17,178 research outputs found

    Towards a tool-supported approach for collaborative process modeling and enactment

    Get PDF
    International audienceIn software engineering, as in any collective endeavor, understanding and supporting collaboration is a major concern. Unfortunately, the main concepts of popular process formalisms are not always adequate to describe collaboration. We extend the Software & System Process Engineering Meta-Model (SPEM) by introducing concepts needed to represent precise and dynamic collaboration setups that practitioners create to address ever-changing challenges. Our goal is to give practitioners the ability to express evolving understanding about collaboration in a formalism suited for easy representation and tool-provided assistance. Our work is based on a collaborative process metamodel we have developed. In this paper, we first present a meta-process for process modeling and enactment, which we apply to our collaborative process metamodel. Then we describe the implementation of a suitable process model editor, and a project plan generator from process models

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    Virtue integrated platform : holistic support for distributed ship hydrodynamic design

    Get PDF
    Ship hydrodynamic design today is often still done in a sequential approach. Tools used for the different aspects of CFD (Computational Fluid Dynamics) simulation (e.g. wave resistance, cavitation, seakeeping, and manoeuvring), and even for the different levels of detail within a single aspect, are often poorly integrated. VIRTUE (the VIRtual Tank Utility in Europe) project has the objective to develop a platform that will enable various distributed CFD and design applications to be integrated so that they may operate in a unified and holistic manner. This paper presents an overview of the VIRTUE Integrated Platform (VIP), e.g. research background, objectives, current work, user requirements, system architecture, its implementation, evaluation, and current development and future work

    Towards Flexibility on IMS Learning Design Scripts

    Get PDF
    Proocedings of: 41st Annual Frontiers in Education Conference: Celebrating 41 Years of Monumental Innovations from Around the World (FIE 2011). Rapy City, South Dakota, October 12–15, 2011.IMS Learning Design is considered by many authors the "de facto" standard in educational modeling languages. The versatility of the framework enables its use in very different situations. However, such versatile framework is usually hidden by its complex management. One handicap identified in practical experiences is the lack of flexibility of scripted courses during the enactment phase. The activity sequence and learning resources are rigidly defined during authoring. This fact makes difficult to react to unexpected events that may happen in live courses. Also, this rigidness does not allow instructors to give "their personal touch" to courses. This paper presents the improvements made on GRAIL - an IMS LD compliant player-aimed at the support of a flexible enactment phase. Two types of modifications are considered: the modification of the learning flow and the management of course content with a wiki engine. Finally, this paper discusses how the integration of third party services in the activity sequence relaxes the rigidness of scripted learning flows. Experiences deployed in real scenarios allowed analyzing how such integration offered flexibility in practical situations.Work partially funded by the project “eMadrid: Investigación y desarrollo de tecnologías para el elearning en la Comunidad de Madrid” (S2009/TIC-1650) and the Spanish project “Learn3: Towards Learning of the Third Kind” (TIN2008-05163/TSI).Publicad

    A situational approach for the definition and tailoring of a data-driven software evolution method

    Get PDF
    Successful software evolution heavily depends on the selection of the right features to be included in the next release. Such selection is difficult, and companies often report bad experiences about user acceptance. To overcome this challenge, there is an increasing number of approaches that propose intensive use of data to drive evolution. This trend has motivated the SUPERSEDE method, which proposes the collection and analysis of user feedback and monitoring data as the baseline to elicit and prioritize requirements, which are then used to plan the next release. However, every company may be interested in tailoring this method depending on factors like project size, scope, etc. In order to provide a systematic approach, we propose the use of Situational Method Engineering to describe SUPERSEDE and guide its tailoring to a particular context.Peer ReviewedPostprint (author's final draft

    Environments to support collaborative software engineering

    Get PDF
    With increasing globalisation of software production, widespread use of software components, and the need to maintain software systems over long periods of time, there has been a recognition that better support for collaborative working is needed by software engineers. In this paper, two approaches to developing improved system support for collaborative software engineering are described: GENESIS and OPHELIA. As both projects are moving towards industrial trials and eventual publicreleases of their systems, this exercise of comparing and contrasting our approaches has provided the basis for future collaboration between our projects particularly in carrying out comparative studies of our approaches in practical use
    • 

    corecore