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Abstract
Randomness is a critical resource in many computational scenarios, enabling solu-
tions where deterministic ones are elusive or even provably impossible. However, the
randomized solutions to these tasks assume access to a pure source of unbiased, inde-
pendent coins. Physical sources of randomness, on the other hand, are rarely unbiased
and independent although they do seem to exhibit somewhat imperfect randomness.
This gap in modelling questions the relevance of current randomized solutions to
computational tasks. Indeed, there has been substantial investigation of this issue
in complexity theory in the context of the applications to efficient algorithms and
cryptography.

This work seeks to determine whether imperfect randomness, modeled appropri-
ately, is "good enough" for distributed algorithms. Namely, can we do with imperfect
randomness all that we can do with perfect randomness, and with comparable effi-
ciency ? We answer this question in the affirmative, for the problem of Byzantine
agreement. WVe construct protocols for Byzantine agreement in a variety of scenarios
(synchronous or asynchronous networks, with or without private channels), in which
the players have imperfect randomness. Our solutions are essentially as efficient as the
best known randomized Byzantine agreement protocols, which traditionally assume
that all the players have access to perfect randomness.

Thesis Supervisor: Shafi Goldwasser
Title: RSA Professor of Computer Science
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Chapter 1

Intro duction

Randomization has proven useful in many areas of computer science including algo-

rithm design, cryptography, and distributed computing.

In algorithm design, randomness has been shown to reduce the complexity re-

quirements fr solving problems, but it is unclear whether the use of randomization

is inherently necessary. Indeed, an extensive amount of research in the complexity-

theoretic community these days is dedicated to derandomization: the effort of replac-

ing a random string by deterministic "random-looking" strings.

The case of using randomness within the field of distributed computing is, in con-

trast, unambiguous. There are central distributed computing problems for which it is

provably impossible to obtain a deterministic solution, whereas efficient randomized

solutions exist. For instance, Fischer et al. [FLP83] showed that no deterministic algo-

rithm can solve the Byzantine Agreement (BA) problem in an asynchronous network

in the presence of even one fault. In contrast, randomized solutions for asynchronous

BA exist [B083]. The focus of this work is to determine whether imperfect ran-

domness is sufficient for Byzantine Agreement, in various settings (synchronous or

asynchronous networks, with or without private channels).

Another area where randomness is provably essential is in cryptographic protocols.

Our question becomes more interesting in the light of the recent results of Dodis

et al [DS02, DOPS04] who studied the possibility of cryptographic appplications

(e.g. encryption, digital signatures, secure protocols) to exist in a world where each
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participant has access to a single weak source of randomness. They show that even

if these sources are independent of each other, many cryptographic tasks such as

encryption and zero-knowledge protocols are impossible.

1.1 Byzantine Agreement

The problem of Byzantine Agreement (BA) defined by Pease, Shostak and Lam-

port [PSL80] is for n players to agree on a value, even if some t of them are faulty.

Formally, for any set of initial values of the players, a Byzantine Agreement protocol

should satisfy the following:

* Consistency: All non-faulty players agree on the same value.

* Non-triviality: If all the players started with some value v, they agree on v at

the end of the protocol.

· Termination: All processors eventually decide.

The faulty players might try to force the non-faulty players to disagree. The good

players, in general, do not know who the faulty players are. A BA protocol should

ensure that the good players agree, even in the presence of such malicious players.

The possibility of BA depends crucially on the number of faults t in the system

and the model of communication among the players. An early result [PSL80] shows

that no deterministic protocol can solve Byzantine agreement if n < 3t. This was

later extended to include randomized protocols too [KY].

When the players communicate via an asynchronous network, the celebrated re-

sult of Fischer, Lynch and Paterson [FLP83] shows that BA is impossible to achieve

even in the presence of a single faulty player. When the players communicate via a

synchronous network with point-to-point channels, there are (t + 1)-round determin-

istic BA protocols (ones in which no player tosses coins) in the presence of t < 

faults [GM98]. A lower bound of t + 1 communication rounds is known for every

deterministic protocol [FL82].
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Synchronous Networks Asynchronous Networks

With Private Channels O(1) for t < n/3 [FM97] O(1) for t < n/3 [CR93]

Without Private Channels n for t < n/3 [CC85] 20() for t < n/3 [Bra84]

Table 1.1: Round Complexity of BA for various settings

Randomized solutions can bypass both these impossibility results. The seminal

work of Ben-Or [B083] in 1983 showed for the first time how to achieve Byzan-

tine agreement in an asynchronous network tolerating a linear number of faults via

a randomized protocol with expected exponential round complexity. Shortly after,

Bracha [Bra84] showed how to achieve Byzantine Agreement in a synchronous net-

work in o(n) rounds via a randomized protocol, thus beating the lower bound of t + 1

for deterministic protocols.

More efficient randomized protocols in asynchronous as well as synchronous net-

works followed, some of which (due to Rabin [Rab83], Bracha [Bra84], Dwork-Shmoys-

Stockmeyer [DSS90], Feldman-Micali [FM97],Canetti-Rabin [CR93]) assume the ex-

istence of private communication channels between pairs of participants (or alterna-

tively cryptographic assumptions), and some do not require secret communication

(notably Ben-Or [B083] and Chor-Coan [CC85]).

To summarize these works, both synchronous and asynchronous BA can be achieved

via a randomized protocol in expected 0(1) number of rounds tolerating an optimal

number of faults, assuming private channels of communication exist. Without any

secret communication requirements, for t < n/3 a randomized protocol exists for

synchronous BA using O(to n) rounds [CC85] 1, whereas the best asynchronous BA

protocol still requires exponential number of rounds [B083, Bra84]. A summary of

these results is given in Table 1.1.

1Subsequent to this work, we learned that, in as yet unpublished work, Ben-Or and Pavlov [BOP]
construct an O(log n) round BA protocol in the full-information model. We note that the results in
this work apply also to [BOP], giving us an O(log n)-round BA protocol in the full-information model,
when the players have a block source each, and the sources of different players are independent.
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1.2 Randomness in the Real World

The common abstraction used to model the use of randomness by a protocol (or an

algorithm), is to assume that each participant's algorithm has access to its own source

of unbiased and independent coins. However, this abstraction does not seem to be

physically realizable. Instead, physical sources are available whose outcome seem only

to be "somewhat random".

This gap between available physical sources and the abstract model has been

addressed starting with the work of von Neumann [von63] and Elias [Eli72] which

deal with sources of independent bits of unknown bias. In more recent works, sources

of dependent bits were modeled by Santha-Vazirani [SV84], Chor-Goldreich [CG85],

and finally Zuckerman [Zuc90] who presented the weak random source generalizing

all previous models.

Informally, for a weak random source, no sequence of bits has too high a probability

of being output. A weak random source is a block source [CG85] if this is guaranteed

for every output block (for a block size which is a parameter of the source) regardless

of the values of the previous blocks output. Namely, whereas a general weak random

source guarantees some minimum amount of entropy if sampled exactly once, a block

source guarantees a minimum amount of entropy each time a sample is drawn (where

a sample corresponds to a block).

Two natural questions arise.

1. Can weak random sources be used to extract a source of unbiased and indepen-

dent coins?

2. Even if a single weak source of randomness cannot be used to extract perfect

coins, can it be used within applications instead of perfect random sources, with

the same guarantee of correctness and complexity?

The first question was addressed early on, in conjuction with introducing the

various models of imperfect randomness. It was shown that it is impossible to extract

unbiased random coins with access to a single weak random source [SV84, CG85,
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Zuc90]. Researchers went on to ask (starting with Vazirani [Vaz85]) whether, given

two (or more) weak random sources (all independent from each other), extraction of

unbiased random bits is possible. Indeed, it was shown by Vazirani [Vaz85], Chor-

Goldreich [CG85] and Zuckerman [Zuc90] that two sources suffice. Whereas original

works focus on in-principle results, recent work by Barak, Impagliazzo, and Wigderson

[BIW04] and others focuses on constructive protocols.

The second question is the type we will we focus on in this work. In the context

of probabilistic algorithms, it was shown early on in [CG85, Zuc9O] that a single weak

random source can be used to replace a perfect source of randomness for any BPP

algorithm. Very recently, Dodis et al [DS02, DOPS04], asked the same question in

the context of cryptographic protocols. Namely, is it possible for cryptographic app-

plications (e.g. encryption, digital signatures, secure protocols) to exist in a world

where participants each have access to a single weak source of randomness? Sur-

prisingly, they show that even if these sources are independent of each other, many

cryptographic tasks such as encryption and zero-knowledge protocols are impossible.

We thus are faced with a natural and intriguing question in the context of dis-

tributed computing: Are weak random sources suffiently strong to replace perfect random

sources within randomized distributed computing protocols ? This is the starting point

of our research.

1.3 The Choice of our Randomness Model

Imperfection in randomness may manifest itself in several ways in a distributed set-

ting. In particular, different models of randomness and of independence between the

randomness of the players can be considered.

A natural first model to consider is one where each player has its own weak source

(or block source) with sufficient min-entropy that is independent of the sources of

all the other players, as was assumed in the work of [DOPS04] in the context of

cryptographic protocols. This model is a natural starting point for the study of

randomness in distributed computation, and shall be assumed throughout this work.
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We note that a stronger model may be obtained by removing the assumption of

independence between the sources of different good players. There is a spectrum of

such models that may be assumed in this vein. We discuss a possible alternative is

discussed in the chapter on future directions.

Another way in which imperfection may be present, is when some of the good

players have access to random coins, whereas others do not. Jumping ahead, we

remark that this model arises naturally as part of our study of the previous model

(one where all the players have randomness, albeit of an imperfect nature).

1.4 Our Results

We focus on the problem of achieving consensus in a complete network of n par-

ticipants t of which can be malicious faults as defined by [PSL80]. We address the

settings of synchronous and asynchronous networks, and the cases of private channels

(when each pair of participants have a secret communication channel between them)

and of a full information network (when no secrecy is assumed for any communica-

tion). We note that by the results of Dodis et al. [DOPS04], making cryptographic

assumptions is doomed for failure.

In Chapter 3, we construct BA protocols, where each player has an imperfect

source of randomness, and the randomness of two honest players are not correlated.

We will show,

1. In the case of block sources: how to obtain the best bounds of fault-tolerance

and round complexity currently achieved by randomized distributed protocols.

Assuming private channels, we show for both synchronous and asynchronous

networks an 0(1) expected round protocol for t < 3 faults (matching [FM97,

CR93]). In the full-information model, we show for synchronous networks an

1( t ) expected round protocol for t < X (matching [CC85]) and a O(2n )

expected round protocol for t < (matching [Bra84]).

2. In the case of general weak sources: We assume private channels. For syn-
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chronous networks, we show an 0(1) expected round protocol for t < 3 faults

(matching [FM97]). For asynchronous networks, we get an 0(1) expected

rounds protocol for t < . We leave open the question of finding a BA protocol

in the full information model where each player has a general weak source.

In Chapter 4, we answer the question of what happens to randomized Byzantine agree-

ment protocols when not all players have randomness. In particular, some players

have perfectly random coins whereas others are deterministic. We show that,

1. The O(1)-expected rounds protocol of Feldman and Micali [FM97] works even

if only t + 1 good players are randomized, and

2. The O( l )-expected rounds protocol of Chor and Coan [CC85] works even if

only (2 + 6)n honest players have randomness, for any 6 > 0.

1.5 Our Methods

To achieve our results, we build in various ways on top of the existing distributed

algorithms [FMI97, CC85, B083, Bra84]. In general, we follow a 2-step Extract and

Simulate approach to designing such BA protocols. We utilize first 0(1) rounds for

a pre-processing protocol, in which the parties interact with each other so that at

the end, a large number of them obtain a private uniformly random string. The

randomness so obtained is used to run existing randomized BA protocols.

We construct various extraction protocols, in which the players interact to obtain

unbiased and independent random bits. The problem that we will need to overcome

is naturally that when a player receives a sample from another player (which may be

faulty), he cannot assume that the sample is good and not constructed to correlate

with other samples being exchanged. We construct extraction protocols that work

even if some of the players contribute bad inputs which may depend on samples they

have seen sent by honest players (in the case of full information protocols).

As building blocks, we will use the extractors of [Zuc90, CG85, Raz05] as well as

the strong extractors of [D003, RazO5]. A strong extractor ensures that the output
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of the extraction is random even if one is given some of the inputs to the extractor.

Our procedures will guarantee that a certain fraction of the non-faulty players obtain

perfectly unbiased and independent coins. However, this will not necessarily be the

case for the all the non-faulty players, and thus one may fear that now when running

existing randomized BA protocols with perfect randomness only available to some of

the non-faulty players, the fault-tolerance of the final protocol may go down. Luckily

this is not the case, due the following interesting general observation.

When we analyze the current usage of randomness in [FM97, CC85], we find on

closer look that one may distinguish between how many non-faulty players truly need

to have access to perfectly unbiased and independent sources of random coins, and

how many non-faulty players merely need to follow the protocol instructions. The

number of non-faulty players which need to have access to perfect coins is drastically

lower than the total number of non-faulty players. In the case of [FM97], it suffices

for t + 1 players to posses good randomness whereas we need all the n - t non-faulty

players to follow the protocol to prove correctness and expected 0(1) termination. In

the case of [CC85] it suffices for ( + 6)n (for arbitrarily small constant 6 > 0) players

to possess good randomness.

18



Chapter 2

Definitions and the Model

2.1 Models: Network, Communication, Fault and

Randomness

We let n denote the total number of players in the system and t the number of faulty

players. We consider various models of communication between the players. In all

cases, the n players form a fully-connected communication graph. i.e, each player i

can send to every other player j a message in one step. In the private channels model,

the communication between players i and j is invisible to all the players but i and

j. In contrast, in the full-informnation model, the communication between any two

players is publicly visible.

We consider synchronous and asynchronous communication in the network. In

the former case, each processor has access to a global clock, and communication

is divided into rounds. Messages sent in a round are received in the beginning of

the next round and the network ensures reliable message delivery. In the case of

asynchronous communication, however, the only guarantee is that; the messages sent

are eventually received by the recipient. Messages can be arbitrarily re-ordered, and

arbitrarily delayed.

We consider Byzantine faults in this paper. Byzantine players can deviate arbi-

trarily from the prescribed protocol, and co-ordinate with each other so as to mislead
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the good players into disagreement. We do not assume that the Byzantine players are

computationally bounded. The coalition of Byzantine players is informally referred

to as the adversary. We allow the adversary to be rushing. i.e, the adversary can

see all the messages sent by the good players in a round r, before deciding what to

send in round r. In other words, all the good players send messages in the beginning

of a round, whereas the bad players can delay sending messages until the end of the

round, when they (possibly) have had the chance to learn about the good players'

messages.

Each player has his own source of (imperfect) randomness, and the sources of

different players generate mutually independent distributions.

2.2 Weak Random Sources

Let Uk denote the uniform distribution on k bits. If X is a random variable which

has a distribution D, then we write X D. The distance between distributions D 1

and D2 (denoted by A(D 1, D2)) is YEa Pr 1 D 1i[X 1 = a] -PrX 2 D2 [X2 = a] . When

A(D1 , D2) < , we say that D 1 and D2 are e-close.

A source of randomness X of length k is simply a random variable that takes

values in {0, I}k. If X is not uniformly distributed, we say that the source X is

a weak random source. The randomness contained in a source is usually measured

in terms of its min-entropy. A source X of k bits has min-entropy k, if for every

a c {O, 1}k, Pr[X = x] < 2-6k. In this case, we call X a (k, 6)-source.

Definition 1. A (k, 6)-source (or a (k, 6)-weak source) is a random variable X that

takes values in {O, I}k such that for any x c {O, 1}k, Pr[X = x] < 2
- *k .

A block source is a sequence of random variables X1, X 2,... such that each Xi (of

length k bits) has min-entropy 6k, even if conditioned on any realization of the other

blocks. This corresponds to sampling multiple times from a source of random bits,

when we are guaranteed that each sample has some new entropy. The block-length

k specifies how often new entropy is generated by the source.

20



Definition 2. A (k, 6)-block source is a sequence of random variables X 1, X 2 ,...

(each of length k) such that any Xi has a min-entropy of 6k conditioned on all the

other random variables. That is, Pr[Xi = ai X1 = a,... ,Xi-1 = ai_1,Xi+l =

ai+l,...] 2 k

We use (X, Y) to denote the joint distribution of the random variables X and

Y. In particular, (X, Ur) denotes the joint distribution of X and an independent

uniform random variable Urn.

2.3 Extractors

Given a (k, 6)-source X, our first attempt would be to extract "pure randomness"

from X. That is, to construct a deterministic function Ext {O, I}k - {0, l) m (for

some m > 0) such that for any (k, 6)-source X, A(Ext(X), Urn) is small. But, it

is easy to show that this task is impossible in general. Thus it is natural to ask

if one can extract uniform randomness given two independent (k, 6)-sources. Chor-

Goldreich [CG85] answered this in the affirmative for the case when 6 > . More

recently, Raz [RazO5] showed this for the case when one of the two sources has min-

entropy at least k and the other has min-entropy at least log k. Below, we formally

define the notion of a deterministic two-source extractor, which is a key tool in our

constructions.

Definition 3. A function Ext: ({O, 1}k)2 - {0, )}m is a (k, 6) two-source extrac-

tor if for any (k, 6)-source X1 and any independent (k, 6)-source X2 , Ext(Xi, X2) is

c-close to Urn.

A strong two-source extractor is one in which the output of the extractor is inde-

pendent of each of the inputs separately. More formally,

Definition 4. A function Ext: ({O, 1}k)2 - {0, l)m is a (k, 6) two-source strong

extractor if for any (k, 6)-source X1 and any independent (k, 6)-source X 2, the dis-

tributions (Ext(X1, X2), Xi) and (U, Xi) are c-close, for i e {1, 2).
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Dodis and Oliveira [D003] show that some well-known constructions of two-source

deterministic extractors indeed yield two-source strong extractors. Assume X and Y

are k-bit sources with min-entropy at least . Then, Ext(X, Y) = X Y is in fact a

two-source strong extractor. More recently, Raz [RazO5] shows how to construct very

general two-source strong extractors.
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Chapter 3

Byzantine Agreement Protocols

with Imperfect Randomness

3.1 Extracting Randomness in a Network

Each player participating in a randomized distributed protocol is traditionally as-

sumed to have a uniformly distributed string that is independent of the random

strings of the other players. In addition, some protocols assume that the randomness

of each player is private. i.e, the faulty players have no information on the random-

ness of the good players. There is no guarantee on the behavior of the protocol if the

players use a weak random source or if the players have public randomness.

Our goal would be to run a distributed extraction protocol among the players such

that the good players help each other extract a uniform random string collectively

from their (mutually independent) weak random sources, even in the presence of

some malicious parties. The malicious colluding parties could each contribute an

arbitrary string, possibly correlated with what they see in the network, as input to

the extraction protocol.

One of the building blocks in our randomness extraction protocols is a multi-source

extractor whose output is random even if an arbitrary subset of the input sources do

not have any min-entropy, but all the sources are independent. We call this a (, T)-

immune extractor.
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Definition 5. Let X 1, X 2,. . . ,X,+ 1 be (k, 6)-block sources. A function Ext that

takes as input a finite number of blocks from each of the + 1 block sources is called a

(i, r)-immune (k, 6)-extractor if for any block sources X1, X2 ,..., X,+ such that

(i) X 1 is a (k, 6)-source, (ii) at least - T among the ; sources X 2 , .. ,X,+ 1 are

(k, 6) sources, and (iii) the Xi's are mutually independent, Ext(Xi, X2,... ,X,+1) is

e-close to Urn.

In the above definition, we are guaranteed that the T "bad" sources (those which

do not have any randomness) are independent of the rn + 1 - T "good" sources. We

might need to deal with worse situations. In particular, the bad sources could

be dependent on some of the "good" sources. A (, T)-strongly immune extractor

extracts uniform randomness even in this adversarial situation.

Definition 6. Let X 1, X 2,. . . , X,+1 be (k, 6)-block sources. A function Ext that takes

as input a finite number of blocks from each of the i' + 1 block sources is called a (, T)-

strongly-immune (k, 6)-extractor if for any block sources X 1, X2,..., X,+ 1 such

that (i) X 1 is a (k, 6)-source independent of all other Xi, and (ii) at least -

among the sources X 2,. . .,X+l are (k, 6)-sources and are mutually independent,

Ext(X1, X 2,... X,+1I) is e-close to Urn.

Some distributed protocols might require the players to have private randomness.

But, if the players are connected by non-private channels, most of the inputs to the

extraction protocols are publicly visible. In this case, the output of the extraction

protocol might depend on the values that were publicly transmitted and is thus not

private. We need to construct (, T)-strongly immune strong extractors to cope with

this situation. The constructions are as given below.

Theorem 1. I-Ext is a (t, t- 1)-immune extractor, assuming that Ext is a (k, 6)-two

source extractor.

Sketch. At least one of the sources (say Xj, 2 < j < t + 1) has min-entropy k and

Xj is independent of all the X1 (i = 2,..., t + 1). Also, Xj has min-entropy 6k

conditioned on all the blocks X' (j' j). That is, the distribution of (XlIXj ' -
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I-Ext: A (t, t - 1)-immune extractor.

Inputs: Let Ext be any (k, 6) two-source extractor. Let X, X3 ,..., X +l denote
t distinct blocks of the (k, 6)-block source X1. Let X2,..., Xt+1 be one block
each from the t other sources.

:[-Ext({X}+I, X2 ,. . . Xt+) = t+ Ext(X , Xi).

Table 3.1: The basic (t, t- 1) immune extractor. A strongly immune extractor can be
obtained from the same construction by letting Ext be a two-source strong exxtractor.

xI) has min-entropy at least k. Therefore, Ext(X (XI = xl ), X) is -close to

Urn. Consider any j' j. The joint distributions (XIX', Y) and (Xj', Z) are

independent. Thus, Ext(Xj',Xj,) is independent of Ext(X , Xj), for all j' -~ j. This

shows that ®ti2 Ext(X', Xi) is close to Urn. L

Theorem 2. There exists a (t, t - 1)-strongly immune strong extractor SI-Ext.

Sketch. In the construction of I-Ext, using a two-source strong extractor (for instance,

those of [D003, RazO5]) in the place of Ext gives us SI-Ext. We prove the theorem

for the case when t = 2. The proof for t > 2 follows quite easily from this proof.

Let the distributions under consideration be X = (X 1, X 2), Y and Z. Here, the

distributions Y and Z could be dependent, but both are independent of X. At least

one of Y and Z have min-entropy k. W.l.o.g, this is Y. Then, since X1 has min-

entropy k conditioned on X 2 = x2, Ext((X 1 lX 2 = x2 ), Y) is -close to Urn.

Let D1 df Ext((Xl[X 2 = x2),Y) and let D2 def Ext(X 2,Z). We know that

[D)1, Y] [Urm, Y] and since Z = f(Y),

[D, Y, Z] [Um, Y, Z].

We also know that

[Do, X 2] [Um, X 2 ],

since D1 is the result of extracting from (X'lX 2 = x2) and Y, both of which are
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independent of X2 . Since X2 and Z are independent, and so are X2 and Y,

[D, X2,Y, Z] [Un, X2, , Z].

Therefore,

[D, X 2, Y, Z, Ext(X 2 , Z)] [U, X2 , Y, Z, Ext(X 2, Z)].

Note that the last component of this distribution is precisely D2. Thus, D1 is random,

given D2, Y, Z and X 2. Thus [D1 D2 , X 2, y, Z] [Urn, X 2, Y, Z]. In particular,

this means [D1 E D2, Y, Z] . [Um, Y, Z], which is the definition of the extractor being

strong. [] E

Fact 1. Suppose X 1, X 2 and Y are random variables, and Z is a random variable

such that Z is independent of XI and X 2. If (X1, Y) - (X2, Y), then (X1, f(Y, Z)) 

(X2, f(Y, Z)).

3.2 Byzantine Agreement Protocols with Block Sources

In this section, we show how to construct randomized Byzantine agreement (BA)

protocols that work even when the players have access to block sources (resp. general

weak sources), using the extraction protocols of the previous section. Our transfor-

mations are fairly generic and they apply to a large class of known randomized BA

protocols.

The protocol Synch-PC-Extract ensures that, in the presence of at most t faults, at

least 2 [2J - 2t good players get private random strings. The protocol Asynch-Extract,

on the other hand, ensures that all the good players get private random strings, at

the end of the protocol.

Theorem 3 (Synchronous, Private Channels). If n > 3t + 2, then there exists a

BA protocol that runs in expected 0(1) rounds tolerating t faults, assuming the players

are connected by a synchronous network with private channels, and have (k, 6) block-

26



sources with 6> V'

Proof. In the first round, the players run the protocol Synch-PC-Extract. Let Ri

denote the output of player i after running Synch-PC-Extract. Now, the players run

the BA protocol guaranteed by Lemma 4 with player i using Ri as randomness.

There are at least LJ - t > LtJ + 1 pairs such that both the players in the pair

are good. In each pair, the players extract uniform and independent random strings.

Thus, there are at least 2( LJ + 1) > t + 1 players at the end of the protocol with m-

bit strings that are -close to uniform. Because of the private channels assumption,

the inputs used to compute Ri are invisible to the adversary, and therefore, the

randomness extracted is private. Now, invoke Lemma 4 to complete the proof. D

Lemma 4. If n > 3t + 1, then there exists a BA protocol that runs in expected 0(1)

rounds tolerating t faults in a synchronous network with private channels, even if only

t + 1 (out of n - t) good players have private randomness.

Proof. The protocol of Feldman and Micali [FM97] is such a BA protocol. The

detailed proof appears in Chapter 4. 0]

Theorem 5 (Synchronous, Full-Information Model). If n > 3t + 1, then there

exists a BA protocol that runs in expected 0( t ) rounds tolerating t faults, assuming

the players are connected by a synchronous network with non-private channels, and

have (k, 6) block sources with 6 > 

Proof. In the first round, the players run the protocol Synch-FI-Extract. Using the

randomness so obtained, run the BA protocol guaranteed by Lemma 6.

Consider the set of 4-tuples of players such that at most two players in the 4-tuple

are bad. There are at least [Lnj - LJ> L [1 such tuples. In each such pair, the good

players extract uniform and independent random strings, since there are at least two

good players in such a 4-tuple and Ext is a (3, 2)-strongly immune extractor. There

are at least 45J > n = ( + 0(1))n players at the end of the protocol with m-bit

strings that are -close to uniform. Moreover, the random strings Ri of these players
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Protocol Synch-PC-Extract

Group the players P1, P2 ,... , Pn into pairs (Pl,P2),. , (Pn-I,Pn). Let Ext be an
(n, 6) two-source extractor. (Note: Assume for simplicity that n is even. If not,
add a dummy player.)

Each player Pi does the following:

* If i is even, sample a k-bit string Xi from the source, and send it to Pi-1.

* If i is odd, sample a k-bit string Xi from the source, and receive a k-bit
string Xi+l from Pi+l. Compute an m-bit string Ri - Ext(Xi,Xi+l).

Send to Pi+l the first bits of Ri and store the remaining bits.

Protocol Asynch-Extract

Each player Pi does the following: (Note: Ext is either a (t + 1, t)-immune extractor
or a (t + 1, t)-strongly immune strong extractor).

* Wait to receive t + 1 strings Y1, Y2 ,. .. , Yt+l from t + 1 different players.

* Sample blocks X1, X, ... , Xt +1 from the random source.
* Compute and Store Ri -- Ext({X l t+ljY,Y 2, t+l

1 Jj=l p ' ' 

Protocol Synch-FI-Extract

Group the players into 4-tuples (pl, P2, 3, P4), ... , (Pn-3, Pn-2, Pn-1, Pn). Let SI-ext
be a (3, 2)-strongly immune strong extractor. (Note: Assume for simplicity that
n is a multiple of four. If not, add at most two dummy players.)

Each player Pi does the following: (Assume that Pi is in a 4-tuple with Pi+l, Pi+2 and

Pi+3 )

* Samples six blocks X3 (j = 1, . ., 6) from its random source.

* Send Xi to pi+j (for j =1, ...,3). Store X (j = 4,..., 6).

* Receive k-bit strings Yj from Pi+j (j = 1,..., 3).

* Compute Ri -- SI-ext({X4, X 5 ,X6}, 1, 2, Y3) and store Ri.

Table 3.2: The Extraction Protocols used in various settings. Synch-PC-Extract and
Synch-FI-Extract will be used in the synchronous protocols, in a network with private
channels, and a full-information network, respectively. Asynch-Extract will be used to
extract in an asynchronous setting.
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are private, since Ext is a strong extractor. Now, invoke Lemma 6 to complete the

proof. []

Lemma 6. If n > 3t + 1, there exists a BA protocol that runs in expected O(on )

rounds tolerating t faults in a synchronous network with non-private channels, even

if only ( + (5)n good players have private randomness (for some > ).2

Proof. The protocol of Chor and Coan [CC85] is such a BA protocol. The proof is

given in Chapter 4. El

Theorem 7 (Asynchronous Network). If n > 3t+1, then there exist BA protocols

that tolerate t faults in an asynchronous network, when the players have (k, 6) block-

sources with :> and

* run in 0(1) rounds, with private channels, and

* run in 0(2n) rounds, with non-private channels.

Sketch. In the private channels case: In the first round, the players run the protocol

Asynch-Extract with a (t + 1, t)-immune extractor in the place of Ext. Let Ri denote

the output of player i after running Asynch-Extract. Now, the players run the 0(1)-

round BA protocol of [CR93], with player i using Ri as the randomness to the [CR93]

protocol.

Each player Pi gets t + 1 strings, eventually. This is because n > 2t + 1 and

there are at most t faulty players. At least one of the t + 1 strings is "good". i.e,

it comes from a (k, 6) block-source which is independent from pi's source. By the

(t + 1, t)-immunity of Ext, this means that the output Ri of player i is -close to

uniform. Further, the output Ri of Pi is private, informally because one of the inputs

to Ext is unknown to the faulty players.

In the non-private channels case: The players run the protocol Asynch-Extract with a

(t + 1, t)-strongly immune strong extractor in the place of Ext. [
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3.3 The Case of General Weak Sources

The statement of Theorem 3 is true even when the players have a general weak source.

This is informally because, the extractor uses at most one sample from each source.

Theorem 8 (Asynchronous, Private Channels). If n > 5t + 2, then there exists

a BA protocol that runs in expected 0(1) rounds tolerating t faults, assuming the

players are connected by an asynchronous network with private channels, and have

weak sources with min-entropy rate 6 > 1.

Proof. The protocol used in the proof of Theorem 3, with the following slight modifi-

cation, suffices to prove this. The change is that, each player, after receiving a string

from its partner in a pair, sends a message indicating that the extraction protocol is

complete. When player i receives such a message from n - 2t players, he stops the

extraction protocol and sets Ri = 0. Each player eventually receives such a message

from n - 2t players, since at least n - 2t players are in pairs in which both the players

are good. When a player i receives such a message, it knows that at least n - 4t

players have indeed extracted uniform randomness. Since n - 4t > t + 1, we are

done. D
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Chapter 4

The Number of Randomized

Players Required for BA

In the last chapter, we dealt with the possibility of Byzantine Agreement, when all

the players have random sources, but the sources generate imperfect randomness.

As discussed in Section 1.3, another type of imperfection is when some of the good

players have random sources, but the others do not have any (in particular, they are

constrained to be deterministic). Let n be the total number of players, and t be the

number of malicious faults. Let r be the number of non-faulty players who have access

to (a perfect source of) randomness. Can one bypass the deterministic impossibility

results, even if r < n - t ? We show that:

* For a synchronous network with private channels, it is enough that r > t + 1.

In particular, we show that the protocol of Feldman and Micali [FM97] has this

property.

* For a synchronous network in the full-information model, it is sufficient that

r > ( + 6)n for any > 0. In particular, we show that the protocol of Chor

and Coan [CC85] has this property.

Section 4.1 essentially serves as the proof of Lemma 4 in Chapter 3, and Section 4.2

contains a proof of Lemma 6.
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4.1 Synchronous Network with Private Channels

We describe the salient features of Feldman-Micali protocol for Byzantine Agreement

in a synchronous network with private channels, tolerating t < 3 faulty players.

The protocol of [FM97] consists of three building blocks: a graded broadcast

protocol, an n/3-resilient verifiable secret-sharing protocol and an oblivious common-

coin protocol. [FM97] prove the following.

Definition 7 (GradeCast). Let P be a protocol among n players with a distinguished

sender with identity h. The sender has a private input a, and the other players do

not have any input. At the end of the P, each player outputs a pair (codei, valuei),

where codei E {0, 1, 2}. We say that P is a graded broadcast protocol if:

* If i and j are good players such that codei # 0 and codej Z O, then valuei =

valuej.

* For any two good players i and j, Icodei - codejl 1.

* If h is good, then for all good players i, codei = 2, and valuei = a.

Lemma 9 ([FM97]). Let n > 3t + 1. Then, there exists an 0(1)-round t-resilient

deterministic graded broadcast protocol.

Definition 8 (Graded Verifiable Secret Sharing). Let the dealer be denote by

h, and let all the players know h. Let the candidate secret-set be denoted S. Let

P = (Share, Graded- Verify, Recover) be a triple of protocols in which the dealer h has

a private input s S, each player x is required to output a value verificationx E

{0, 1, 2} at the end of Graded- Verify, and an element of S at the end of Recover. We

say that P is a graded VSS protocol with fault-tolerance t if the following properties

hold:

* Semi-Unanimity: For any two good players i and j, at the end of Graded- Verify,

Iveri ficationi - veri ficationj < 1.

* Acceptance of Good Secrets: If the dealer h is good, verificationi = 2 for all

good players i.
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* Verifiability: If verificationi > 0 for a good player i, then there exists a value

Ca' c S such that all good players output a' when executing Recover. Moreover,

if the dealer h is good, then a' = a.

* Unpredictability: If Ca is randomly chosen from S, if the dealer h is good, and if

the protocol Share and Graded-Verify are executed with uniform randomness

as input and if the adversary outputs a value a' at the end of Graded-Verify,

then Pr[c' = ] = Isl

Note: A VSS protocol P is required to have the unpredictability property only when

the protocols are executed with uniform randomness as input.

Lemma 10. If n > 3t + 1 and if there exists an 0(1)-round gradecast protocol that

tolerates t faults, then there exists an 0(1)-round protocol, which is a t-resilient graded

Verifiable Secret-Sharing (VSS) protocol, assuming only that the dealer has random-

ness.

Proof. The graded VSS protocol P = (Share, Graded-Verify, Recover) of Feldman-

NMicali [FM97] has the property that the Share protocol is randomized, and the only

instructions in Share are executed by the dealer h. The sub-protocols Graded-Verify

and Recover are deterministic. It follows that as long as the dealer h has uniform

randomness, P is a graded VSS protocol. O

Definition 9 (Oblivious Common Coin). Let P be a fixed-round protocol in which

each player x has no input and is instructed to output a bit r. We say that P is

an oblivious common coin protocol with fairness p and fault-tolerance t if for all bits

b, for every set of t players who are corrupted, Pr[V good players i, ri = b] > p. We

refer to an execution of P as a coin. The coin is unanimously good if ri = b for every

good player i.

Note: The outcome of the protocol is not always guaranteed to be common. In

particular, the good players are not "aware" if the outcome of the protocol is a common

coin. But, we know that it is a common coin with probability at least p.
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Lemma 11. If n > 3t + 1 and if there exists an 0(1)-round graded VSS protocol that

tolerates t faults and which works assuming only that the dealer has randomness, then

there exists an 0(1)-round oblivious coin protocol, which assumes only that t + 1 good

players have randomness.

So far, in all the subprotocols (Gradecast and Graded VSS), we required only

one of the participating players to have uniform randomness. But, the common coin

protocol requires that t + 1 players have uniform randomness. The lemma shows that

t + 1 is a tight bound.

Proof. The Oblivious Coin protocol of Feldman-Micali [FM97] is given below. The

proof that it is enough for t + 1 players to have randomness, follows.

Protocol Oblivious Common Coin

1. (for every player i): For j 1,...,n, randomly and independently choose a

value sij [0,..., n- 1].

(Note: We will refer to sij as the secret assigned to j by i.)

Concurrently run Share and Graded-Verify (of a VSS protocol) n2 times, once

for each pair (h, j) E [1... n]2, wherein h acts as a dealer, and shares shj, the

secret assigned by h to j.

Let verification i 3 be player i's output at the end of Graded-Verify for the ex-

ecution labeled (h, j).

(Note: Informally, verificationi j indicates what player i thinks about the recover-

ability of the secret assigned by h to j.)

2. (for every player i): Gradecast the value (verification , verification',... , verificationn).

(Note: The gradecasted value by player i is precisely player i's opinion about the

recoverability of the secret assigned by all the other players to itself.)

3. (for every player i): for all j, if

(a) in the last step, you have accepted player j's gradecast of a vector ej E

{0,1, 2},
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(b) for all h, verification ij - [h]l < 1, and

(c) [h = 2 for at least n - t values of h,

then set playerij = ok, else set playerij = bad.

4. (for every player i): Recover all possible secrets.

Concurrently run Recover on all the n2 secrets shared. Denote by valuei j your

output for execution (h, j). If playerij = bad, set SUMij = bad, else set

SUMij = { value hj} mod n.
h such that e[h]=2

If for some player j, SUMij = 0, output ri = 0, else output ri = 1.

We now sketch the proof that the above protocol is an Oblivious Common Coin

protocol, assuming at least t + 1 good players have uniform randomness, and at most

t players are faulty. This follows from the following series of observations.

* In step 3(a) of the protocol, all the good players that accept the gradecast of a

player i receive the same vector e, even if it player i is bad. This means, every

good player i computes SUMij as a sum of the same set of values.

* If SUAij is not set to bad, all the addenda of SUMij had ej [h] = 2, which means

verification ji > 1 (by Step 3(b) of the above protocol). This in turn means,

by the property of graded VSS, that there is a unique secret corresponding to

the (h, j)th execution of Share, which can be recovered. Thus, for every player

j (who may be malicious), there exists a value y such that, for any good player

i, SUlij is either y or bad.

* Moreover, if SUMij 7 bad, then SUMij is a sum of at least n - t values (by

Step 3(c) of the above protocol). At least one of the n - t values is shared by a

good player who has randomness (since there are at least t + 1 of them). Thus,

since all the values shared are independent 1 , SUMij is either set to bad or a

'it turns out that this statement is not precise, and has to be proven by a more careful simulation
argument, for which we refer the reader to [FM97].
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random number y.

* Given this, we can prove that the coin is sufficiently common and sufficiently

random. The proof proceeds identically to that of [FM97]. More precisely, we

can prove that for any bit b, Pr[V good players i, ri = b] > min(e-l, 1 - e-2/3).

Lemma 12 ([FM97]). Given an oblivious-coin protocol as a black-box, there is a

deterministic protocol that achieves BA in 0(1) rounds.

Lemmas 3,4,5,6 together prove Lemma 4.

4.2 Synchronous Network, Full-Information Model

We describe the Chor-Coan protocol for Byzantine Agreement in a full-information

network, tolerating t < faulty players. Also given here is the proof of Lemma 6.

The players are divided into fixed disjoint groups of size g. The ith group consists

of the set of players {P(i-1)g+1,... ,Pig} For any player Pi, let GROUP(pi) denote the

group that Pi belongs to. The protocol proceeds in phases where, in each phase, the

players try to reach agreement on their values. In each phase, one of the groups is

said to be active. The purpose of the players in the active group is (among other

things) to toss coins and send it to all the other players. At the end of each phase, a

player either decides on a bit b, or "tentatively decides" on a bit b or is "confused".

If some player decides at the end of a phase, the protocol ensures that all the players

decide by the end of the next phase. If some player "tentatively decides" a bit b at

the end of a phase, no other player "tentatively decides" the opposite bit. If a player

is "confused", it resets its bit to be the majority of the coin-tosses it receives from

a group. If the group has a majority of good players, and all of them toss the same

coin, and the value of this "common coin" is the same as the bit that is "tentatively

decided" by some of the players, then all the players start the next phase with the

same initial value. In this case, the protocol ensures that the players decide by the
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end of the next phase. A more formal description of the protocol follows:

Comment: When the protocol begins, each player pi has an input bit bi.

1. For e = 1 to oc, each player Pi does the following:

Comment:: e is the current phase.

(a) Sends to every player the message (e, Phase1 , bi).

(b) Receive messages from every other player of the form (e, Phase, ).

(c) If for some v, there are > n - t messages of the form (e, Phase,, v),

i. then set bi-- v,

ii. else set bi +- "?"

(d) If GROUP(pi) = e (mod LgJ)

i. then set coin +- b,

{Comment: b is a random bit}

ii. else set coin -- 0

(e) Send to every player the message (e, Phase2, bi, coin).

(f) Receive messages of the form (e, Phase2, c, coin) from every player.

{ Comment: Let NUM(c) be the number of messages received that contain

the bit c. }

(g) If NUM(c) > n - t for some bit c, decide c.

(h) Else, if NUM(c) > t + 1 and NUM(c) > NUM(c), set bi +- c.

(i) Else, set bi *- majority of the coinj's from the group x, where x

e(mod Ln/gJ).

Proof of Lernmma 6. The following properties of the protocol are easily verified: (a)

If a player Pi decides at the end of a phase, all players decide by the end of the next

phase. (b) If a player sets bi +- c at the end of a phase (instruction h, above), then

no player pj sets bj - c. Given this, it is easy to see that agreement is reached when
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all the remaining players (ones who set bi to be the coin-toss from a group) set bi to

c (in instruction i). It remains to analyze the expected number of rounds in which

this event happens.

Set the size of a group to be g = 2m = log n. Call a group e good if more than

m + 1 players in the group are non-faulty. Call a coin-toss good if at least m + 1 good

players in a group tossed the same coin (with a fixed value - 0 or 1). It is clear that

Pr[coin-toss of a group e is good I e is a good group] > 
2m+l'

Now, lets analyze how many bad groups there can be. There are at most t < ( - )n

players who have no randomness, and these players can make at most mi < (2

l) (1 - 2)) n groups bad. Since there are logn groups in total, the number of

good groups is at least 2n.log n'

The protocol terminates as soon as there is a good coin-toss. The expected number

of good groups that have to toss coins before they get a good coin is precisely 2 m+1 <

2v/n. The probability that a good coin is not formed after n3/ 4 groups tossing coins

is negligible, by a Chernoff Bound. Thus, the expected number of rounds to each

agreement is lg + n314 + 0(1).
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Chapter 5

Future Work and Open Problems

Two questions are left open when each player has a general weak source (rather than

a block source).

* How to achieve BA in the full information model, and

* How to achieve optimal fault-tolerance in the case of asynchronous networks in

the private channels model. We currently achieve 0(1) rounds for t < n/5.

Moreover, other models of randomness other than what we chose to focus on in this

paper can be addressed. The one we find particularly appealing is where each player

has a weak random source, but the sources are correlated. Namely, the only guarantee

is that the randomness sampled by player i has a large min-entropy even conditioned

on the values for random strings sampled by all other players. We consider the model

in this work as a first approximation to this more general model. We have obtained

some partial results in this latter model [GV].

It is of great interest to study the possibility of other tasks in distributed com-

puting, such as leader election and collective coin-flipping, when the players have

imperfect randomness. We briefly note that the results in this paper can be used

to show the possibility of both these tasks, in the model where the players have

independent block sources [GV].

In Chapter 4, we investigated the question of how many players need to be ran-

domized for non-trivial randomized BA protocols. We showed that only t + (out
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of the at least 2t + 1) good players need to be randomized (in the case of a syn-

chronous network with private channels) whereas the number is (2 + 6)n in the case

of a full-information network. The corresponding question in the case of asynchronous

networks is open. Some partial results have been obtained in this case [GV]. Another

intriguing open question is to find lower bounds on the number of players that need

to be randomized, in order to beat the deterministic impossibility results. As far as

is known today, it is possible that one can obtain optimal (O(1)-round) BA protocols

even if only one good player is randomized.
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