort is made to identify them. 

Often it is the unrecognized assumption that prevents a good solution. 

The term assumption is often used interchangeably with assertion. However, strictly 

speaking assertion is the more general concept. Assertions include not only assumptions, 

but also constraints, considerations, implemented considerations, and required 

computational competencies. Therefore, except during this introductory section, 

assertion will be the term that is used. Assertions are necessary for several reasons: 

• Assertions reflect desired values that should be maintained throughout the solution. 

• Assertions set limits to the problem and thus provide a framework within which to 

work. These limits might include constraints of possibility, economics, or some other 

desired narrowing. 
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• Assertions simplify the problem and make it more manageable by providing fewer 

things to consider and solve. A problem with no assertions is usually too general to 

handle. 

All problems involve the interaction of domains that exist in the world. Domains exist 

either physically (e.g. people, vehicles, structures) or logically (e.g. data, processes). 

Every domain has a collection of assertions that define various aspects of that domain. 

One way to define a domain expert is to say he is a person who understands the implicit 

assertions in a domain. 

A conceptual model always involves a particular viewpoint. This may be the 

viewpoint of the model developer, system integrator, federation member, verification 

team member, model results user, and so on. Some may argue that a conceptual model 

represents an intersection of viewpoints—a kind of common ground that practitioners can 

agree upon. This supports a notion that only the common elements between views should 

be incorporated into a conceptual model. Others take the opposite view—a conceptual 

model is the union of elements. The difficulty with the first position is that significant 

elements may be left out of the conceptual model because they lack common interest. 

The problem with the latter position is the amount of conceptual baggage that must be 

carried by all parties. 

This research takes a third position—that different sets of assertions stand behind 

each practitioner's viewpoint and must be taken into account. To provide conceptual 

alignment between models is to align the assumptions and model constraints, thereby 

mediating between the multiple domain views. The difficulty of doing so varies. Within a 

small, specialized community of practitioners, the sharing of a common viewpoint is 

easier than between a large, diverse group. 

Choosing specific modeling methods and parameters involves making many 

assertions, both explicit and implicit. These derive initially from the viewpoint and are 

later refined in a number of model development processes. 

1.2 The Problem, Hypothesis and Solution Approach 

To the extent that conflicting assertions are at the root of problems in creating 

composable models and interoperable systems, a partial solution is achieved by 
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developing a methodology for detecting conflicts. The author suggests a novel idea 

namely, if the assertions are adequately captured and listed for each component, then 

comparing the assertion lists can reveal potential conflicts between the model 

components. Accordingly, the author hypothesizes that: 

It is possible to identify model component conflicts by comparison of lists of 

assertions made about the components, the system, the environment, and the stated 

problem that the model is to address. 

To test the hypothesis, a sample problem (The Falling Body Problem) is analyzed to 

determine the assertions (assumptions, constraints, implemented considerations, and 

required computational competencies) made about each component. Assertions are 

captured using a formalism developed for the purpose by the author. Assertion lists for 

the basic problem solution are encoded in an ontology to enable reasoning about them. 

Alternative solutions to the problem are similarly analyzed, and those assertions are 

captured and encoded. Finally, the assertion lists between the alternatives are compared 

to determine where potential conflicts might arise if they were to be combined. A 

successful test result is the identification of a potential conflict by an automated process. 

To achieve this latter objective, a custom software application is required to perform the 

comparison. 
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2. RELEVANT RESEARCH 

Several bodies of research are germane to this investigation. Literature in 

Composability, Conceptual Modeling, and Interoperability establish general problem 

context. 

The literature on the topic of assumptions and, in particular, the roles that 

assumptions play in modeling and simulation, is relatively sparse. Perhaps this is 

because of the ubiquity of assumptions in problem solving—there is a temptation to take 

them for granted. 

The Levels of Conceptual Interoperability Model (LCIM) provided the inspiration for 

development of Conceptual Linkage—thus it is one of the foundations for this work. The 

thorny part of conceptual linkage is handling assumptions and model constraints, and that 

is largely what set the research direction. 

There has been a recent explosion of research into ontology, largely the result of 

development of the Semantic Web. Ontology is critical to this research because reasoning 

requires unambiguous definition of concepts, relations, functions, axioms and instances. 

Finally, the well known frame problem in artificial intelligence has a direct bearing 

on this research. 

2.1 General Context 

There have been many efforts aimed at defining composability. Davis and Anderson 

define composability as the capability to select and assemble components in various 

combinations to satisfy specific user requirements meaningfullyfl]. Achieving a 

composable system is not easy: in our imperfect world, when designing and creating 

models analysts decide what to ignore and what to include (as well as how to model what 

is included). Occasionally and often unpredictably, this process produces 

incompatibilities between models. Davis and Anderson discuss many factors governing 

why this is so and explain why complete elimination of conflicts may possibly be 

unachievable. They present many suggestions to enhance prospects for composability— 

among them is recognition that models are different from general software components, 
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and model composability needs to be based on the science of modeling and simulation. 

Petty, Weisel and Mielke [2;3] defined composability in a similar manner, excepting that 

they required that to be composable, only valid simulation systems result1. 

Page, Briggs and Tufarolo elaborated the definition suggested by Petty et al, noting 

that composability is more than just the ability to put simulations together from parts; it is 

the ability to combine and recombine, to configure and reconfigure, sets of parts from 

those available into different simulation systems to meet different needs[4]. They propose 

a framework for the broader simulation interconnection problem and suggest roles for 

composability, interoperability and integratability within that framework. They view 

these as three separate dimensions in the general simulation interconnection problem. 

They address objectives and assumptions in the proposed framework, suggesting that 

assumptions need to be studied and an algebra or calculus for composing models needs to 

be developed. 

Robinson and others highlight the importance of capturing assumptions in the 

conceptual modeling process. Robinson's presents an analysis of the issues and research 

requirements for conceptual modeling for simulation [5]. Robinson notes that conceptual 

modeling is probably the most important aspect of a simulation study, and it is the most 

difficult and least understood [6]. There are several conceptual modeling guides that the 

analyst may choose to draw upon—Robinson outlines a framework for conceptual 

modeling [7], a practical example is offered by Borah [8], and detailed discussions may 

befoundin[9]and[10;ll]. 

2.2 The Roles and Importance of Assertions 

Assertions have a potentially tremendous impact on alignment of model domain 

viewpoint, particularly those implicit assertions that are part of every domain of 

discourse. Assertions provide a framework for interpretation of the model domain 

viewpoint. Consideration of assertions is very often an afterthought or side issue in 

modeling, yet it should be at the foundation of model or system development. Several 

authors have considered the topic, but few have focused on the subject exclusively. 

1 Italics added. 
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Garlan, Allen and Ockerbloom used their experience building a family of software 

design environments from existing parts to illustrate a variety of types of mismatch that 

center around the assumptions a reusable part makes about the structure of the application 

in which is to appear [12]. They observed that the creators of the reused subsystems that 

were studied were neither lazy, stupid, nor malicious. Nor were the system integrators 

using the pieces in ways inappropriate to their advertised scope of applicability. 

Therefore, the root causes must lie at a deeper systemic level. Each of the packages that 

were used to construct the studied system made assumptions about the structure of the 

system and, in particular, the nature of the environment in which they were to operate. 

Virtually all of the serious problems were traced back to places where these assumptions 

were in conflict. They introduced the term architectural mismatch to describe the 

problem that stems from the mismatched assumptions a reusable part makes about the 

structure of the system it is to be part of. They note these assumptions often conflict with 

the assumptions of other parts and are almost always implicit, making them extremely 

difficult to analyze before building a system. Garlan et al shows how an architectural 

view of the mismatch problem exposes several fundamental challenges for software 

composition and suggests possible research avenues needed to solve them. The four main 

categories of architectural mismatch are: 

• Assumptions about the nature of the components, including (1) infrastructure— 

assumptions about the substrate on which the component is built; (2) control model— 

assumptions about which component(s) (if any) control overall the sequencing of 

computations; (3) data model—assumptions about the way the environment will 

manipulate data managed by a component 

• Assumptions about the nature of the connectors, including (1) protocols— 

assumptions about the patterns of interaction characterized by a connector; and (2) 

data model—assumptions about the kind of data that is communicated 

• Assumptions about the global architectural structure, including assumptions about the 

topology of the system communications and about the presence or absence of 

particular components and connectors 

• Assumptions about the construction process 
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Assumption-based Planning (ABP) is a concept developed at the Rand Corporation 

by Dewar, et al. [13] that provides an extensive framework for dealing with assumptions 

in decision making. ABP defines an assumption as an assertion about some characteristic 

of the future that underlies the current operations or plans of an organization. In ABP, the 

task is to identify those assumptions that are vulnerable to failure in the period of 

planning interest. An assumption is load-bearing if its negation would lead to significant 

changes in operations or plans. ABP identifies signposts—indicators of when 

assumptions are violated—and uses them as triggers for initiating alternative actions. 

ABP also provides a framework for planning actions that (a) protect or maintain the state 

of vulnerable assumptions, or (b) are contingencies in the case that vulnerable 

assumptions fail. 

Hofmann [14] offered a definition of assumption that supports the formal framework 

of modeling and simulation presented in detail by Zeigler, Praehofer and Kim [15]. 

Hofmann discusses the critical influence of assumptions in reaching interoperability on 

the pragmatic and conceptual level. He considers models as epistemological tools for 

gaining knowledge about reality—many of which are based on simplifying and 

completing assumptions. He further notes assumptions are not empirically proven and 

within different epistemological paradigms assumptions play different roles. He 

concludes this leads to a rather pessimistic view on the possibilities of a priori validation 

of assumption based models. 

The HLA 'Federation Development and Execution Process' (FEDEP) describes a 

structured, systems engineering approach to federation development and execution [16]. 

As a 'guide to best practices' the FEDEP falls short in that it mentions assumptions only 

twice, almost en passant in its manner, and in the most general terms. Describing only 

what the federation conceptual model must represent, it fails to address the constraints 

implied by user assumptions. 

The NATO Code of Best Practices for C2 Assessment is the product of international 

collaboration among leading experts to capture the best practices in conducting 

operational assessments—that includes the use of modeling and simulation [17]. The 

importance of assumptions is recognized in several ways. Assumption providers are 

identified among the list of key assessment participants. The importance of capturing 
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assumptions is stressed repeatedly: defining assumptions is a key activity in Problem 

Formulation; the assessment team leader is advised to keep a journal of assumptions and 

decisions; assumptions are specific elements to be documented in associated supporting 

plans, and so forth. 

Assumptions were examined by Spiegel et al [18], who conducted a small case study 

in order to clarify the role that model context plays in simulation composability and 

reusability. The research employed an example problem: compute the position and 

velocity of a falling body, which was described in detail by Davis and Anderson [1] in 

their monograph on modeling and composability. Spiegel and his colleagues found that a 

reasonable formulation of a solution included a surprising number of implicit 

assumptions—their non-exhaustive list included twenty-nine constraints. They observed 

that failure to appreciate the importance of various constraints when selecting a model 

can lead to unacceptable results. Several assumptions, such as special relativity (assumed 

not to be significant) and Coriolis Effect (can be ignored), were not obvious . Moreover, 

Spiegel et al. caveat their work, noting that while it may be that their formulation for the 

falling body is a suitable approximation for a golf ball3 or cannon ball in flight, the 

decision should be made knowledgeably by a domain expert. Such a decision can only be 

made if the assumptions associated with each model are identified and understood. 

King and Turnitsa [19] examined how assumptions are used in modeling and 

simulation and presented: 

• A taxonomy of assumption characteristics 

• An ontology of assumption 

• A formalism for expressing assumptions in logic 

• A strategy for comparing assumptions lists between system components 

2 Even so, given any one of Spiegel's listed assumptions, a competent engineer or 
physicist should be able to construct an example where taking it into account is critical. 
3 In fact, the falling body formulation is not suitable for golf ball trajectory prediction due 
to an assumption of perfect smoothness—the United States Golf Association publishes a 
Conforming Golf Ball list that specifies which balls are legal for tournament play based 
on the number and size of surface dimples on golf balls precisely because of the 
significant aerodynamic effects that these characteristics have on trajectory and distance. 



10 

Careful consideration of comments in [19] revealed that whilst capturing and 

comparing modeling assumptions is important, it does not provide all that is needed to 

align system components. Accordingly, this research extends the ideas behind the 

author's work on assumptions to encompass the more general case of modeling 

assertions. 

2.3 The Levels of Conceptual Interoperability Model (LCIM) 

Tolk and Muguira [20] describe the Levels of Conceptual Interoperability Model 

(LCIM) to identify various levels of interoperability between two systems ranging from 

no interoperability to full interoperability. Hofmann [14] and Turnitsa [21] extend the 

LCIM to its current form. The LCIM is a maturity model for interoperation—the higher 

the level achieved the greater the expectation of successful interoperation between 

elements. The hierarchical nature of the LCIM facilitates the process of aligning models 

by organizing concepts into dependent layers. The lower LCIM levels, Technical and 

Syntactic interoperability, deal with communication infrastructure and data protocols. 

Having a common term definition that results in unambiguously exchanging data largely 

satisfies the Semantic level. Reaching the Pragmatic level requires exchange of data 

context. At the Dynamic level, interoperating systems comprehend state changes that 

occur in the assumptions and constraints that each other are making over time— 

essentially allowing the unambiguous exchange of information. To accomplish the 

highest level, Conceptual interoperability, interoperating systems must not only 

understand the concepts, assumptions, and relations that are particular to each other, but 

must align their models and processes as well. This requires that conceptual models be 

fully documented based on engineering methods enabling their interpretation and 

evaluation by other engineers. In other words, a "fully specified but implementation 

independent model" as stipulated in Davis and Anderson [1] is needed, and not just a 

text describing the conceptual idea. 

Within each layer, the interoperability concept addressed can be further broken down 

in terms of its definitions, sub-concepts, processes and requirements. In this manner, the 

necessary elements for achieving a particular LCIM level can be listed. Figure 1 is 

adapted from a recent evaluation by Tolk et al of the state of the art for the contributions 

of selected simulation protocols and knowledge representation languages towards 
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satisfying the levels of the LCIM [22]. For each protocol, the density of the square 

indicates the relative degree of support for the indicated level. As can be seen, the study 

reported a general lack of support for achieving the highest LCIM level, Conceptual 

Interoperability. Using the same evaluation criteria as the study, Tolk et al [23] first adds 

evaluations of the potential contributions of model-based data engineering (MBDE) and 

process engineering (PE). Even with these there is difficulty in reaching conceptual 

interoperability. The final column represents the addition of conceptual linkage (CL). 

RDF/RDFS OWL 
MBDE 

Dynamic 

Pr.i{;m.iiic 

Semantic 

Syntactic 

Tcchnic.il 

none 

• • • • • • 0 
••••noo 
•ODDSSE 

iQQHHHE 
• • • • • • • 

DD 
D0 

mm 
E3D 

• • • 
Figure 1. LCIM Contributions of Various Protocols 

CL 

2.4 The Elusiveness of LCIM Level 6 

King, et al [24] identify a failure to capture and communicate the details of 

conceptual modeling decisions to be the root of model interoperation conflicts. For 

example, design decisions made during implementation can become undocumented 

changes to the conceptual model. As a result, not all aspects of the conceptual model, its 

specified model, and modeling artifacts of the implementation are captured. Thus, when 

it becomes time to integrate models at the very least, there will be some conflicts between 

them—owing to the failure to capture conceptual model details fully. The effects can 

http://Tcchnic.il
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range from very benign (and unnoticed) to catastrophic. See Pace [11] for discussions of 

the consequences of failures in conceptual modeling as it relates to system architecture. 

The author also documented the requirements for achieving conceptual 

interoperability [25]. He demonstrated that when linking models or simulations, even the 

most complete description of the data exchanged between systems does not permit 

composition that guarantees the absence of emergent behaviors or structural variances. 

To define the problem better, the author coined the term functional composability to 

denote the situation wherein the outputs of one model become the inputs to another 

without ambiguity or unintended effect. This satisfies the requirement for validity 

advocated by Petty and Weisel. 

Components can be functionally composed as long as they result in an engineering 

model as defined by Foo [26]. Foo discusses the frame problem that has occupied the 

attention of AI researchers in the logic of action. The frame problem is the challenge of 

representing the effects of action without having to represent explicitly a large number of 

intuitively obvious non-effects. To many philosophers, the AI researchers' frame problem 

represents a wider epistemological issue, namely whether it is possible, in principle, to 

limit the scope of the reasoning required to derive the consequences of an action (for 

more on the topic, see [27]). Engineers who model dynamic systems often consider the 

frame problem to be an artifact of logic. Foo clarifies the main issues: an engineering 

model does not (generally) suffer from the frame problem because of implicit 

assumptions, generally known as the inertia rule4, made as a fundamental component of 

the problem statement and solution. The inertia rule is the assumption that effects are 

local5 unless otherwise stated. A composition fails to produce an engineering model 

when effects are not local as assumed. Put another way, to show that a situation prevents 

a valid composition, it is sufficient to show the possibility of unintended effects. This is 

the basis for the arguments presented in the next subsection. 

4 Sometimes referred to in the philosophical literature as the common sense inertia rule. 
5 In the sense that most actions only have local effects—e.g. moving a cup does not 
normally change its color. (NB—but moving it into a pot of paint does!) 
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2.4.1 Barriers to Functional Composability 

To date, the author has identified five activities (interaction, evolution, infinity, 

transformation, and conceptual model misalignment) that can act as barriers to prevent 

functional composition. The first three cases derive from work by Eberbach et al [28], 

who discuss new models of computation that are more appropriate for today's interactive, 

networked, and embedded computing systems. The latter two cases derive from the 

author's analysis, and discussions between him and his colleagues at the Virginia 

Modeling Analysis and Simulation Center. The discussion that follows presents these, 

along with arguments why each case can result in an inertia rule-related failure. 

Regrettably, detailed proofs require considerably more space than is available to this 

summary, but the arguments can be viewed as outlines of proofs. Furthermore, the list is 

preliminary and may be added to by future research. 

Interaction. Interaction can involve either human input or decisions by agents, during 

the process of executing a model or simulation, rather than before or after it. Examples 

include the various Semi-Automated Force (SAF) simulations (e.g. JSAF, ONESAF), in 

which a human operator can interact directly with the running simulation to alter 

command and control behaviors, sensors, logistics, weapons effects, and entities' 

reactions to various combat stimuli. The Joint Forces Command (JFCOM) 

Experimentation Directorate, J9, makes extensive use of JSAF for Human-in-the-Loop, 

virtual experiments. 

Proof outline: When human interaction is involved, it is impossible to enumerate all 

states and state transitions possible by the human mind. It is equally impossible to 

enumerate all possible actions of a person in a system6, or the number of variables that 

affect the person's action. Finally, it is impossible to state all assumptions related to the 

infinite number of states, transitions, actions and variables7. Thus, there are infinitely 

many possible inertia rule failures. 

Although the number of actions that are valid may be limited by the system. 
7 It may be argued whether this capability should be extended to decision making by 
software agents or not—much depends on the agents' sophistication. Strong arguments 
can be made that interactive agents that learn or evolve can produce an infinity of 
responses. 
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Evolution of System. Evolution of system involves cases where the architecture of 

the system can be altered during the process of executing a model or simulation. 

Examples include the use of genetic algorithms, neural networks, run-time selection of 

services and components, and learning systems. 

Proof outline: During system evolution, the many possible connections between 

system components are subject to change—meaning that the system's behavior is not 

fixed. Thus, the system can generate new states and paths. Consequently, it is possible 

that the system enters unknown states (and additionally via unknown paths); therefore, it 

is impossible to enumerate all of the assumptions necessary to achieve an engineering 

model. This produces infinitely many possible inertia rule failures. 

Infinity of states. An infinity of states results from having infinite memory, using 

infinite precision, or having infinite time to solve. Examples include using massively 

parallel scalable computers or the Internet, or computing problems that are expected 

never to halt. 

Proof outline: Each of these results in an extension by infinity to functional 

computation and means that it is impossible to enumerate all possible states. Therefore, it 

is impossible to list all of the assumptions needed, which in turn produces infinitely many 

possible inertia rule failures. 

Transformation. Transformation occurs whenever the context of information is 

altered because of translation, filtering, aggregation or modification for transmission. 

Examples include federations that use a simulation protocol (such as HLA, DIS, ALSP) 

that requires aggregation or discretization of data spatially, temporally, logically, or in 
o 

some other dimension . 

Proof outline: Many transformations produce a loss of contextual information that 

ultimately leads to a loss of frame assumptions. Thus, even when the original 

contributing systems are completely defined with no implicit assumptions, the 

transformation process can destroy functional composability. The key issue here is that 

transformation processes can (and often do) cause a loss of information, not whether it is 

A specific example is the well-known problem of aggregating individual entities into a 
single military unit by one simulation, and disaggregating the unit into components by 
another. 
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possible to make lossless translations. Each assumption veiled by transformation 

processes becomes a possible inertia rule failure. 

Conceptual Model Misalignment. Conceptual model misalignment arises when, 

despite best efforts, not all aspects of the conceptual model, its specified model, and 

modeling artifacts of the implementation are captured, whether any problems caused are 

detected or not. Misalignment can result from the use of legacy applications as well as 

from incomplete specification. Note that application of iterative development paradigms 

to modeling and simulation can exacerbate these problems. Iterative development 

paradigms vary considerably in the number and type of iterations involved. Some 

paradigms, such as Incremental, Spiral and Evolutionary Development, depend on 

conceptual model refinement. Even so, there is no guarantee that the conceptual model is 

faithfully updated. 

Proof outline: saying that conceptual models are misaligned is akin to defining that 

components will fail to compose. The proof is in the definition. The reality is that this is 

one of the major sources of conflicts between model components. When integrating 

sophisticated systems, there are infinitely many permutations and subtleties of contextual 

meaning that potentially confound composability. 

To summarize, each of these cases limit functional composition because they require 

invoking an inertia rule (e.g. making implicit assumptions) that can fail. They result in 

systems with states that are potentially unknowable, uncountable, unpredictable9, or 

unaccountable10. 

No assertion is made as to the completeness of the list—it is doubtful whether an 

exhaustive list of cases can be constructed. Furthermore, it would be extremely difficult, 

if not impossible, to prove the completeness of such a list. Nevertheless, all that is 

necessary to join the list is to show that a situation has the potential to cause a 

composition not to be functional. 

The consequence of these is that when combining models or simulations even the 

most complete description of the data exchanged between models does not necessarily 

permit composition that guarantees the absence of problems (e.g. as emergent behaviors 

9 i.e., the next state cannot be predicted 
10 i.e., all paths leading to a state cannot be predicted 



16 

or structural variances.) Rather, metadata that conveys important details of how the 

models accomplish their functions must be exchanged, parsed, and understood. This is 

the purpose of conceptual linkage. 

2.4.2 Conceptual Linkage 

Having identified that barriers to functional composability exist, the next step was to 

ask, "Is there a way to combine models to achieve conceptual interoperability to 

overcome the five barriers?" The author proposed conceptual linkage as a candidate 

solution and presented an initial list of conceptual linkage requirements [25]: 

• Unambiguous meaning of terms and concepts—that is, a basis in ontology is vital 

• Use of a supportive framework 

« Functional composability of parts 

• Alignment of model domain viewpoint1'—the intention of the simulation developer, 

stated explicitly or derived implicitly, that objects and processes be represented in a 

certain way. 

Model domain viewpoint is not the same as conceptual modeling—the concept builds 

upon conceptual modeling and extends it in a number of ways. Chiefly, alignment of 

model domain viewpoint is concerned in identifying and resolving differences between 

the conceptual models of systems or components. Alignment of viewpoint requires 

addressing assumptions about the model, system, and environment. To the extent that 

each model participant (e.g. user, developer, stakeholder, reviewer, and so on) has a 

unique world view, each also has a unique viewpoint of the conceptual model. Alignment 

is about mediating between these similar, but different, model domain viewpoints. 

2.5 . Ontology 

To reason unambiguously about objects, characteristics, and processes the concepts 

used to describe them require unambiguous meaning. That is, a basis in ontology is 

critical. Ontology captures knowledge about a domain of interest. Beyond the terms used 

to describe and represent an area of knowledge (subject matter), ontology is the model 

(set of concepts) for the meaning of those terms. Ontology thus defines the vocabulary 

1 ' In previous papers, this concept was referred to as Alignment of modeler's intent. 
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and the meaning of that vocabulary within a domain. By encoding domain knowledge 

(i.e. its properties, values and concepts), ontology makes it possible to share and to reason 

about it. 

There has been considerable research into ontology in the past decade, largely 

because of the role that ontology plays in providing formal descriptions for the Semantic 

Web of concepts, terms, and relationships within a given knowledge domain. Several 

important issues need to be reviewed with respect to how ontology is used in this 

research. These include the overall approach to ontology and the degree of 

modularization, the choice of knowledge representation language, the availability of tools 

for creating ontologies, and the suitability of existing ontologies to serve as a basis for 

constructing an experimental system. 

2.5.1 Approach to Ontology 

Wache, et al. [29], provide a survey of existing approaches to information integration. 

Figure 2 is adapted from this work and summarizes the three alternative approaches for 

employing ontology in complex systems: 

Single ontology approaches use one global ontology to provide a specification of the 

semantics (see Figure 2a). The systems using the ontology must align themselves with 

it—which is not difficult if, for example, they are interoperating instances of the same 

model. 

In multiple ontology approaches, each model is described by its own ontology (Figure 

2b). It cannot be assumed that the different model ontologies share the same vocabulary. 

The advantage of multiple ontology approaches is that no common and minimal ontology 

commitment to a single, global ontology is needed—each model's ontology can be 

developed without respect to other models. While this architecture can simplify 

integration and supports adding and removing models, the lack of a common vocabulary 

makes it difficult to compare different ontologies and an additional representation 

defining the inter-ontology mappings is needed. Dealing with these mappings can be 

problematic as a domain that integrates n ontologies requires n(n-l) mappings. 

The drawbacks of the single or multiple ontology approaches can be overcome by the 

use of hybrid ontology approaches (Figure 2c). Similar to multiple ontology approaches 

the semantics of each model is described by its own ontology. However, to make the 
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local ontologies comparable to each other, they are built from a global shared vocabulary, 

which can itself be an ontology. 

shared 

vocabulary 

(a] single ontology (b) multiple ontologies (c) hybrid ontology 

Figure 2. Ontology Alternatives 

Wache also addresses the use of rule-based mediators to map knowledge sources to 

an integrated view through transformation rules [30]. One of the central issues presented 

in this work is identifying the context of the integrated view. Providing an ontological 

basis for context leads to consideration of another important issue in the approach to 

ontology—whether modularization is supported. A modular ontology is a set of 

individual descriptions of the same domain (e.g., Food) that represent correlated but not 

identical points of view of multiple observers or agents. Thus, each ontology module can 

be seen as describing a point of view held by an agent with respect to the entities 

(objects) and their relations in the domain. Bao, Caragea and Honavar offer precise 

definitions of semantic soundness such as localized semantics and exact reasoning and 

present expressivity requirements for modular ontology languages [31]. The importance 

of the semantic soundness and expressive power of several ontology languages is 

discussed in the following subsection. 

2.5.2 Knowledge Representation Language, Tool, and Reasoners 

Ontology languages are formal languages used to construct ontologies. They allow 

the encoding of knowledge about specific domains and often include reasoning rules that 

support the processing of that knowledge. Ontology languages are usually declarative 

languages, are usually generalizations of frame languages, and are commonly based on 

either first-order logic or on description logic. Examples of traditional ontology 
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languages—those based on first-order logic—are CycL [32], F-Logic (Frame Logic)[33], 

and KIF (Knowledge Interchange Format)[34]. 

Markup ontology languages use a markup scheme—most commonly XML—to 

encode knowledge. The Web Ontology Language (OWL) is a family of knowledge 

representation languages for authoring ontologies that is endorsed by the World Wide 

Web Consortium [35]. This family of languages is comprised of three largely, but not 

entirely compatible sublanguages: OWL-Full, OWL-DL, and OWL-Lite. The OWL-DL 

and OWL-Lite sub-languages are based on description logic. Description logics (DLs) are 

a family of logics that are decidable fragments of first-order logic. DL has become a 

cornerstone of the Semantic Web for its use in the design of ontologies. See [36] for 

additional information on the OWL language. 

The choice of knowledge engineering tool is important because in choosing a tool one 

chooses the particular language (or languages) supported by that tool. By choosing a tool, 

the user is also making a decision to use the particular logic system(s) supported by the 

tool. Over several decades a number of ontology authoring tools have been developed in 

both research laboratories and commercial endeavors. Ding [37] discusses ontology 

requirements in the context of the Web, compares several languages with existing 

knowledge representation formalisms, and surveys tools for managing and applying 

ontologies. An extensive review and summary of the characteristics and features of the 

tools available was conducted by Denny [38] who observed that the choice of 

tool/language depends on whether it affords the scalability necessary to implement the 

required ontologies and the degree to which it possesses the needed representational 

power or expressiveness. 

Protege [39] was chosen for this research for several reasons. To begin, it is free and 

supported by a large user community who ensure it is constantly being updated and 

improved. Perhaps most importantly, it has support for an embedded description logic 

reasoner. 

A Description Logics reasoner is a software implementation of an inference engine 

whose purpose is to reason with a knowledge base expressed in OWL-DL. There are 

principally two reasoners available that have been integrated with knowledge engineering 

environments in general and Protege in particular: Pellet and Fact++. Pellet [40] is an 
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OWL-DL reasoner originally created at the University of Maryland MIND Lab to support 

reasoning with individuals (including nominal support and conjunctive query), with user-

defined data types and support for OWL/Rule hybrid reasoning. Fact++ [41] is a product 

of the University of Manchester School of Computer Science that is similar in capability 

to Pellet. 

2.5.3 Evaluation of Existing Approaches 

The prudent problem solver looks for previous solutions—even a partial answer to a 

problem may save time and effort. Additionally, a search often yields insights that result 

in a more efficient solution. This section reviews several noteworthy ontology 

development efforts. Ontology development efforts generally fall into one of two 

categories: top down or bottom up. Top down approaches seek to generate a more or less 

complete reference ontology that can be adapted to a particular problem. They seek to 

capture common information in one domain that can be used across several others. Three 

top-level development efforts are noteworthy: SUMO, MILO, and DOLCE. 

WordNet. WordNet is a large lexical database of English, developed and now 

maintained by the Cognitive Science Laboratory of Princeton University [42]. Nouns, 

verbs, adjectives and adverbs are grouped into sets of cognitive synonyms called synsets 

(that are uniquely numbered), each expressing a distinct concept. The lexicalized 

noun/verb concepts are organized hierarchically by means of hypernymy /hyponymy. As 

the most basic semantic relation, this organization serves to construct a hierarchy of the 

concepts in the domain and also provides a common way of reasoning for natural 

language processing researchers. However, there are several kinds of inappropriate 

hierarchy in WordNet [43], and its definitions can result in a degenerate structure. This 

prevents straightforward reasoning and eventually leads to errors (e.g. circular reasoning, 

a consequence of natural language processing). A second problem is that even though a 

particular installation of WordNet produces uniquely numbered synsets, the indices 

between different versions and even installations of the same version are-different. 

SUMO. The Suggested Upper Merged Ontology (SUMO) was developed within the 

IEEE Standard Upper Ontology Working Group [44]. First released in December 2000, 

SUMO was arbitrarily capped at around 1,000 concepts. SUMO originally concerned 

itself with meta-level concepts (general entities that do not belong to a specific problem 
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domain), and thereby would lead naturally to a categorization scheme for encyclopedias. 

Today, SUMO is at the apex of a collection of formal ontologies that include the MILO 

(Mid-Level Ontology) and various domain ontologies. Together, these define a hierarchy 

of classes and related rules and relationships that is the largest formal public ontology in 

existence and is being used for research and applications in search, linguistics and 

reasoning. The difficulty with SUMO and MILO is the ad hoc manner in which the 

decisions to include individual concepts were made. 

DOLCE. The Descriptive Ontology for Linguistic and Cognitive Engineering 

(DOLCE) is a formal upper level ontology that aims to capture the ontological categories 

underlying natural language and human commonsense. Essentially, DOLCE is an 

ontology about concepts. Like the other top level ontologies, one can question whether 

DOLCE is a practical starting point. 

A bottom up approach to developing an ontology seeks to capture the knowledge in a 

limited domain. There are many domain specific ontologies available on the World Wide 

Web, and several web sites are devoted to maintaining libraries of those accessible. A 

search through the libraries yielded several promising candidates discussed in the 

following paragraphs. 

TSONT. Durak et al provide the trajectory simulation ontology (TSONT) that 

implements specific models for various aspects of missile trajectory [45]. The ontology 

is a thorough, detailed documentation of a narrowly defined problem. The work 

endeavors to capture most of the used missile trajectory algorithms and also includes 

models of seeking sensors and control methods. Despite the fact that is complete, the 

result it is highly dependent on 'standard' modeling approaches and, therefore, contains 

many implicit assumptions. 

PHYSICS-PRIMITIVE. An ontology of physics concepts was prepared by the 

Dumontier Lab, but included only four forces: CentrifugalForce, Frictionalforce, 

GraitationalForce, and MagneticForce [46]. 

ONTOSENSOR. Russomanno, Kothari and Thomas devised, an ontology for sensor 

networks 147] that is noteworthy in that it extends the SUMO concepts. 

Two final ontology-related works are worth mentioning. Collins and Clark [48] 

advocated an ontology of Physics as being necessary to achieve meaningful 
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interoperability between physics-based models. Although no specific ontology was 

generated by the work, the authors argued for standardized description of the physical 

laws governing physical objects. Finally, a series of articles by Hestenes et al [49;50] 

was aimed at capturing the conceptual structure of physics as part of organizing subject 

matter to be taught in physics courses. Their Force Concept Inventory proved invaluable 

in organizing the information in the Force Inventory that is presented in Section 5.3 

below. 

When considering whether to make use of an existing ontology, the analyst needs to 

be wary of introducing unwanted concepts. The conclusion to the search for existing 

ontologies was that it was necessary to develop the needed ontologies specifically for this 

research. 

2.6 Assumptions and the Frame Problem in Artificial Intelligence 

It should be clear to the reader that providing a consistent context for data is critically 

important. The Frame Problem was briefly introduced in the discussion in Section 2.4 to 

help explain functional composability and the barriers to functional composition. There 

are some additional aspects of the frame problem that are of interest to this research. 

The frame problem originated as a narrowly defined technical problem of artificial 

intelligence (AI) researchers in the logic of action [51 ;52] . There are two forms of frame 

problem: computational and philosophical (epistemological). Both are germane to the 

use of assumptions in models. The computational frame problem is the challenge of 

representing the effects of actions on the properties of domain objects without having to 

represent explicitly a large number of intuitively obvious non-effects. Computational 

complexity is not the root of the genuine philosophical puzzle. The epistemological 

question is not so much how the computational challenge can be met, but rather how one 

could ever be sure they had sufficiently thought through the consequences of an action to 

know that nothing important has been missed. 

Shanahan maintains that the frame problem, in its computational form, is more-or-

less solved [53]. For simple systems, the most obvious way to address the problem is to 

add frame axioms that explicitly describe the non-effects of each action. However, in a 

domain comprising M actions and N properties this requires, in general, writing out 

almost MN frame axioms—clearly, the problem quickly becomes computationally 
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intractable. Approaches to the computational problem include fluent occlusion 

(circumspection or predicate completion), use of calculi specifically designed for solving 

the frame problem (fluent calculus, event calculus, successor state axioms, and so on), 

and default logic. The default logic solution relies on the assumption known as the 

common sense law of inertia, which declares the general rule-of-thumb that an action can 

be assumed not to change a given property of a situation unless there is evidence to the 

contrary. However, each of the solutions to the computational problem exists in a 

restrictive context: 

• Domain knowledge must be expressed in a representational formalism that is 

computationally decidable, such as propositional logic. 

• The formalisms may tolerate incompleteness but not ambiguity. 

• Note that if the solution requires the representational power of first-order predicate 

logic, then the epistemological issue remains separate. 

The general composability problem in modeling and simulation must consider the 

epistemological frame problem. The method developed in the following sections rests on 

the fact that only certain properties of a situation are relevant in the context of any given 

action, and consideration of the action's consequences can be conveniently confined to 

those. This topic will be revisited at the end of the dissertation. 
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3. FOUNDATIONS FOR ALIGNING ASSERTIONS 

This section discusses important concepts that must be defined before a process for 

capturing and aligning assertions can be presented. To begin, there are many ways to 

define and describe a system. Texts dealing with system analysis often take the view of a 

system performing a service that meets a need [54;55]. In this view, analysis begins with 

defining the customer's need or problem. Requirements analysis follows and is aimed at 

characterizing the performance of the system that consists of various interacting 

components to ensure it meets the customer's needs. 

This is the context of this research. A problem statement represents a collection of 

requirements which are potentially satisfied by a system solution whose components are 

interacting objects and processes. 

3.1 Assertion Concepts 

In the course of defining a system solution to a problem, assertions are made that 

describe the properties of the components, connectors, architecture, or construction 

process of the system solution. Four kinds of assertions are made: 

• Assumptions are statements taken for granted about the framework of a system 

solution. Assumptions can belong to the problem statement or to a solution 

alternative. 

• Constraints are part of the problem statement and specify required properties of the 

solution. 

• Considerations define desired or alternative properties and belong to candidate 

solutions to the problem12. Implemented considerations are specified properties of a 

particular solution to the problem. In this context, an implemented consideration is a 

fixed part of a particular solution under consideration. 

The distinction between a consideration and a constraint is subtle, but important. 
Inconsistencies between considerations affect the optimality of a solution; inconsistent 
constraints invalidate a solution. 
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• Competencies are proficiencies in performing specific tasks. Examples include 

mathematical operations such as vector sums, differentiation, and integration. A 

competency indicates the quality of being able to accomplish the described task that 

may itself be a combination of other tasks. 

Figure 3 is a view of the process of aligning models that highlights the roles played 

by assertions. As shown, the components involved in the process are a model, a 

description of its inputs and output, a system that the model is being integrated into, and a 

description of the system input. To simplify the discussion we stipulate the model output 

has been aligned syntactically and semantically with system input. To determine 

compatibility, the process creates and compares lists of assertions between model and 

system. 

inputs output input 

f(i) I ^ ^ _ J ~g(i) 
(assumed to be aligned) 

k model A k 

r i r 
J—, _ _ _ A %, , _ _ ... . . 1_ 

system 

Assertion List f Compatible? : Assertion List g 

Figure 3. Overview of Comparing Assertions 

To build and manipulate these lists requires an ontology to express the assertions, and 

a formalism for representing them. Figure 4 presents a formal model of assertion in 

terms of its components (use function, referent, proposition, and scope). The parts are 

described in the following paragraphs. 

Use function. The use function describes the role of the assertion in potentially 

modifying system behavior. The value will be one of the terms in the following list: [uses 

| does not use | ignores | requires | denies]. The use function plays an important role in 

processing assertion lists. It establishes the relevance of the proposition with respect to 

the model and with respect to the role of the proposition when integrating the model with 

a system. 
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Referent. The referent of an assertion is the entity to which it refers. A referent can be 

an object, a model, a process, a data entity, a system, or a property of one of these. When 

an assertion acts as a constraint, the referent is what is being limited by the proposition. 

Proposition. The proposition of an assertion is what it is saying - the statement that it 

is making. Propositions are not restricted to simple concepts—they may encompass the 

content expressed by theories, books, and even whole libraries. 

Scope. Scope is an optional description that extends the portions of the overall system 

to which the assertion applies. A system is a collection of components (objects and 

processes), assembled for a purpose. The system components exist within an 

environment. Scope can limit consideration to a component, the environment, the system, 

or to combinations of these (e.g. component-environment scope means that the scope of 

assertion is the relationship between the component and its environment.) If scope is 

not specified, then the assertion has component scope. Finally, note that scope can be 

stated explicitly or implicitly. 

Assertion <=> (referent useFN Proposition <scope> ) 

where: 

referent is the model or system component that the assertion is about 

useFN describes how the assertion is used by the model or system 

(uses | does_not_use | requires | ignores | denies) 

Proposition is a statement about the referent's existence, relations, or quality 

scope is an optional description of which parts of the overall system that the 

assertion refers to 

(component, system, environment, component-system, etc.) 

Figure 4. Assertion Formalism 

The reader will note that the formalism does depend on the kind of assertion 

(assumption, constraint, consideration or competency) introduced at the start of this 

section. The taxonomy was presented for the purpose of providing a complete as 

possible definition for assertion. 
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3.2 System Concepts 

The concept of a system meeting a stated need is a common one in engineering, 

science, and modeling and simulation. These additional definitions help to refine the 

following system concepts: 

Problem Statement. The problem statement describes a need that can be satisfied by 

a valid system solution subject to the restriction that the assertions of the system are 

compatible with the assertions of the problem statement. 

System. A system is a group of independent but interrelated elements comprising a 

unified whole. 

System Element. A system element is an independent component or process that is 

part of a system. A component is an artifact that is one of the individual parts of which a 

composite entity is made up, especially a part that can be separated from or attached to a 

system. A process is a particular course of action intended to achieve a result. 

Components and processes are interrelated: processes act on components, and 

components participate in and are changed by processes. 

Environment. The environment is that which a system operates within. 

Assertion Set. An assertion set is a collection of assertions about a system element, 

the system, the environment, or the problem statement. 

Solution. A solution is a system that attempts to meet the requirements of a problem 

statement. Included in a solution are the sets of assertions that apply to the construction 

and use of its components and processes. 

Valid solution. A solution is valid if, in addition to satisfying the need identified in 

the problem statement, the assertions sets of the system, system elements, environment 

and the problem statement are consistent. Conversely, an invalid solution is one where 

the need is not satisfied or where conflicts exist between the assertions contained in the 

assertion sets. 

Having done the necessary groundwork, the concepts can be encoded and the 

relationships between them can be captured using an ontology development tool as 

shown in Figure 5 below. 
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Figure 5. Ontology of Assertion and System Concepts in Protege 

3.3 Taxonomy of Assertion Properties 

It is helpful, at this point, to identify some of common properties by which assertions 

can be classified. This is not intended to be an exhaustive list, and by its nature is not 

hierarchical. 

Intension vs. Extension. Definition by intension is definition by giving all the 

criteria by which something is satisfied, thus defining a set. Extension is defining 

something by listing all of its examples[56]. The first (intension) yields a system under 

which something can be evaluated as being part of the set; the second (extension) yields a 

list of constituent members of the set. "The body will bounce off of anything solid. The 

body will bounce off the wall, the floor, and the obstacle. The first of these is an assertion 

defined by intension, and the second is defined by extension. 
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Primary vs. Derivative. Derivative assertions are derived from primary assertions. 

"There are no bodies, other than the ground, in the environment that the falling body is 

falling within". The derived assertion from this is that the effects of grayity are only 

applied by the ground as there are no other bodies to consider. 

Load bearing vs. Non-load bearing. This refers to the importance of the correctness 

of an assertion with respect to the problem solution of which it is a part. If the assertion 

affects the overall behavior of the model or system in such a way that it cannot be 

ignored or accounted for, then it is considered to be load-bearing. If, on the other hand, 

the effects of the assertion (perhaps on the behavior of a single component, or on one 

relation between two components) can be accounted for or corrected within the final 

results, then it is considered to be non-load bearing. 

Joint vs. Disjoint with others. This refers to whether the assertion acts independently 

or whether it operates in conjunction with other assertions. This raises the question of 

how they are joined. Boolean combinations are suitable if the assertion can be evaluated 

with respect to its truth. Other methods of combining, such as descriptive logics, may 

apply. 

Exogenous vs. Endogenous. This refers to the source of the assertion. An exogenous 

assertion is one that comes from outside the system and is unaffected by the model. An 

endogenous assertion is one that originates from within the model and possibly affects it. 

Dynamic vs. Static. This categorization addresses the question, "is the assertion fixed 

over the course of a solution?" The course of the solution may refer to temporal, spatial, 

or behavioral stability. This property of the assertion can most likely be described by the 

type categorization characteristics. 

Deterministic vs. Probabilistic. It is likely that some assertions will always have the 

same, repeatable and measurable, effect on the model or system. These assertions are 

deterministic. On the other hand, there may be assertions that have some random factor, 

either intrinsic or representational (due to not knowing all of the affecting variables). 

Controllable vs. Non-controllable. Some assertions might be able to be controlled 

but are worth being evaluated in a controlled state vs. a non-controlled state. Other 

assertions might not be able to be controlled. Consider, "The surface of the body is 
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covered in non-reflective paint. The falling body will not pass through a physical object." 

The first of these assertions is controllable; the second is not. 

Explicit vs. Implicit. Explicit assertions are often stated in the description of the 

model or system. They are presented in such a way that they can be directly referred to. 

Implicit assertions often concern knowledge about the context or world that the model or 

system is expected to operate in. "The falling body starts at an at-rest condition. The laws 

of thermodynamics are in effect throughout the process of the body falling." The first of 

these assertions is most likely explicit and is stated in the description of the model. The 

second of these is implied, by the fact that it describes a physical process existing in a 3D 

world with normal laws of physics. 

Like the taxonomy of the kinds of assertion, the taxonomy of properties is presented 

primarily to provide a more complete understanding of the topic of assertions. 
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4. A PROCESS TO CAPTURE AND COMPARE ASSERTION SETS 

This section outlines a process for capturing and comparing sets of assertions. It is 

based on the formalism developed in the previous section. With this process, the 

assertions that define and shape each system component are examined to determine their 

compatibility with each other. To ensure success, the procedure described below should 

be performed in collaboration with both a domain expert and an ontology engineer. The 

process is greatly simplified if the analyst has a well documented conceptual model in 

hand. If one is not available, it is probably worth the effort to create one although strictly 

speaking a conceptual model is not absolutely necessary. The benefits to having a 

conceptual model to use as a guide are increased accuracy and completeness of the 

assertion sets and less time spent in capturing them. These benefits should outweigh the 

cost of capturing and documenting a conceptual model. 

4.1 Preliminary Work - Capture the Conceptual Model 

Much valuable insight into the process of developing a conceptual model can be 

gained from Robinson's framework for conceptual modeling [7]. The framework 

consists of five iterative activities: understanding the problem situation, determining the 

modeling and general project objectives, identifying the model outputs, identifying the 

model inputs, and determining the model content. The importance of assumptions is 

recognized as is the need for capturing them. Note that Robinson distinguishes between 

assumptions (about the problem) and simplifications (to the problem). In the context of 

this research, however, simplifications can be thought of as implemented considerations. 

The product of Robinson's framework is a well-documented conceptual model. 

4.2 Step 1 - Capture Assertions 

The first step is to capture the assertion propositions (assumptions, constraints, 

implemented considerations and competencies) for the model, system and environment. 

Each proposition represents a concept that is expressed as a natural language statement 

about the problem, one or more of its components, or a particular solution. The objective 
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is to write down what the main concepts are as this will form the basis of the ontology 

content. It is not necessary to document absolutely everything, just the things that are 

known to be within scope or that are important. 

Several factors will determine how much information is gathered in this step. In the 

initial stages of system development, few assertions may have been made and "place 

holders" may represent model components whose characteristics are nebulous at the start. 

In later stages of development, and in particular when capturing the assertions of legacy 

models and systems, a wide variety of data may be available in the form of design 

documents—sifting through these to extract only important information may prove 

challenging. 

The analyst will need to pay attention to the difference between core and secondary 

concepts. Core concepts are those terms (usually nouns) that are central to the model or 

system—their absence would result in an incomplete description of the domain. 

Secondary concepts are those that are not central to the domain but are required to 

complete the definition of core concepts. Obviously, core concepts should be documented 

thoroughly whilst secondary concepts need receive only limited detail. 

When evaluating a collection of alternatives, the analyst will find some concepts that 

are common to all solutions, some that are shared among several and some that are 

unique to a particular solution. The analyst benefits from taking a close look at any 

algorithms used—there are likely to be several assertions for each term or factor in an 

equation. The analyst should also write down any competencies that appear in the 

problem. 

4.3 Step 2 - Encode Propositions 

The output of the first step is a list of propositions expressed in natural language 

statements. These must be encoded in a knowledge representation language (e.g., OWL-

DL or KIF) before they can be used by a software agent such as a description logic 

reasoner. 

Each proposition will consist of its axioms and logical assertions that relate it to other 

concepts and propositions. The astute reader will recognize this process as being identical 

with building an ontology. This will require, as a minimum, use of an ontology editor or 

ontology-building tool such as Protege. 
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This step of the process reduces the likelihood of ambiguity by converting a natural 

language model into a formal model. A formal model provides strict interpretations of 

what the relations between items are meant to be. In a formal model, relationships are 

spelled out explicitly; even the fact there might be several words for the same thing 

should be represented explicitly. Note also that precision comes at a cost, and the overall 

product is only as good as this process step. 

The analysis may benefit from a search for existing ontologies to determine if core 

concepts have already been defined. If an ontology is found, special care should be taken 

to ensure the semantic description in the existing ontology matches that desired of the 

core concepts. The structure of the ontology is potentially critical to the subsequent 

processing steps. As long as there are no conflicting statements, the ontology engineer 

can consider reusing the existing ontology. 

It is possible (indeed likely) some propositions are found that encapsulate others. For 

example, the use of Newton's second law encapsulates the concepts of force, mass and 

acceleration (which depend on the concepts of position and velocity). At this point, the 

domain expert and ontology engineer have an important trade off to consider, that of 

complexity vs. computability. 

The second process step also consists of assigning the use function, referent and 

scope to each proposition in both the model and the system lists. This establishes the 

relevance and use of each proposition. The analyst should be prepared to make several 

iterations through this process step as the assertion lists are refined. 

The output of this step is list of statements encoded in a knowledge representation 

language—the list of assertions for the both component and system. 

4.4 Step 3 - Compare Assertion Lists 

The third process step is to perform a comparison of the model and system lists. The 

task of comparing lists requires a multi-level strategy to be effective. 

4.4.1 Scan Strategy 

The multi-level comparison strategy can be illustrated by examining alternative 

models of a phenomena—wind provides a good example. Consider the integration of a 
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model for wind effects on a body/into an existing model system g. Before addressing 

questions of how wind is modeled, it must first be asked if wind is a factor. 

Table 1 shows the strategy for comparing assertions about/with assertions about g. 

The first objective is to determine whether or not g uses the assertion in model/that wind 

affects the body. The upper half of the table addresses the first strategy level (use, or 

non-use, of each proposition in/). This is accomplished by a straightforward search for 

the assertion's proposition in the assertion sets. Note that does_not_use is the result of 

not finding the proposition during the search for it. The right hand table column lists the 

action to be taken as a consequence of having or not finding a match. Examining the 

table, the reader sees that two cases satisfy the first level comparison; either both model 

and system use the proposition or neither of them do. The other two cases—where one 

component uses the proposition and the other does not—represent potential conflicts. 

This situation is signaled by raising an alert. An alert indicates an abnormal condition—in 

a real-world implementation of the strategy, raising one would typically initiate another 

layer of detailed processing to determine the extent of the conflict. 

The second objective is to take appropriate action based on how both g and /make 

use of the proposition. The lower half of the table addresses this level and represents 

situations where the model is interested in how the system behaves with respect to the 

proposition. Returning to the example, consider the case where the model/requires the 

use of wind. The comparison is successful if g either uses or requires wind. The other 

three situations, g does_not_use, g ignores, and g denies, are clearly in conflict. As 

above, the raising of an alert signals the need for further examination of the conflict. 

Similar reasoning applies to the cases where/ignores or denies the use of wind. 

Note that the table lists all of the possible permutations of (0,l,i,r,d) between/and g 

and thus is complete. Also, note the table addresses the strategy only with respect to a 

search for propositions that match; it does not consider how the decision is made whether 

or not the propositions match. This is discussed in the next section. 
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Table 1. Strategy for Assertion List Comparisons, Based on useFunction Values 
useFN of model / 

uses = 1 

does_not_use = 0 

ignores = i 

requires = r 

denies = d 

Example assertion 
Interpretation 

body uses (wind affects) 

The body is affected by wind 
body does_not_use (wind affects) 

The model does not use the effects 
of wind on the body 

body ignores (wind *) 

The model is not affected by 
whether wind is considered or not 
body requires (wind *) 

The model requires that wind on 
the body to be taken into account 
body denies (wind *) 

The model requires that the wind 
on the body not be taken into 
account 

useFn of the matching assertion in system g 

f g 
0 0 -don ' t care: OK 
1 0 - n o t found in g: raise alert 
0 1 - not found in f: raise alert 
1 1-found in both: OK (aligned) 

f g 
i 0 ,1 , i, d - don't care: OK 
i r - ignores-requires conflict: raise alert 

r 1, r - uses or requires: OK (aligned) 
r 0 - requires & not found: raise alert 
r i - requires & ignores: raise alert 
r d - requires & denies: raise alert 

d 0, i, d - not found, ignores or denies: OK 
d 1 - denies & found: raise alert 
d r-denies & requires: raise alert 

4.4.2 Types of Matches 

When comparing assertion propositions, it is important to note each proposition 

represents a concept and there are different ways that concepts can match. The topic of 

semantic similarity—deciding if, and how closely concepts match—is the subject of 

much current study, particularly with respect to research into the Semantic Web. The 

issue is a complex process influenced by many different factors or characteristics. In a 

recent analysis, Kokla observed that category comparison consists of the identification of 

similarities and heterogeneities between similar categories [57]. This process relies on 

available elements, which describe categories' semantics, such as terms and definitions. 

Different combinations of terms lead to four possible comparison cases: 

• equivalence, when the categories are identical in meaning 

• subsumption (partial equivalence), when one category has broader meaning than the 

other 

• overlap (inexact equivalence), when categories have similar, but not precisely 

identical meanings. 
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• difference (non-equivalence), when the categories have different meanings 

Equivalence. The first level, equivalence, is the result of a search for concepts that 

match exactly. This is most likely to happen when the concepts are described in a 

limited, controlled vocabulary. For the general case rarely are the descriptions of two 

concepts exactly the same—especially if the descriptions are written by different authors. 

Thus, whilst exact matches are the most powerful in terms of stating that concepts are 

identical, it is more likely two concepts are similar but slightly different. In this case 

more sophisticated comparison methods are needed. 

Subsumption. The next level of concept matching depends on logical inference. For 

example, if the model has a particular assertion whose parts are individually asserted by 

the system, then the assertion is satisfied. The question here is, given two propositions A 

and B, what are the cases where both A and B can pertain? To illustrate, consider two 

propositions, A and B. Table 2 lists the cases where both can pertain. The right hand 

column indicates whether the information in the relationship is sufficient to permit a 

descriptive logic reasoner to infer the equivalency of assertions. 

Table 2. Logical Cases for Matching Propositions 
Relationship 

A and B are equivalent 

A and B are independent, wi th no common cause, 

both pertain 

Causa! relationship: A causes B and A pertains, or B 

causes A and B pertains 

Common cause: A and B are independent with 

common cause C that pertains 

Set theory: A and B are both elements or subsets of 

C, and C pertains 

symbolic logic 

A ^ B 

A 

B 

( ( A O B ) A A ) , or 

( (B= )A )A B) 

(C=>A)A( C 3 B ) A C 

( A G C ) A ( B G C ) A C , or 

( A C C ) A ( B C C ) A C 

Usable? 

Yes 

No 

Yes 

Yes 

Yes 

Subsumption can be a useful and powerful method for determining if propositions 

match. Consider the situation where a model / has implemented part of Classical 

Mechanics—Newton's second law and universal gravitation—and the model is being 
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integrated with a system g that uses all of Classical Mechanics. Table 3 presents 

examples from the point of view of matching propositions about/ with g. 

Table 3. Examples of Subsumption Matches 
Example proposition in 
model / 
the body has mass 

the body accelerates 

uses is satisfied by these propositions from Classical Mechanics in 
system g 
the object has mass (equivalent) 
the object uses Newton's 2nd Law (mass e Newton 2nd Law) 
the object uses the Universal Gravitation (mass <z Universal 
Gravitation) 
the object uses the rules in Classical Mechanics ((mass c 
Universal Gravitation) A (Universal Gravitation c Classical 
Mechanics)) 
the object uses Newton's 2nd Law (acceleration c Newton 2nd 

Law) 

The scan strategy presented in the previous section remains sound using subsumption 

comparisons to determine if propositions match. However, attention must be paid to the 

details of the comparison. To begin, subsumption comparisons are asymmetric and 

transitive but not associative (equivalence comparisons are associative). 

Another of the problems with using subsumption is the comparison depends on the 

structure of the ontology used to encode the propositions. To illustrate, consider the 

following propositions. 

a. Each component consists of several elements. 

b. Each of the elements can be comprised of several components. 

The circular logic that is created by including these propositions in a system would 

make it impossible to perform a subsumption test. Another problem would surface when 

attempting to combine a system whose propositions rely on a and one whose propositions 

rely on b. 

In summary, testing by subsumption can lead to complex issues that are beyond the 

scope of this dissertation. 
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Overlap. The third level of concept matching depends on semantic distance. Semantic 

distance13 is a method that assigns a metric to a set of terms or concepts based on the 

likeness of their having similar meaning or semantic content. In essence, it asks, "How 

much does term A have to do with term BT If the semantic distance is zero, it is said that 

propositions match, and no further processing is needed. For other cases, where there is 

either a partial match, a match in metalevel mappings, or possibly no match at all, a 

different kind of processing is needed. As with subsumption, determining the degree of 

overlap leads to complex issues beyond the scope of the dissertation. See [31] for an 

overview of methods, [58-60] for examples of ontology modularization (i.e. resolving 

overlap issues) and [61;62] for discussion of semantic matchmaking and intelligent 

brokering mechanisms. 

Difference. Just as there can be varying degrees of overlap between concepts, there 

are also varying degrees of difference. This can be the consequence of any of several 

different issues. Two concepts can be antithetical in which case one denies the other, or 

each can exist in a non-intersecting domain of discourse. In the latter case, they simply 

have no effect on one another. 

As used in this research, the term "conflict" refers to a logical contradiction in an 

axiom space. Logically speaking, "conflict" refers to situations in which two concepts 

seem to imply contradictory statements that result in confusion when aligning models. 

Furthermore, in logic a theory is consistent if it does not contain a contradiction. The lack 

of contradiction can be defined in either semantic or syntactic terms. The semantic 

definition states that a theory is consistent if it has a model; this is the sense used in 

traditional Aristotelian logic although in contemporary mathematical logic, the term 

satisfiable is used instead. The syntactic definition states that a theory is consistent if 

there is no formula P such that both P and its negation are provable from the axioms of 

the theory under its associated deductive system. Note that if these semantic and syntactic 

definitions are equivalent for a particular logic, the logic is complete. As above, 

determining a degree of difference leads the research to consider complex issues beyond 

the scope of the dissertation. 

13 The literature generally considers semantic similarity, semantic distance, and semantic 
relatedness to refer to the same idea. 
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The impact of this discussion is that because of the complexity of the issues involved, 

only an equivalence comparison will be used in the research. Moreover, because the 

ontologies developed comprise a controlled vocabulary, the concepts that underlie each 

proposition are not subject to misinterpretation. Hence, the research asserts that a 

proposition is adequately described by its label14. 

4.5 Step 4 - Adjudication and Resolution of Conflicts 

The final step in the process is examination of each conflict and judgment as to its 

significance. Of course, some process for resolving conflicts is needed as part of the 

assertion alignment process, but its details are not important. The primary focus of this 

research is on the process for detecting conflicts. 

The kind of adjudication depends upon the use function associated with each 

proposition and whether the assertion is load bearing (i.e. its negation would lead to 

significant changes in system operation) or not. The intention is that for load bearing 

assertions that are relied upon, or cared about, the adjudication is performed by a human 

or an agent that supports a human. The results of the adjudication can be stored and 

recalled at future times to provide precedents to human operators. The results can also be 

used to train agent-based systems. 

If required, a comparison can be supplemented by a verbatim comparison of all 
descriptive comments attached to each proposition. 
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5. THE FALLING BODY EXAMPLE PROBLEM 

The goal of this section is to present an example of the process by capturing 

assertions derived by detailed analysis of a problem and its solution. The falling body 

problem is chosen for that example because it is well defined (e.g. it is limited, widely 

understood and used) and thus it is amenable to rigorous analysis in terms of its 

components and their underlying assertions. Whilst it cannot be guaranteed that all of 

the assertions that could possibly pertain to the problem will be captured, there is a 

considerable likelihood that all of the significant assertions will be accounted for. This 

analysis benefits from previous consideration of the problem by several authors. The 

falling body problem was used as a general example by Davis and Anderson [1], and as a 

specific example for investigating the complexity of validation constraints by Spiegel 

[18]. Lastly, the falling body problem adopted in Spiegel et al appeared originally as an 

example in the first chapter of an engineering textbook by Chow [63]. 

Spiegel et al collected modeling assertions through expert review of a particular 

system solution to the problem. The completed model was presented in the form of 

equations and definitions shown in Figure 6 to the experiment participants who were then 

asked to list any validation constraints that they could think of 5. The study subjects were 

engineering professors and graduate students, and so it is reasonable to conclude each 

possessed at least the minimum level of expertise necessary to understand and address the 

problem. Nevertheless, each subject had a particular point of view that influenced his or 

her approach to the problem. This is borne out by the fact that on average each 

respondent came up with less than half of the total number of constraints collected in the 

survey. The approach was a good one for the purposes of that study, but not necessarily 

the best one for studying modeling assertions in detail. An analogy can be made between 

the method by Spiegel et al and the process of documenting a legacy model as part of 

integrating it into a system—some aspects of the model were not (or will not) be 

15 Although the idea of compiling a list of validation constraints is very similar to 
compiling a list of assertions, the two are not precisely the same. However, they will be 
considered equivalent for the purposes of this research. 
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captured. To illustrate, none of the respondents in the Spiegel et al study identified 

assertions dealing with electromagnetic or electrostatic forces. 

Gravity: The sphere experiences constant 
acceleration, g = 9.8 m/s2. 

Buoyancy: mf = (1/6) rtd3pf against gravity. 
ytt) Inertial drag: (1/2) mf v' (t) 

p(t) Viscous drag: (l/2)pf • v(t) • | v(t) | • n/4 • d2 

•cd(v(t)) 

Wave drag: Wave drag is negligible at subsonic 
speeds. 

Figure 6. Chow's Falling Body Problem as Presented by Spiegel et al 

To capture its assertions as completely as possible, a thorough analysis of the falling 

body problem will be made. The problem is open to solution using a number of different 

methods. Classical mechanics is one approach that is familiar to most engineers and 

physicists, and it is chosen for that reason. Equivalent methods include Lagrangian 

mechanics and Hamiltonian mechanics16. Generally, these alternative formulations 

provide deeper insights into the general structure of classical mechanics and its 

connection to quantum mechanics as well as its connection to other areas of science. 

5.1 Conceptual Model (Preliminary Work) 

As previously mentioned, development of a conceptual model is an important 

activity—one was developed for this research. Table 4 presents the first iteration of 

Robinson's framework for conceptual modeling for the falling body problem. 

16 Lagrangian mechanics was introduced by Joseph Louis Lagrange in 1788. It combines 
conservation of momentum with conservation of energy. The trajectory of a system of 
particles is derived by solving Lagrange's equation for each of the system's generalized 
coordinates. Hamiltonian mechanics was discovered in 1833 by Irish mathematician 
William Rowan Hamilton. The Hamiltonian method differs from the Lagrangian in that 
instead of expressing second-order differential constraints on an n-dimensional 
coordinate space, it expresses first-order constraints on a 2n-dimensional phase space. 
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Table 4. Conceptual Model for the Falling Body Problem: First Iteration 
Problem 
situation 

Objectives 

Inputs 

Outputs 

Content 

Classical mechanics has been chosen for the form of the solution. Classical 
mechanics can be used for describing the motion of macroscopic objects, 
from projectiles to parts of machinery, as well as astronomical objects, such 
as spacecraft, planets, stars, and asteroids. It produces very accurate 
results within these domains, and is one of the oldest and largest subjects 
in science and technology. While the terms classical mechanics and 
Newtonian mechanics are usually considered equivalent (if relativity is 
excluded), much of the content of classical mechanics was created in the 
18th and 19th centuries and extends considerably beyond (particularly in 
its use of analytical mathematics) the work of Newton. Newton's laws were 
verified by experiment and observation for over 200 years, and they are 
excellent approximations at the scales and speeds most often encountered. 
However, Newton's laws are inappropriate for use in certain circumstances, 
most notably at very small scales, very high speeds (in special relativity, the 
Lorentz factor must be included in the expression for momentum along 
with rest mass and velocity) or very strong gravitational fields. 

The primary research objective is to foster understanding of the processes 
that formulate and utilize modeling assertions. The consequence of this 
objective is in the way that it shapes the modeling process. Typically, the 
modeler focuses on the important aspects of the problem. If a concept is 
not in the modeler's thoughts or is not particularly important in the current 
worldview, then it is likely that it, and its assertions, will not be captured at 
all. In contrast, this research aims to capture as much detail as possible, 
and so emphasis is placed on examining the fundamental theories that lie 
behind Classical Mechanics. 

The inputs include the initial position and velocity of the body, its mass, 
dimensions, shape, and surface composition. Environmental inputs include 
the type of fluid (such as air, water, or hydraulic fluid), its density, 
temperature, pressure, and viscosity. 

The output of the model is the position and velocity of the body over time. 
Usually, an inventory of the assertions made would be considered an 
optional output product, but in this case, it is a primary one. 

The framework of classical mechanics includes a number of concepts, laws 
and theories. 
scope: The system consists of the falling body and the earth, the forces 
acting on each object, and the environment. 
level of detail: the solution seeks to capture only the most important 
effects. Secondary effects, such as determined through complicated 
aerodynamic calculations will be avoided. 
assumptions: assumptions about each system component will be discussed 
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Now that a conceptual model is in hand, we can proceed with the process of capturing 

assertions. It is good practice to begin by writing down the top-level assertions that deal 

with the definition of the problem and the general approach to a solution. 

5.2 Initial Assertions (Step la) 

The first step is to capture the assertion propositions for the model, system and 

environment in natural language statements. The content of the problem can be 

summarized by several initial assertions: 

Initial Assertion IA_1: The system consists of the falling body and the earth, the 

forces acting on each object, and the environment. 

Initial Assertion IA_2: The solution uses Classical Mechanics. 

Initial Assertion IA_3: Classical Mechanics consists of the principle of 

superposition of forces, Newton's three laws of motion, the Law of Universal 

Gravitation, and conservation of energy, momentum, and angular momentum. [64] 

Initial Assertion IA_4: The solution uses the principle of force superposition; i.e. the 

resultant force on the body is the vector sum of individual forces. 

This assertion demonstrates an important point, namely that a proposition may 

subsume or depend on another proposition. The principle of force superposition permits 

summing the forces that act on a body and treating the resultant as a single force, if the 

forces act independently. In other words using the principle of force superposition 

implicitly invokes the assumption of independence of the forces involved. Use of the 

principle of force superposition also involves a competency in being able to perform 

vector sums. 

Initial Assertion IA_5: The acceleration on the body derives from Newton's 2nd law 

of motion. 

Newton's 2nd law is commonly written F — ma, or if mass is not constant17 F = 

— (mv). By examining the equation, it can be seen that the expression can be 

decomposed into a collection of individual propositions as listed in Table 5. 

For example, in rocketry dm/dt #0. 
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Table 5. Propositions for Newton's 2" Law 
Proposition 
N2_l: The body has mass 

N2_2: The body has position 

N2_3: Position changes when velocity is 
nonzero. Equivalently, it is the time integral of 
velocity / v dt 

N2_4: Velocity is the rate of change of 
position with respect to time, defined as the 
time derivative of position (dp/dt), or 
equivalently as the time integral of 
acceleration j a dt 

N2_5: Acceleration is the rate of change of 
velocity with respect to time, defined as the 
time derivative of the velocity (dv/dt). 

N2_6: The acceleration of a body is the result 
of force applied and is equal to that force 
divided by the body's mass, (a = F/m) 

N2_7: Newton's 2nd law requires the caveat 
that it holds only in an inertialframe. 

Comments 

This requires a competency in differential 
calculus, C_CALCULUS (includes both 
differential and integral calculus) 

This requires a competency in calculus, 
C_CALCULUS 

This requires a competency in calculus, 
C_CALCULUS 

This requires a competency in being able to 
use algebraic manipulation to obtain an 
equivalent representation, C_ALGEBRA 

This is defined to be a frame in which a free 
particle with rh= 0 travels in a straight line, 
e.g. r = rQ + vt. Note that Newton's 1st 

law is the statement that such frames exist. 

Note that proposition N2_6 is the statement of Newton's 2nd law and the other 

propositions operate in support of the law. This assertion illustrates another important 

point, namely a proposition may have several equivalent expressions—and one of those 

is the one that is needed. The alternative equivalent expressions may be listed explicitly 

or may be the result of the algebraic manipulation of the asserted algorithm. 

A note on ontology engineering is also in order. The sequence with which the 

ontology engineer steps through the engineering analysis can have potentially great 

impact on the structure of the ontology. This can have important consequences during 

the comparison phase when concept matching can depend on ontology structure. 
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Lastly, some assertions are usually found together—although not dependent on one 

another, using one from the group very often means the others pertain even when not 

explicitly mentioned. 

5.3 Force Inventory 

Having specified the use of Newton's second law and the principle of force 

superposition, the next thing to be done is to list the forces that are involved. This section 

creates an inventory of possible forces. Once the inventory has been created, it is rather 

straightforward to indicate whether each force is utilized in the problem or not. Table 6 

is a modest catalog of possible forces, organized by force type (how it is applied). A non-

contact force is one that acts over a distance—there are four known non-contact forces in 

the universe. Solid-contact forces require that objects touch. Fluid-contact forces apply 

to motion through liquids and gasses. A fictitious force is an apparent force that acts in a 

non inertial frame of reference—it does not arise from any physical interaction but rather 

from the acceleration of the reference frame itself. Finally, several phenomena are labeled 

or thought of as forces, yet are not. 

Table 6. Force Inventory 
Force 

Alternative representations 
Comments (assertions in natural 
language) 

Non-Contact Forces 
Gravitational 

Strong nuclear 

Weak nuclear 

*9 

V V" mernb 

- L F e b ~ L G\rebvYeb 

e 

„ „ 0nim2) 

Fg = -mg 

f'strong = ( n o t presented)* 

Fweak = (not presented)* 

The first equation is the vector form: 
(the net force on body b is sum of 
contributions by mass elements e). G 
is the universal gravitational constant 
The second equation is the point mass 
scalar form 
The third equation is the Earth 
gravitational field form (force is down) 

Force that holds the holds quarks and 
gluons together to form protons and 
neutrons: negligible at distances > 10" 
15 m 

10"6 times weaker than strong nuclear 
force: negligible at distances > 10"18 m 
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Force 

Electromagnetic 

Magnetic 

Electrostatic 

Alternative representations 

*Lorentz = <7(E + V X B) 

*mag = ?(V X B) 

*el = ?E 
r W2 f 
Tei ~ 4ne\r12\z

 r" 

Comments (assertions in natural 
language) 
The first equation is the Lorentz 
(electromagnetic) force which is the 
combination of magnetic and 
electrostatic force effects 
q is the electric charge on the object, v 
is the object's velocity and B is the 
magnetic field 

The second equation is the electric 
field form: E is the electric field 
strength. 

The third equation is the vector form 
between charged particles: e is the 
electrical permittivity of the medium 
and qn is the electric charge on particle 
n. 

Solid-Contact Forces 
Reaction 

Thrust 

Sliding Friction 

Rolling Friction 

Spring 

^contact ~ ''applied 

''friction s ~~ j 

rfriction r ~ 

F — —kAx 1 spring a u A 

Reaction forces arise from application 
of Newton's 3rd law. 

Thrust is a reaction force that results 
when a system expels or accelerates 
mass (such as air) in one direction and 
experiences a force in the opposite 
direction. 

Hs is for surfaces at rest relative to 
each other, pik is for surfaces in 
relative motion. Generally, \ik </JS. Fn 

is the force normal to the surface. The 
direction of the force is directly 
opposite to the direction of motion. 

Wis the weight, a is the coefficient of 
rolling friction, r is the radius. The 
direction of the force is directly 
opposite to the direction of motion. 

This is a reaction force to the elastic 
deformation (change in length by Ax) 
of a spring, k is the spring constant. 
The direction of the force is directly 
opposite to the displacement. 
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Force 

Damping 

Deformation 

Alternative representations 

''damper ~~ ~^V 

Fdeform = (not presented)* 

Comments (assertions in natural 
language) 
c is the viscous damping coefficient. 
The direction of the force is directly 
opposite to the motion. 

Forces that resist the plastic 
deformation of objects. 

Fluid-Contact Forces 
Buoyancy 

Aerodynamic 

Lift 

Lift Induced Drag 

Inertial Drag 

4 , Fbuoy = mfg mf=-nrspf 

'aero ~ ''lift ' '' lift_drag 

4 
Flift_sphere = -(.n2l3a)pv) 

Fuft_drag - (not presented)* 

1 du 
''inertial ~ ~ ~^^1/ j*. 

The formula is for a spherical object 
where mf is the mass of the fluid 
displaced, pf\s the fluid density. The 
direction of the force is opposite to 
the direction of the gravity field. 

Aerodynamic force is the resultant 
force on a body by a fluid (e.g. air) that 
is due to the relative motion between 
the body and the fluid. It is commonly 
resolved into two components: lift and 
lift-induced drag 

Lift is a mechanical force generated by 
the interaction and contact of a solid 
body with a fluid (liquid or gas). Lift 
calculations based on first principles 
are extremely complicated, except for 
simple shapes. Usually, mathematical 
expressions for lift approximate 
empirical data. The expression shown 
is the theoretical lift on a spinning 
sphere, where b is the radius of the 
ball, co is the speed of rotation 
measured in revolutions per second, p 
is the density of air and v is its 
velocity. 

The force represents the change in 
inertia of mf (the mass of the fluid 
displaced) that is the result of 
acceleration of a body immersed in it. 
The direction of the force is directly 
opposite to the acceleration. 
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Force 

Parasitic Drag 

Wave Drag 

Alternative representations 

''drag 
( Snrjrvv Re < 1 

\-\pv2ACdv l<Re 

(not presented for very large 

Re)* 

Fwave = (not presented)* 

Comments (assertions in natural 
language) 
Drag calculations based on first 
principles are extremely complicated. 
Usually, mathematical expressions for 
drag approximate empirical data. Re is 
the Reynolds number that indicates 
the degree to which flow around the 
object is laminar or turbulent, v is a 
unit vector in the direction of motion. 
r\ is the coefficient of viscosity 

Caused by the formation of supersonic 
shock waves that radiate away 
considerable energy—experienced by 
the object as drag. Associated with 
supersonic flight, but can be seen at 
speeds of about Mach 0.8 

Fictitious Forces (d'Alembert Forces) 
Rectilinear 

Centrifugal 

Coriolis 

Euler 

*Yect ~ m<*rect 

V 2 
^centrifugal ~ ma> r 

^coriolis = - 2 m f t x v 

f'Euler = ~ m "TT x r 

The apparent force due to an 
acceleration, arect,of the reference 
frame origin in a straight line 

The apparent force acting outward 
from the axis of a rotating reference 
frame. The vector r is perpendicular to 
the center of rotation and points 
outward to the location of the rotating 
object. 

Q. is the angular velocity vector which 
has magnitude equal to the rotation 
rate w and is directed along the axis of 
rotation of the rotating reference 
frame, and v is the velocity of the 
particle in the rotating system. 

Euler forces arise from a change in 
angular velocity co in a rotating 
reference frame 

Other Forces 
Electromotive 

n/a 
The term Electromotive force is a 
misnomer. It has SI units of volts, not 
Newtons. Accordingly, electromotive 
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Force 

Torque 

Alternative representations 

n/a 

Comments (assertions in natural 
language) 
force is not a force. 

Torque is not a force, but rather a 
moment about an axis 

* Calculations of these forces from first principles are extremely complicated and beyond the 
scope of this dissertation 

The force inventory can be encoded in an ontology. Figure 7 shows the ontology that 

has been developed, organized by force type (how it is applied)18. A non-contact force is 

one that acts over a distance—there are four known non-contact forces in the universe. 

Solid-contact forces require that objects touch. Fluid-contact forces apply to motion 

through liquids and gasses. A fictitious force is an apparent force that acts in a non 

inertial frame of reference—it does not arise from any physical interaction but rather 

from the acceleration of the reference frame itself. Finally, several phenomena are labeled 

or thought of as forces, yet are not. 

Note that there are other possible ways to organize the taxonomy that could impact 
how it is processed. 



50 

WeightOnEarthsMoonForce ^ 

JVeightForrp ,~ 

GiavitationalForcp*" rteightOnEarthFoiCP 

NewrtQnianGravityFgrcp 

WeakNuclearFsrce 

NonbontautForc** I—*•* CifongNuclearForce 

H ' El^otrostaticForte 

ElectromagneticForce 

Magrtetic'Fdrce 

DampingForee 

/ -" _ _ 
1 CpnngForce » 

/ ' i T L , l l f + r „ „ „ KineticFriction 

ClidingFribtioriForee 

SohdContactFotGe ^ I—3 ' FnctionForce StaticFtiction 

/ / i v "~ --. ' "" RollmgFrictionForce 
/ / - - „ _ _ 

• / ' / 

/ y ( PeactionForce 

/ ra-a/ 
7 / 

/ / Deformation Force 

Process <• f - - 3 —i Forcp_Class , „ 
Buo/ancyFoiee 

FluidContactForce ^-^ InertialDtagFarce 

i ParasiticDragForce UrtlndueedDragForce 

* * - . ~ - - Z_ 

AerodymmicFcuce j — L ^ J • ifc'a 'eDragForcf 
i 

ConolisForce LiftForce 

FictitiousFoice \—>^ ^ PectilinearFotce 

v ! j T CenttifugdlFoteo 

Figure 7. Ontology of Forces in Protege 

5.4 Assertions for Forces in the Falling Body Problem (Step lb) 

Equation 1 is a statement that the net force on the body is the sum of all of the forces 

possible. The equation is derived by application of IA_4 to the force inventory. Note that 
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the resultant force and each component force are shown as vector quantities. Thus, it is 

noted that a competency in vector mathematics, CVECTORMATH, is needed. 

2J ** — net J OTCe — r g •+- rL0rentz > "strong ' "weak ' **contact "•" ^thrust ' 

"frictions > * friction r '' " spring ' "damper > "buoy ' " inertial ~i~ "viscous ' (1 ) 

*"wave ' *' liftsvhere "•" *"liftdrag 'rect ' "centrifugal "•" *"Coriolis ' "Euler 

At this point in the problem formulation, the competent analyst simplifies the 

problem by selecting the appropriate components from the force inventory. His choices 

for which ones to include or exclude depend on a number of factors, but in making each 

choice he is making one or more assertions about the problem solution. 

Note that each force can have a number of different, but similar, expressions. 

Choosing which representation to use introduces a complication to the problem. Each 

alternative algorithm has a potentially different set of assertions that accompanies it. To 

illustrate, the earth gravitational field representation of gravitational force is a 

simplification of the point mass scalar representation that rests on several assumptions: 

• The mass of the earth is much greater than the mass of the body. 

• The distance over which the gravitational force is acting is much less than the radius 

of the earth. 

• The size of the earth is so much greater than the dimensions of the problem that the 

force generated acts directly downward with respect to the surface of the earth. 

• Moreover, the point mass scalar form of the gravitational force is a simplification of 

the vector form that rests on its own set of assumptions: 

• The distribution of the earth's mass is uniform. 

• For the purposes of the problem, both the body and the earth can be considered point 

masses. 

Using knowledge of physics and following sound engineering practice, the force 

inventory can be surveyed to refine the level of detail and to simplify the problem. As 

the analyst considers each item, he records the assertions that justify his choices or that 

constrain the solution. Each simplification rests on one or more propositions that are 

listed in the following table. 
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Table 7. Simplification Assertions 
Force Representation Assumptions, Constraints, Considerations, 

Competencies 
Non-Contact Forces 

Gravitational 

Electromagnetic 

Strong nuclear 

Weak nuclear 

Fg = ~m9 

^Lorentz ~ ^ 

''strong " 

''weak ~ " 

g l : gravity is provided by the earth 
g2: the mass of the body is much less than 
the mass of the earth. 
g3: the distance over which Fg is acting is 
much less than the radius of the earth. 
g4: the dimensions of the body are much 
less than the radius of the earth 

g5: g « G mearth
2 and is represented by the 

rearth 

value 9.8 m/s2 

g6: the distribution of the earth's mass is 
uniform 
g7: the distribution of the body's mass is 
uniform 

Lorentzl: there are no electromagnetic 
forces 
.'. Lorentz2: there are no magnetic forces 
.". Lorentz3: there are no electrostatic 
forces 

strongl: distances involved are > 10"15 m 

weakl: distances involved are > 10"18 m 

Solid-Contact Forces 
Thrust 

Reaction 

Sliding Friction 

^thrust — 0 

*friction_s " 

thrustl: there is no change in mass of the 
object 

r l : (logic) 
contact forces require contact between 

> 2 objects 
there is only 1 object 

.•. no contact between objects 

.". there are no contact forces, 
alternatively 
.'. all contact forces are 0 

friction_sl: sliding friction is a contact 
force 
friction_sl A r l => force is 0 
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Force 

Rolling Friction 

Spring 

Damping 

Representation 

^frictions ~ " 

F = 0 
1 spring u 

F J = 0 
1 damper u 

Assumptions, Constraints, Considerations, 
Competencies 
friction_rl: rolling friction is a contact 
force 
friction_rl A r l :=> force is 0 

springl: spring force is a contact force 
springl A r l => force is 0 

damperl: damping force is a contact force 
damperl A r l => force is 0 

Fluid-Contact Forces 

Buoyancy 

Aerodynamic 

Lift 

Lift-Induced 
Drag 

Wave Drag 

4 
Fbuoy = ™-f9 mf=-nv 

1 aero 

= f i i / t + Flift_drag 

riift_sphere ~ " 

Flift_drag = 0 

F = 0 
1 wave " 

buoyl: the model requires the object be a 
sphere 
buoy2: the model requires uniform fluid 
density 
buoy3: gl..g7 apply 

aerol: the object is not an airfoil 
aero2: (analyst decision) the object does 
not spin 
.-.©=o. 
aero3: wind does not affect the body 

lift_spherel: (algebraic substitution of 

co=0) into expression -(n2b3a)pv) =>no 

lift 
HOWEVER: if the sphere is allowed to spin: 
Iift_sphere2: the model ignores viscosity. 
Iift_sphere3: the model requires that the 
axis of spin be perpendicular to the 
velocity. 
Iift_sphere4: the model requires that the 
object be a sphere. 
Iift_sphere5: the model requires that the 
object be smooth. 

Iift_dragl: with no lift, there is no lift-
induced drag 

wavel: the velocities involved are < .8 
machl 
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Force 

Inertial Drag 

Viscous Drag 

Representation 

1 dv 
Finertial= " ^ " V r f F 

F • 
1 VISCOUS 

( —6nr]rvv Re < ' 

[--pv2ACdv 1<R 

Assumptions, Constraints, Considerations, 
Competencies 
inertiall: the model requires the object be 
a sphere 
inertial2: the model requires uniform fluid 
density 

viscousl: the model requires the object be 
a sphere 
viscous2: no heat transfer occurs 
viscous3: viscosity is independent of 
temperature 
viscous4: the specific heat of the fluid is 
independent of temperature 
viscous5: the use of the Cd form of the 
equation is valid 
viscous6: the atmospheric conditions for 
the problem are reasonably close to those 
for which the data used in calculating Cd 
were collected 

Fictitious Forces (d'Alembert Forces) 

Rectilinear 

Centrifugal 

Coriolis 

Euler 

^rect ~ Tn&rect 

^centrifugal ~ " 

''Coriolis ~ " 

^Euler = 0 

recti: there are no rectilinear forces 

centrifugall: there are no centrifugal 
forces 

Coriolisl: there are no Coriolis forces 

Eulerl: there are no Euler forces 

Note that the listed assertions do not constitute a complete list. To illustrate, the topic 

of calculating aerodynamic forces is exceedingly complex. Only a few, high level, 

exemplary assertions have been made. Consider the assertions aerol-aero3. The 

combination of denying that the object is an airfoil, requiring that it does not spin and 

denying any wind affects should be sufficient to raise assertion conflicts in situations that 

most users would consider important. The result of applying the assertions listed in 

Table 7 to equation (1) is shown in equation (la). Removing the terms set to zero yields 
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equation (2). The astute reader will recognize this as being the form of the problem as 

stated by Chow and used by Spiegel et al that was presented in Figure 6. 

JjF = netf orce 

" g i ^Lorentz ' ''strong "•" "weak ' **contact "•" ^thrust 

<~ "frictions "•" **friction r ' "spring "•" "damper ' "buoy "•" "inertial 

' "viscous "•" ''wave • **lift_sphere "•" "lift_drag 

•" "rect ' ''centrifugal > **Coriolis "*" "Euler 

7 " "g ' "buoy "•" "inertial ' ''viscous 

(la) 

1 di; 1 , 
-m^ + m f̂lf - - m r — - - p v M Q v 

(2) 

There is a distinction between (2) and Chow's problem solution shown in Figure 6. 

The applicability of the equation to the falling body problem rests on Initial Assertions 

I A 1 through IA_5, and propositions N2_l to N2_7. The model domain viewpoint is 

captured by the assertions gl-7, Lorentzl, strongl, weakl, frictionsl, frictionrl, 

spring 1, damper 1, buoy 1-3, inertial 1 to 2, viscous 1-6, aero 1-3, lift_spherel, liftdrag 1, 

wavel, recti, centrifugall, Coriolis 1, and Euler 1. Finally, the solution requires 

competencies C_ALGEBRA, C_CALCULUS, and C_VECTORMATH. 

Note that slight variations on the problem can affect the model domain viewpoint. To 

illustrate, consider the propositions for lift on a sphere. Aerol is the analyst's choice to 

simplify the problem by denying spin on the body. The proposition liftspherel is the 

conclusion that the force F'njisphere can be ignored because there is no spin (aero2). 

However, what if circumstance causes the analyst to change his mind and use spin 

(perhaps as part of re-using the falling body model)? In this case, the assertions 

lift_sphere2 to 5 apply to the previously removed term for lifting force on a sphere 

lifi_sphere-
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6. THE DEMONSTRATION 

As stated earlier, the potential for conflict between model components arises when 

choices made by the modeler introduces inconsistencies between components. The 

objective of this section is to demonstrate conflict detection using an automated process. 

Before that can occur, issues relating to ontology organization and comparison software 

must be reviewed. 

6.1 Ontology Organization 

One of the characteristics of the hybrid ontology architecture recommended by 

Wache [29] is the need to provide a common reference language for the concepts. This is 

accomplished by layering ontologies as shown in Figure 8. The force ontology imports 

the ontology of assertion and system concepts. The solution to the Falling Body Problem 

on Earth is a separate ontology that imports the concepts of the force ontology and makes 

the top level assertion that gravity is provided by the Earth. An alternative solution, 

perhaps for a problem formulated to take place on the Moon would import the same force 

concepts and assert that gravity is provided by the Moon instead. This has the effect of 

eliminating the need to resolve ambiguity. 

gravity provided by ea 

EarthFallingBody 

asse rtion 

> 
as 

gravity is a fore 
body cor 

rth gravity provided by moon 

^> C= 
:e process with a set of assertion, 
nponent that has its own set of a o 

MoonFallingBody 

; that acts on a 
ssertions 

FORCE INVENTORY 

set: collection of assertions P r o c e s s a c t s o n components 

sertion: useFn referent Proposition scope system: components and proc 

ASSERTION AND SYSTEM CONCEPTS 

esses 

Figure 8. Ontology Layering to Achieve Common Reference 
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6.2 Ontology Comparison Software Application 

For various reasons a custom software application needed to be developed. The most 

significant reason relates to the current state of the art in ontology engineering and 

automated reasoning. As previously discussed, a Description Logics reasoner is a 

software implementation of an inference engine whose purpose is to reason with a 

knowledge base expressed in OWL-DL. DL reasoners cannot operate with OWL-Full 

ontologies because logic expressed in OWL-Full cannot be guaranteed to be decidable. 

For example, in OWL-Full a class can be treated simultaneously as a collection of 

individuals and as an individual in its own right; this is not permitted in OWL DL. The 

significance to this research is that the query to decide if two assertions are compatible 

necessarily treats the assertions being compared as both individuals and classes. An 

attempt to include such a query in an ontology would cause the ontology to be classified 

as OWL-Full, rendering it incompatible with either of the available DL reasoners. The 

solution was to develop the software described in the following subsection. 

6.2.1 Comparison Software 

Development was greatly facilitated by use of OWL API [65]—a Java interface and 

implementation for OWL languages. The OWL API provides support for parsing 

ontologies, queries, integration with reasoners such as Pellet and FaCT++, and writing 

OWL files. 

Figure 9 is a flowchart of the software developed to perform the comparison. 

Generally speaking, it reads in an OWL ontology and checks it for consistency using the 

Pellet reasoner. If the ontology is consistent, the software builds a list of assertions found 

in the file. To do this, it scans for assertions defined using the author's formalism— 

therefore, any ontology being compared must include the assertion and system concepts 

ontology in its imports closure. Once the list is built, every assertion is compared against 

the others in the list for conflicts previously listed in Table 1. If any conflicts are 

detected, the program ends with a diagnostic error message. If a second ontology has 

been named for comparison, the program performs the same checks and list-building 

activities. Finally, every assertion in the first ontology is compared to each one in the 

second to test for conflicts. As above, conflicts result in an error message; otherwise the 

program notifies the user of success. 



read 
ontology file 

check ontology 
consistency 

compile list of unique 
assertions #1 

loop over assertions in 
list #1 

check assertion 
against every 

other assertion in 
list #1 

check ontology 
consistency 

extract any 
assertion sets 

compile list of unique 
assertions #2 

loop over assertions in 
list #2 

check assertion 
against every 

other assertion in 
list #2 

Figure 9. Comparison Software Flowchart 

loop over assertions in 
list #2 

check assertion 
against every 

assertion in list#1 
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6.2.2 Test Cases 

To ensure that the software is performing correctly, a series of simple test cases was 

constructed. Several straightforward ontologies were prepared that implemented one of 

the propositions shown in Table 8. In a structure similar to that discussed in section 6.1, 

a middle ontology was coded to provide assertions regarding color. This ontology is 

shown in Figure 10. Note that to encode the proposition that something is not colored 

blue, it is necessary to say that it is a color other than blue. One might be tempted 

simply to assert the property hasColor blue is false, but this is not an option as this 

almost always will produce an inconsistent ontology. This highlights one of the 

shortcomings in the use of the description logics reasoner namely, the open world 

assumption. Under this assumption, if a statement cannot be proved to be true using 

current knowledge, one cannot draw the conclusion the statement is false. Thus, negating 

the property hasColor blue is equivalent to stating something belongs to the class of 

everything that does not have the color blue—even things with no color at all. 
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Table 8. Proposition Details Used in Validation Tests 
Proposition 

p_colored_red 
p_colored_blue 
p_colored_not_red 

p_colored_not_blue 

Class membership 

colored red class 
colored blue class 
not_colored_red class 

not_colored_blue class 

Class Properties 

hasColor red 
hasColor blue 
hasColor some (orange yellow green 
blue violet black white) 
hasColor some (red orange yellow 
green violet black white) 

£ Color Prc:ege 3 4 re! ff .ei'.C.'.L'sersirking'.Ontolcgle^Oisse-tao'on'.Color.pprj OWL ,' RDF Files: 

Fa; git Prcjsct 0V/_ Reasoning Cose Iccls Miiis.v Cohtcratfcn Kelp 

Q & H < 1 S ' fesd • • ' 23 J3 L£| <> 

I * 

colored_red (!) 

not_colored_blu 

not_colored_reo 

^ Prturs Referent 

A ertirrc Scope ( 

Assertions: UseFunc 

? Assertions: SystesnCano 

"Color ':;) 

,, y,:; rh Entity 

protigi 

ffltpS 

^ blue 

Figure 10. Color Ontology with Proposition p_colored_blue 

presents the results of the validation tests conducted on the comparison 

software. The ontologies involved formed a hierarchical layering of definitions similar to 

that depicted in Figure 8 above. An ontology file, Color.OWL, provided the common 

reference language for color. Eight colors were enumerated as individuals, (black, blue, 

green, orange, red, violet, white and yellow). As can be seen, each test produced a 

successful result. The test exercised each of the potential conflicts listed in Table 1 and 

therefore verified the program functioned properly. 
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6.3 Encoding the Assertions (Step 2) 

The next step in the example is to encode the assertions in a knowledge engineering 

tool. Because of the complexity of the overall model, the demonstration will focus on 

assertions relating to the use of gravity. The following figures illustrate how the 

assertions that support use of the term -mg for gravitational force are encoded in the 

Protege knowledge engineering tool—expressing gravitational force as weight on the 

surface of the Earth, WeightOnEarthForce. As shown in Figure 11, weight on the Earth 

means the force acts on some component, namely A_Physical_Object. The statement 

that it acts on only components is a closure axiom and is necessary because forces cannot 

act on anything but physical objects. Also, all forces are represented as processes and a 

process is a kind of system element. Therefore, the property hasAssertionSet can be 

applied to any force, and the assertion set is of the type SystemEIementAssertionSet. 

? Edrt Crtc'cs^s Rtascsr ~crfc Rg-scUr Tabs Vie' 

•O - «3> FQ'CMLV.1 * . . .- . • < . , . 
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Figure 11. Weight on Earth Force Encoded in Protege 
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Figure 12 shows the SystemElementAssertionSet that is assigned to the force, 

WeightOnEarthForce. As can be seen, it makes six assertions that correspond to gl 

through g6 described in the previous section. 
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6.4 Detecting Conflicts (Step 3) 

The final demonstration was almost anti climactic. The ontology for the falling body 

problem was compared with ontologies for variations on the problem such as 

FallingMoonBody (the source of gravity was not the earth), and MoonOrbit (the size of 

the body was not much less than the earth's radius). The ontologies may be found on the 

compact disk that accompanies this dissertation. 

6.5 Resolving Conflicts (Step 4) 

As previously stated, primary focus of this research is on demonstrating that conflicts 

can be detected. For this reason, little will be said concerning the resolution of each 

conflict. The diagnostic information available will include the system components or 

processes involved, the proposition that is in conflict, and, of course, the reason why the 

assertions fail to match. 
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The objective of this research is to contribute a partial solution to one of the problems 

of model composability and simulation interoperability. It does so by demonstrating the 

importance of the assertions that are made during model development and simulation 

implementation, particularly as they reflect the unique viewpoint of each developer. It 

hypothesized it would be possible to detect conflicts by means of the four-step process 

for capturing and comparing assertions. It demonstrated the process using a well 

understood example problem—the Falling Body Problem—developing an inventory of 

forces and cataloging the significant assertions that might be made about each force in the 

context of the problem. Finally, it developed a software application that employs the 

assertion formalism and the comparison strategy to compare ontologies. The software 

was validated using straightforward test cases. The software successfully detected 

potential conflicts between ontologies that were otherwise determined to be ontologically 

consistent, thus proving the hypothesis. 

7.1 Contributions Made by This Research 

This research has demonstrated the importance of assertions in composing and 

integrating model components. It has provided an analysis of the roles that assertions 

play that has been previously lacking in the Modeling and Simulation literature. In this 

respect, it provides an additional insight into interoperability that is not captured by 

current literature in Conceptual Modeling. Whilst some current writers advise it is 

important to capture assumptions19, virtually nothing is said about what to do with them. 

This research has provided a new formal model of assertion suitable for capturing 

the assertions made about a system and its components. The general topic of assertions 

was examined in detail, including a taxonomy of assertion characteristics, thereby 

providing a definitional basis for follow-on research. 

19 Not to mention the more general class of assertions. 
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Solving the problem of reaching LCIM Level 6 has been the research goal from the 

start. The analysis of why models and simulations fail to reach the highest level of 

interoperability yielded a new concept: Barriers to Functional Composition explain why 

some conflicts emerge only during implementation. The proposed solution to the barrier 

problem, Conceptual Linkage, focuses attention on the need to consider model attributes 

that have not been generally accounted for. Exploring requirements for aligning model 

domain viewpoint brings new understanding to the role that viewpoint plays in 

interoperability. Each of these research contributions extends the applicability of the 

LCIM, giving it increased ability to explain interoperability issues. 

Additionally, the research developed and demonstrated a process for capturing and 

comparing assertions that makes use of the formal model of assertion. The comparison 

strategy provides a new framework for comparing systems. Ultimately, the research 

contributes a key element for the handling of assertions by autonomous agents. 

As part of addressing the Falling Body Problem, the research contributes a new, 

Physics-based analysis that extends work of Spiegel et al, and is a step towards the 

ontology advocated by Collins and Clark. The Force Inventory extends the work by 

Hestenes et al in that it establishes an inventory of forces with ties to the assertions that 

support its use. 

Also, the research establishes a new class of metadata for describing models. It has 

shown that consistency extends beyond comparing inputs and outputs or even methods. 

7.2 Relationship to Other Research 

The research contributes to the composability and interoperability framework 

envisioned in [23]. The research can be viewed in the context of the three engineering 

methods of data engineering, process engineering, and constraints engineering described 

in that chapter. This research provides the foundation for the third pillar, constraint 

engineering, by better defining the context of Level 6—Conceptual Interoperability—of 

the LCIM. In this respect it provides a framework for ongoing work by the author's 

colleagues at the Virginia Modeling Analysis and Simulation Center, and also benefits 

from their work as well. 

The research addresses issues regarding composability and interoperability. Page et al 

[66] state models should be considered composable if they share compatible objectives 
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and assumptions. They offer no suggestions as how to accomplish this, except to suggest 

that research in quantifying and reasoning about the "compatibility" of objectives and 

assumptions is needed20. This research has made progress towards that goal. Note also 

they emphasize a separation between composability and interoperability. However, this 

research demonstrates the opposite effect—that problems for both non-composability 

and non-interoperation can be traced in part to a common cause, namely, conflicts in 

assertions. 

7.3 Caveats and Future Research Suggestions 

It is not uncommon that the solution to an engineering problem depends on the 

structure of the solution approach, and this research is no exception. The use of 

ontology-based reasoning depends on how the knowledge has been structured. In the 

case of this research, the falling body problem solution depends on the structure and 

completeness of the force inventory created by the author. The representation of 

assertions in the force ontology depends, in turn, on the definitions and axioms in the 

ontology of assertion and system concepts. The practical effect is the creation of a 

common reference ontology, similar to the hybrid ontology approach suggested by 

Wache et al [29]. Note that the author's ontologies have not been independently vetted by 

experts in the appropriate domains. Thus, although they may be substantially complete 

and accurately represent their domains, validation is deferred to follow-on research. 

Therefore, it is appropriate to add a caveat that the solution to the example problem 

depends on the author's ontologies. 

Another caveat needs to be made regarding reusability of the software application for 

comparing assertion sets. Use of the software requires propositions be encoded in OWL-

DL, the author's ASSERTIONS.OWL ontology be imported, and the assertions in the 

assertion sets be assigned to system components or processes, problem statements, or 

solutions using the author's formalism. 

The author's decision to use only exact matching for proposition concept comparison 

is a two edged sword. On the one hand, this guarantees a Boolean answer to the question. 

On the other hand, it does not address the question, "what if the concepts are close?" 

See discussion in section 2.1 
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Certainly, this is an extremely interesting question, but addressing it would have drawn 

the research focus away from answering the more basic question it has addressed. 

Therefore, it is appropriate to add a caveat that the method has been shown to work only 

for the case of exact comparison of propositions. 

The comparison strategy presented in section 4.4.1 remains valid under subsumption 

because subsumption ultimately rests on finding a subsuming proposition that is 

equivalent to the one under consideration. The strategy will likely remain valid for 

overlap, largely because the response to potential conflicts is to raise an alert—essentially 

passing questionable match decisions to a human for adjudication. However, these have 

not been demonstrated. Therefore, it is appropriate to add a caveat that although it is 

suggested the method works for subsumption and overlap, this has not been 

demonstrated. 

Another issue is the question, "what if the referent is a part of a complex system, or if 

there are multiple referents? Where are the practical limits imposed when addressing 

real-world systems?" The criticism is valid, and it certainly marks an avenue for follow-

on research. However, the research needs to establish the method is valid for a simple 

system first before delving into complexity issues. Any statement regarding complexity 

would be speculation at this point. Therefore, it is appropriate to add a caveat that the 

method has been shown to work only for simple problems at this time. 

7.4 Summary 

To summarize, this research is the first of its kind that contributes to achieving Level 

6 of the LCIM in machine understandable form. The assertion formalism developed is a 

first step to make assumptions, content, and other elements identified by Robinson [5] 

accessible to machine implementations, such as web services or software agents. The 

process for comparing assertion sets captures aspects that cannot be derived from the 

implementation or from data specification. Without this contribution, services may be 

composed that are conceptually not aligned. This work is the initial step to avoid this. 

In conclusion, perhaps the most worthy contribution of this research is the path it has 

lighted for others to tread. 
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APPENDIX A. FILES ON THE ACCOMPANYING DISK 

A compact disk will accompany the completed dissertion with the following files: 

Name 

Assertions.owl 

blueObject.owl 

blueObjectDenied.owl 

blueObjectRequired.owl 

Color.owl 

FallingBodyProblem.owl 

FBPMerge.owl 

FBPMoonMer ge. o wl 

Forces.owl 

NotBlueObject.owl 

RedObject.owl 

AssertionTest.java 

Description 

The ontology of assertions and systems concepts. 

Test ontology of a blue object 

Test ontology of an object that is denied to be blue 

Test ontology of an object that is required to be blue 

Ontology of common color definitions 

The ontology of the falling body problem 

The merged falling body problem with Earth gravity 

asserted 

The merged falling body problem with Moon gravity 

asserted 

The ontology of force concepts 

Test ontology of an object that is not blue 

Test ontology of a red object 

Java source code of the ontology comparison program 
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