40 research outputs found

    Discovery in Physics

    Get PDF
    Volume 2 covers knowledge discovery in particle and astroparticle physics. Instruments gather petabytes of data and machine learning is used to process the vast amounts of data and to detect relevant examples efficiently. The physical knowledge is encoded in simulations used to train the machine learning models. The interpretation of the learned models serves to expand the physical knowledge resulting in a cycle of theory enhancement

    Machine learning for acquiring knowledge in astro-particle physics

    Get PDF
    This thesis explores the fundamental aspects of machine learning, which are involved with acquiring knowledge in the research field of astro-particle physics. This research field substantially relies on machine learning methods, which reconstruct the properties of astro-particles from the raw data that specialized telescopes record. These methods are typically trained from resource-intensive simulations, which reflect the existing knowledge about the particles—knowledge that physicists strive to expand. We study three fundamental machine learning tasks, which emerge from this goal. First, we address ordinal quantification, the task of estimating the prevalences of ordered classes in sets of unlabeled data. This task emerges from the need for testing the agreement of astro-physical theories with the class prevalences that a telescope observes. To this end, we unify existing methods on quantification, propose an alternative optimization process, and develop regularization techniques to address ordinality in quantification problems, both in and outside of astro-particle physics. These advancements provide more accurate reconstructions of the energy spectra of cosmic gamma ray sources and, hence, support physicists in drawing conclusions from their telescope data. Second, we address learning under class-conditional label noise. More particularly, we focus on a novel setting, in which one of the class-wise noise rates is known and one is not. This setting emerges from a data acquisition protocol, through which astro-particle telescopes simultaneously observe a region of interest and several background regions. We enable learning under this type of label noise with algorithms for consistent, noise-aware decision thresholding. These algorithms yield binary classifiers, which outperform the existing state-of-the-art in gamma hadron classification with the FACT telescope. Moreover, unlike the state-of-the-art, our classifiers are entirely trained from the real telescope data and thus do not require any resource-intensive simulation. Third, we address active class selection, the task of actively finding those proportions of classes which optimize the classification performance. In astro-particle physics, this task emerges from the simulation, which produces training data in any desired class proportions. We clarify the implications of this setting from two theoretical perspectives, one of which provides us with bounds of the resulting classification performance. We employ these bounds in a certificate of model robustness, which declares a set of class proportions for which the model is accurate with a high probability. We also employ these bounds in an active strategy for class-conditional data acquisition. Our strategy uniquely considers existing uncertainties about those class proportions that have to be handled during the deployment of the classifier, while being theoretically well-justified

    High-Energy Gamma-Ray Astronomy

    Get PDF
    This volume celebrates the 30th anniversary of the first very-high energy (VHE) gamma-ray Source detection: the Crab Nebula, observed by the pioneering ground-based Cherenkov telescope Whipple, at teraelectronvolts (TeV) energies, in 1989. As we entered a new era in TeV astronomy, with the imminent start of operations of the Cherenkov Telescope Array (CTA) and new facilities such as LHAASO and the proposed Southern Wide-Field Gamma-ray Observatory (SWGO), we conceived of this volume as a broad reflection on how far we have evolved in the astrophysics topics that dominated the field of TeV astronomy for much of recent history.In the past two decades, H.E.S.S., MAGIC and VERITAS pushed the field of TeV astronomy, consolidating the field of TeV astrophysics, from few to hundreds of TeV emitters. Today, this is a mature field, covering almost every topic of modern astrophysics. TeV astrophysics is also at the center of the multi-messenger astrophysics revolution, as the extreme photon energies involved provide an effective probe in cosmic-ray acceleration, propagation and interaction, in dark matter and exotic physics searches. The improvement that CTA will carry forward and the fact that CTA will operate as the first open observatory in the field, mean that gamma-ray astronomy is about to enter a new precision and productive era.This book aims to serve as an introduction to the field and its state of the art, presenting a series of authoritative reviews on a broad range of topics in which TeV astronomy provided essential contributions, and where some of the most relevant questions for future research lie

    The Energetic Gamma-Ray Experiment Telescope (EGRET) Science Symposium

    Get PDF
    The principle purpose of this symposium is to provide the EGRET (Energetic Gamma-Ray Experiment Telescope) scientists with an opportunity to study and improve their understanding of high energy gamma ray astronomy. The Symposium began with the galactic diffusion radiation both because of its importance in studying galactic cosmic rays, galactic structure, and dynamic balance, and because an understanding of its characteristics is important in the study of galactic sources. The galactic objects to be reviewed included pulsars, bursts, solar flares, and other galactic sources of several types. The symposium papers then proceeded outward from the Milky Way to normal galaxies, active galaxies, and the extragalactic diffuse radiation

    Spectral Energy Distribution Modeling of Markarian 501 through a non-linear least square minimization

    Get PDF
    So far the Spectral Energy Distribution (SED) of Active Galactic Nuclei (AGN), in particular blazars, have been obtained in a heuristics way. This is mainly due to both the many free parameters of the emission model and the severe lack of simultaneous multi-frequency data. This leads to non-rigorous and possibly biased analyses, and makes it difficult to compare results coming from different analyses. However, recent simultaneous multi-frequency campaigns are providing long-term broad-band coverages of source activity, and large multi-frequency data sets are becoming available. So emission model fitting may be attempted with better profit now. The main aim of this thesis is to develop a statistical approach that fits AGN SEDs in a rigorous way. Such an approach consists in a Chi squared -minimization, based on the Levenberg-Marquardt algorithm, that returns the most likely values of the SED parameters, plus a method devised to obtain the related uncertaintes. The whole minimization process is implemented in a C++ code. However, this approach may reveal unexpected features of the Chi squared-manifold that might affect convergence, due to spurious correlations between model parameters and/or inadequacy of the currently available datasets. For these reasons, a statistical analysis will be carried out on the solutions obtained from several minimizations, each starting from different points of the parameter space. This approach is applied to different activity states of the blazar Markarian 501, in a Synchrotron Self Compton (SSC) framework. In particular, starting from available observations of this source taken with the ground-based Major Atmospheric Gamma-ray Imaging Cherenkov telescopes (MAGIC) in 2011, 7 multi-frequency datasets were obtained. Based on multi-frequency and simultaneity requirements, all datasets include also data provided by the Swift UVOT, Swift XRT, and Fermi LAT orbiting telescopes. The SED modelling of each dataset will be performed through a non-linear Chi squared-minimization in order to obtain the most likely values of the parameters describing the SSC model. Finally, it is worth remarking that this approach is not only a rigorous statistical method to find the most likely source parameters for different scenarios, but it also represents a powerful tool to efficiently discriminate between different emission models

    Development of a prototype detector for MeV gamma-ray detection on a CubeSat

    Get PDF
    Trotz der beeindruckenden Fortschritte, die die Röntgen- und Gammastrahlenobservatorien in den letzten Jahrzehnten erzielt haben, ist der Energiebereich zwischen 200 keV und 50 MeV nach wie vor kaum erforscht. Diese Lücke, die in der Literatur oft als ``MeV-Lücke'' bezeichnet wird, ist nicht auf einen Mangel an überzeugender Wissenschaft zurückzuführen, sondern auf technische Herausforderungen und Nachweisschwierigkeiten, die mit MeV-Beobachtungen einhergehen. COMPTEL an Bord von CGRO (1991-2000) war das letzte Teleskop, das eine vollständige Durchmusterung des MeV-Himmels mit einer relativ bescheidenen Empfindlichkeit durchführte. Für die Zukunft sind zahlreiche Missionen vorgeschlagen worden, insbesondere AMEGO, die die Leistung von COMPTEL um mindestens eine Größenordnung verbessern sollen. Der Zeitrahmen für die Entwicklung, den Aufbau und den Start solch großer Missionen beträgt jedoch etwa 10 Jahre und ist mit erheblichen Kosten verbunden. In diesem Szenario könnte ein viel kleinerer Satellit, der sich der neuen Welle von schnellen, relativ kostengünstigen Weltraumforschungsmissionen anschließt, die durch CubeSats ermöglicht werden, in kürzerer Zeit rentabel sein. In dieser Arbeit werden die Verfügbarkeit und die Leistung eines Compton-Teleskops auf der Grundlage des CubeSat-Standards, genannt MeVCube, untersucht. Die Auswirkungen der Materialwahl und verschiedener CubeSat-Nutzlasten wurden durch Simulationen bewertet. Trotz der begrenzten Größe kann selbst ein kleines Teleskop, das auf einem CubeSat fliegt, den Energiebereich von Hunderten von keV bis zu einigen MeV mit einer Empfindlichkeit abdecken, die mit der der letzten Generation von Großmissionen wie COMPTEL und INTEGRAL vergleichbar ist. Es wurden auch experimentelle Messungen an Cadmium-Zink-Tellurid-Halbleiterdetektoren und einer für den Weltraumbetrieb geeigneten Ausleseelektronik mit geringem Stromverbrauch durchgeführt.Despite the impressive progresses achieved both by X-ray and gamma-ray observatories in the last decades, the energy range between 200 keV and 50 MeV remains poorly explored. This gap in coverage, often referred in literature as the ``MeV gap'', is not due to lack of compelling science, but instead to technical challenges and detection difficulties that comes with MeV observations. COMPTEL, on-board CGRO (1991-2000), was the last telescope to accomplish a complete survey of the MeV-sky with a relatively modest sensitivity. Many missions have been proposed for the future, most notably AMEGO, aiming to improve COMPTEL's performance by at least one order of magnitude. However, the timescale for development, assembly and launch of such large missions is around 10 years, with substantial costs. Looking at this scenario, a much smaller satellite, joining the new wave of rapid, relatively inexpensive space science missions enabled by CubeSats, may be profitable on a shorter time-scale. This thesis evaluates the availability and performance of a Compton telescope based on the CubeSat standard, named MeVCube. The impact of material choice and different CubeSat payloads has been evaluated through simulations. Despite the limited size, even a small telescope flying on a CubeSat can cover the energy range from hundreds of keV up to few MeVs with a sensitivity comparable to that of the last generation of large-scale missions like COMPTEL and INTEGRAL. Experimental measurements on Cadmium-Zinc-Telluride semiconductor detectors and low-power read-out electronics suitable for space operation have been performed as well

    The TeV AGN Portfolio: extending Fermi LAT analysis into the CTA realm

    Get PDF
    The extragalactic γ-ray sky is completely dominated by active galax- ies, where by active we mean that a significant fraction of the emitted energy is not due to the standard components of a galaxy: stars, gases and interstellar dust. Every detected active galaxy seems to be powered by a compact region at their center; explaining why active galaxies are often referred as Active Galactic Nuclei (AGNs). About 1% of all galaxies are AGNs, believed to be fueled by the accretion onto a supermassive black hole, the central engine of the active galaxy. In addition, about 10% of AGNs display powerful jets of particles and radiation. The current model of AGNs is highly anisotropic and many of the observational characteristics of AGNs can be attributed to the way we are observing it and, in particular, to the orientation of the relativistic jets with respect to the observer. Among AGNs, blazars, which host a jet oriented at a small angle to the line of sight, are of particular interest for γ-ray astrophysics. The emission from these objects is dominated by relativistic beaming effects, which dramatically boosts the observed photon energies and luminosity, the reason why we expect that the observation of blazars at γ-ray energies should be the most fruitful. To confirm our guess, after the launch of the Fermi Gamma-ray Space Telescope, bearing on-board the Large Area Telescope (LAT), which provides virtually continuous observation of blazars between 20 MeV and 300 GeV, many new discoveries refined the current modeling of blazars, by providing useful insights into jets and other AGN features. On the other hand, at the same energies, other observations found puzzling results, bewildering astronomers and astrophysicists. In addition to the LAT, Imaging Atmospheric Cherenkov (IAC) telescopes (namely MAGIC, HESS and VERITAS) provided a good coverage at even higher energies (typically above 30 GeV) and the benefit of simultaneous observations was apparent just after the first broadband paper about PKS 2155−304 (Aharonian et al., 2009). More insights should be gained when the Cherenkov Telescope Array (CTA) will become operational, as it will cover an extended energy window with respect to operating IAC telescopes and will reduce the sensitivity threshold. In addition, CTA will have a huge energy overlap with the LAT, allowing for the first time a reliable way to correlate data obtained by the two detectors. In this Thesis, we present in-depth studies of LAT γ-ray observations of blazars, complemented by multifrequencies observations which are an essential tool to model their behavior. On one hand, we will discuss the characterization of a TeV blazars sample that were simultaneously observed both by Fermi and MAGIC instruments. The joint observations and the ideal coverage provided by the synergy of the two instruments naturally motivates the extrapolation of Fermi spectra to MAGIC energies, with the aim, in the near future, to extend this effort to CTA realm. On the other hand, we will discuss a flux-limited sample of bright blazars detected by Fermi in the first 3.5 years of operations. These objects, displaying extreme outbursts, make up less than 10% of the sources detected by Fermi in its second source catalog. We discuss the characteristics of the sample with respect to the entire catalog of AGNs detected by Fermi and adding some considerations with respect to previous γ-ray observation carried out by EGRET. At the end of this work, we will then focus on one of these objects, that met particular attention for being a gravitationally lensed system, PKS 1830−211

    Introduction to Particle and Astroparticle Physics : Multimessenger Astronomy and its Particle Physics Foundations -2/E

    Get PDF
    This book introduces particle physics, astrophysics and cosmology starting from experiment. It provides a unified view of these fields, which is needed to answer our questions to the Universe–a unified view that has been lost somehow in recent years due to increasing specialization. This is the second edition of a book we published only three years ago, a book which had a success beyond our expectations. We felt that the recent progress on gravitational waves, gamma ray and neutrino astrophysics deserved a new edition including all these new developments: multimessenger astronomy is now a reality. In addition, the properties of the Higgs particle are much better known now than three years ago. Thanks to this second edition we had the opportunity to fix some bugs, to extend the material related to exercises, and to change in a more logical form the order of some items. Last but not least, our editor encouraged us a lot to write a second edition. Particle physics has recently seen the incredible success of the so-called standard model. A 50-year long search for the missing ingredient of the model, the Higgs particle, has been concluded successfully, and some scientists claim that we are close to the limit of the physics humans may know
    corecore