9 research outputs found

    Quantum communication complexity of symmetric predicates

    Get PDF
    We completely (that is, up to a logarithmic factor) characterize the bounded-error quantum communication complexity of every predicate f(x,y)f(x,y) depending only on ∣x∩y∣|x\cap y| (x,y⊆[n]x,y\subseteq [n]). Namely, for a predicate DD on {0,1,...,n}\{0,1,...,n\} let \ell_0(D)\df \max\{\ell : 1\leq\ell\leq n/2\land D(\ell)\not\equiv D(\ell-1)\} and \ell_1(D)\df \max\{n-\ell : n/2\leq\ell < n\land D(\ell)\not\equiv D(\ell+1)\}. Then the bounded-error quantum communication complexity of fD(x,y)=D(∣x∩y∣)f_D(x,y) = D(|x\cap y|) is equal (again, up to a logarithmic factor) to nℓ0(D)+ℓ1(D)\sqrt{n\ell_0(D)}+\ell_1(D). In particular, the complexity of the set disjointness predicate is Ω(n)\Omega(\sqrt n). This result holds both in the model with prior entanglement and without it.Comment: 20 page

    On the Round Complexity of Randomized Byzantine Agreement

    Get PDF
    We prove lower bounds on the round complexity of randomized Byzantine agreement (BA) protocols, bounding the halting probability of such protocols after one and two rounds. In particular, we prove that: 1) BA protocols resilient against n/3 [resp., n/4] corruptions terminate (under attack) at the end of the first round with probability at most o(1) [resp., 1/2+ o(1)]. 2) BA protocols resilient against n/4 corruptions terminate at the end of the second round with probability at most 1-Theta(1). 3) For a large class of protocols (including all BA protocols used in practice) and under a plausible combinatorial conjecture, BA protocols resilient against n/3 [resp., n/4] corruptions terminate at the end of the second round with probability at most o(1) [resp., 1/2 + o(1)]. The above bounds hold even when the parties use a trusted setup phase, e.g., a public-key infrastructure (PKI). The third bound essentially matches the recent protocol of Micali (ITCS\u2717) that tolerates up to n/3 corruptions and terminates at the end of the third round with constant probability

    Distributed computing with imperfect randomness

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 41-43).Randomness is a critical resource in many computational scenarios, enabling solutions where deterministic ones are elusive or even provably impossible. However, the randomized solutions to these tasks assume access to a pure source of unbiased, independent coins. Physical sources of randomness, on the other hand, are rarely unbiased and independent although they do seem to exhibit somewhat imperfect randomness. This gap in modeling questions the relevance of current randomized solutions to computational tasks. Indeed, there has been substantial investigation of this issue in complexity theory in the context of the applications to efficient algorithms and cryptography. This work seeks to determine whether imperfect randomness, modeled appropriately, is "good enough" for distributed algorithms. Namely, can we do with imperfect randomness all that we can do with perfect randomness, and with comparable efficiency ? We answer this question in the affirmative, for the problem of Byzantine agreement. We construct protocols for Byzantine agreement in a variety of scenarios (synchronous or asynchronous networks, with or without private channels), in which the players have imperfect randomness. Our solutions are essentially as efficient as the best known randomized Byzantine agreement protocols, which traditionally assume that all the players have access to perfect randomness.by Vinod Vaikuntanathan.S.M

    How to Extract Useful Randomness from Unreliable Sources

    Get PDF
    For more than 30 years, cryptographers have been looking for public sources of uniform randomness in order to use them as a set-up to run appealing cryptographic protocols without relying on trusted third parties. Unfortunately, nowadays it is fair to assess that assuming the existence of physical phenomena producing public uniform randomness is far from reality. It is known that uniform randomness cannot be extracted from a single weak source. A well-studied way to overcome this is to consider several independent weak sources. However, this means we must trust the various sampling processes of weak randomness from physical processes. Motivated by the above state of affairs, this work considers a set-up where players can access multiple potential sources of weak randomness, several of which may be jointly corrupted by a computationally unbounded adversary. We introduce SHELA (Somewhere Honest Entropic Look Ahead) sources to model this situation. We show that there is no hope of extracting uniform randomness from a SHELA source. Instead, we focus on the task of Somewhere-Extraction (i.e., outputting several candidate strings, some of which are uniformly distributed -- yet we do not know which). We give explicit constructions of Somewhere-Extractors for SHELA sources with good parameters. Then, we present applications of the above somewhere-extractor where the public uniform randomness can be replaced by the output of such extraction from corruptible sources, greatly outperforming trivial solutions. The output of somewhere-extraction is also useful in other settings, such as a suitable source of random coins for many randomized algorithms. In another front, we comprehensively study the problem of Somewhere-Extraction from a weak source, resulting in a series of bounds. Our bounds highlight the fact that, in most regimes of parameters (including those relevant for applications), SHELA sources significantly outperform weak sources of comparable parameters both when it comes to the process of Somewhere-Extraction, or in the task of amplification of success probability in randomized algorithms. Moreover, the low quality of somewhere-extraction from weak sources excludes its use in various efficient applications

    Optimally-secure Coin-tossing against a Byzantine Adversary

    Get PDF
    In their seminal work, Ben-Or and Linial (1985) introduced the full information model for collective coin-tossing protocols involving nn processors with unbounded computational power using a common broadcast channel for all their communications. The design and analysis of coin-tossing protocols in the full information model have close connections to diverse fields like extremal graph theory, randomness extraction, cryptographic protocol design, game theory, distributed protocols, and learning theory. Several works have focused on studying the asymptotically best attacks and optimal coin-tossing protocols in various adversarial settings. While one knows the characterization of the exact or asymptotically optimal protocols in some adversarial settings, for most adversarial settings, the optimal protocol characterization remains open. For the cases where the asymptotically optimal constructions are known, the exact constants or poly-logarithmic multiplicative factors involved are not entirely well-understood. In this work, we study nn-processor coin-tossing protocols where every processor broadcasts an arbitrary-length message once. Note that, in this setting, which processor speaks and its message distribution may depend on the messages broadcast so far. An adaptive Byzantine adversary, based on the messages broadcast so far, can corrupt k=1k=1 processor. A bias-XX coin-tossing protocol outputs 1 with probability XX; 0 with probability (1−X)(1-X). For a coin-tossing protocol, its insecurity is the maximum change in the output distribution (in the statistical distance) that an adversarial strategy can cause. Our objective is to identify optimal bias-XX coin-tossing protocols with minimum insecurity, for every X∈[0,1]X\in[0,1]. Lichtenstein, Linial, and Saks (1989) studied bias-XX coin-tossing protocols in this adversarial model under the highly restrictive constraint that each party broadcasts an independent and uniformly random bit. The underlying message space is a well-behaved product space, and X∈[0,1]X\in[0,1] can only be integer multiples of 1/2n1/2^n, which is a discrete problem. The case where every processor broadcasts only an independent random bit admits simplifications, for example, the collective coin-tossing protocol must be monotone. Surprisingly, for this class of coin-tossing protocols, the objective of reducing an adversary’s ability to increase the expected output is equivalent to reducing an adversary’s ability to decrease the expected output. Building on these observations, Lichtenstein, Linial, and Saks proved that the threshold coin-tossing protocols are optimal for all nn and kk. In a sequence of works, Goldwasser, Kalai, and Park (2015), Kalai, Komargodski, and Raz (2018), and (independent of our work) Haitner and Karidi-Heller (2020) prove that k=\mathcal{O}\left(\sqrt n\cdot \polylog{n}\right) corruptions suffice to fix the output of any bias-X coin-tossing protocol. These results consider parties who send arbitrary-length messages, and each processor has multiple turns to reveal its entire message. However, optimal protocols robust to a large number of corruptions do not have any apriori relation to the optimal protocol robust to k=1k=1 corruption. Furthermore, to make an informed choice of employing a coin-tossing protocol in practice, for a fixed target tolerance of insecurity, one needs a precise characterization of the minimum insecurity achieved by these coin-tossing protocols. We rely on an inductive approach to constructing coin-tossing protocols to study a proxy potential function measuring the susceptibility of any bias-XX coin-tossing protocol to attacks in our adversarial model. Our technique is inherently constructive and yields protocols that minimize the potential function. It happens to be the case that threshold protocols minimize the potential function. We demonstrate that the insecurity of these threshold protocols is 2-approximate of the optimal protocol in our adversarial model. For any other X∈[0,1]X\in[0,1] that threshold protocols cannot realize, we prove that an appropriate (convex) combination of the threshold protocols is a 4-approximation of the optimal protocol

    On Randomness Extraction in AC0

    Get PDF
    We consider randomness extraction by AC0 circuits. The main parameter, n, is the length of the source, and all other parameters are functions of it. The additional extraction parameters are the min-entropy bound k=k(n), the seed length r=r(n), the output length m=m(n), and the (output) deviation bound epsilon=epsilon(n). For k = r+1) is possible if and only if k * r > n/poly(log(n)). For k >= n/log^(O(1))(n), we show that AC0-extraction of r+Omega(r) bits is possible when r=O(log(n)), but leave open the question of whether more bits can be extracted in this case. The impossibility result is for constant epsilon, and the possibility result supports epsilon=1/poly(n). The impossibility result is for (possibly) non-uniform AC0, whereas the possibility result hold for uniform AC0. All our impossibility results hold even for the model of bit-fixing sources, where k coincides with the number of non-fixed (i.e., random) bits. We also consider deterministic AC0 extraction from various classes of restricted sources. In particular, for any constant delta>0delta>0, we give explicit AC0 extractors for poly(1/delta) independent sources that are each of min-entropy rate delta; and four sources suffice for delta=0.99. Also, we give non-explicit AC0 extractors for bit-fixing sources of entropy rate 1/poly(log(n)) (i.e., having n/poly(log(n)) unfixed bits). This shows that the known analysis of the "restriction method" (for making a circuit constant by fixing as few variables as possible) is tight for AC0 even if the restriction is picked deterministically depending on the circuit

    One-Message Zero Knowledge and Non-Malleable Commitments

    Get PDF
    We introduce a new notion of one-message zero-knowledge (1ZK) arguments that satisfy a weak soundness guarantee — the number of false statements that a polynomial-time non-uniform adversary can convince the verifier to accept is not much larger than the size of its non-uniform advice. The zero-knowledge guarantee is given by a simulator that runs in (mildly) super-polynomial time. We construct such 1ZK arguments based on the notion of multi-collision-resistant keyless hash functions, recently introduced by Bitansky, Kalai, and Paneth (STOC 2018). Relying on the constructed 1ZK arguments, subexponentially-secure time-lock puzzles, and other standard assumptions, we construct one-message fully-concurrent non-malleable commitments. This is the first construction that is based on assumptions that do not already incorporate non-malleability, as well as the first based on (subexponentially) falsifiable assumptions
    corecore