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Distributed Computing and Cryptography with General

Weak Random Sources

Xin Li, Ph.D.

The University of Texas at Austin, 2011

Supervisor: David Zuckerman

The use of randomness in computer science is ubiquitous. Randomized proto-

cols have turned out to be much more efficient than their deterministic counterparts.

In addition, many problems in distributed computing and cryptography are impossi-

ble to solve without randomness. However, these applications typically require uni-

form random bits, while in practice almost all natural random phenomena are biased.

Moreover, even originally uniform random bits can be damaged if an adversary learns

some partial information about these bits.

In this thesis, we study how to run randomized protocols in distributed com-

puting and cryptography with imperfect randomness. We use the most general model

for imperfect randomness where the weak random source is only required to have a

certain amount of min-entropy.

One important tool here is the randomness extractor. A randomness extractor

is a function that takes as input one or more weak random sources, and outputs a dis-
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tribution that is close to uniform in statistical distance. Randomness extractors are

interesting in their own right and are closely related to many other problems in com-

puter science. Giving efficient constructions of randomness extractors with optimal

parameters is one of the major open problems in the area of pseudorandomness.

We construct network extractor protocols that extract private random bits for

parties in a communication network, assuming that they each start with an inde-

pendent weak random source, and some parties are corrupted by an adversary who

sees all communications in the network. These protocols imply fault-tolerant dis-

tributed computing protocols and secure multi-party computation protocols where

only imperfect randomness is available.

The probabilistic method shows that there exists an extractor for two indepen-

dent sources with logarithmic min-entropy, while known constructions are far from

achieving these parameters. In this thesis we construct extractors for two independent

sources with any linear min-entropy, based on a computational assumption. We also

construct the best known extractors for three independent sources and affine sources.

Finally we study the problem of privacy amplification. In this model, two par-

ties share a private weak random source and they wish to agree on a private uniform

random string through communications in a channel controlled by an adversary, who

has unlimited computational power and can change the messages in arbitrary ways.

All previous results assume that the two parties have local uniform random bits. We

show that this problem can be solved even if the two parties only have local weak

random sources. We also improve previous results in various aspects by constructing

the first explicit non-malleable extractor and giving protocols based on this extractor.
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Chapter 1

Introduction

This thesis is about the study of using imperfect randomness in distributed

computing and cryptography. The motivation comes from the following two aspects.

First, randomness is a very useful and valuable resource in computer science.

It has found applications in algorithm design, distributed computing, cryptography

and many other areas. These applications generally either lead to much more effi-

cient solutions than their deterministic counterparts (e.g., in the algorithm case), or

solve problems that would otherwise be impossible in the deterministic case (e.g., in

distributed computing and cryptography). We refer the reader to [MR95] for many

of these examples.

Unfortunately, these applications typically require many uniform random bits,

while in practice it is not clear how to obtain such high quality resources. Thus it

is natural to ask what is the minimum requirement of the randomness used in these

applications. In some cases, for example algorithm design, a combinatorial object

called a pseudorandom generator can be used to reduce the number of random bits

required, or even completely remove the need of randomness and obtain a deter-

ministic algorithm. However, in many other areas such as distributed computing

and cryptography, true randomness is provably necessary, in the sense that there are
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tasks that cannot be done without randomness (for example asynchronous Byzan-

tine Agreement and encryption). Given the fact that almost all physical sources of

randomness are biased (e.g., coin flips, white noise), it is important to study how

imperfect randomness can be used in these applications.

Second, imperfect randomness often arises in cryptography for another rea-

son: under many situations, a party’s secret random bits (even if they are uniform

originally) can be compromised, for example as a result of side channel attacks. Thus

again in this case we need to consider using imperfect randomness in applications

without damaging the desired security properties. This problem is becoming more

and more important nowadays because of the enormous amount of information ex-

changed through internet.

1.1 Examples

Here we give three basic problems in distributed computing and cryptography,

which are the focus of this thesis. We will later show how to use imperfect randomness

in these problems. We remark that the techniques developed in this thesis are very

general and apply to many other problems. However these problems are very basic

and important, so we choose them to illustrate the applications of our techniques.

1.1.1 Byzantine Agreement and Leader Election

The Byzantine Agreement problem is a fundamental problem in distributed

computing. In this problem, p processors each have an initial value, and they commu-

nicate with each other in order to reach an agreement on a value b. Note that in this
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setting there are no broadcast channels and the processors have to transfer messages

to each other in point to point channels. The task is made even more complicated

by the existence of an adversary, who may control some of the processors and thus

make them collaborate to try to prevent an admissible agreement. The processors,

however, must try to reach an admissible agreement that satisfy the following two

conditions.

1. All good processors (processors that are not controlled by the adversary) must

agree on the value b.

2. If all the good processors have the same initial value, then b must be equal to

that value.

Essentially, the task of Byzantine Agreement is to try to simulate a broadcast

channel with point to point channels. In this thesis we assume that the adversary

is computationally unbounded. Note that the network can be synchronous or asyn-

chronous, thus the Byzantine Agreement problem also has the synchronous case and

the asynchronous case. It is well known that both cases can be solved if the adversary

controls less than 1/3 fraction of the processors. In the synchronous case, there is a

deterministic solution, but the randomized solution takes much fewer rounds. In the

asynchronous case, there is no deterministic solution.

Once we have a broadcast channel, other problems in distributed computing

arise. One basic problem is leader election, and the related collective coin flipping.

Again, in both problems there are p processors, and some processors may be controlled

by an adversary. The goal of leader election is to have the processors communicate
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with each other to try to select a leader, such that the probability that the leader

is a faulty processor is bounded away from 1. The goal of collective coin flipping is

to have the processors communicate with each other to provide a random coin flip,

such that the probability that the coin takes head or tail is bounded away from 1.

It is clear that in both these problems randomness is necessary. Also, note that the

collective coin flipping problem can be reduced to the leader election problem, since

the processors can first select a leader and then have the leader flip a coin.

1.1.2 Secure Multiparty Computation

This is a basic problem in cryptography. One simple example is the millionaire

problem, where two millionaires wish to compute which one is richer, but without

revealing their net worth. Generally, the setting is that, p processors each have private

data, and they want to jointly compute a function of their data. However, the protocol

to compute the function is required to have the property that no processor can learn

more from the description of the function and the result of the computation than what

he or she can learn from his or her own entry. Also, again there is an adversary who

may control some processors, and the protocol must guarantee that the computation

does not leak information about a good processor’s data to the adversary. Essentially,

the processors want to compute the function as well as maintaining the privacy of

their own data.

This problem has several different models. In this thesis, we focus on the case

where the adversary is computationally bounded (i.e., runs in polynomial time) and is

passive. Under the assumption that each processor has access to local uniform random
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bits, this problem can be solved by using now standard cryptographic primitives

[GMW87].

1.1.3 Privacy Amplification with an Active Adversary

This is an important problem in symmetric information-theoretic cryptogra-

phy. Imagine that two parties (Alice and Bob) want to exchange information through

a public channel. However, there is an adversary Eve who is watching the channel.

Alice and Bob would like to exchange information secretly without leaking informa-

tion to Eve. Generally, this task is impossible, since Eve knows everything exchanged

through the channel. Luckily, in the case where Alice and Bob share a secret n-bit

uniform random string w, the task becomes possible. For example, if Alice wants to

send a string x to Bob, then she can send y = x ⊕ w instead. Without knowing w,

Eve knows no information about x even seeing y. On the other hand, Bob can recover

x by computing x = y ⊕ w.

The above solution is nice, except that often w is not uniform. Thus the

problem of privacy amplification arises. Basically, in this case Alice and Bob try to

agree on a secret nearly uniform random key, through communications over the public

channel. Note that again the channel is controlled by an adversary Eve. Eve could be

either passive or active. She is passive if she can only see the communications through

the channel without modifying the messages, and she is active if she can modify the

messages in arbitrary ways. Of course the problem with an active adversary is much

harder than the problem with a passive adversary. In this thesis, we assume that the

adversary Eve is active with unlimited computational power.
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1.2 General Weak Random Sources and Extractors

To formalize our discussion of imperfect randomness, we need a mathematical

model. In this thesis, unless otherwise stated, we use a very general model: general

weak random sources. A general weak random source is some arbitrary probability

distribution, and the only constraint is that it contains a certain amount of entropy.

Here we use the standard notion of min-entropy– a general weak random source is

said to have min-entropy k if the probability of getting any particular string from the

source is at most 2−k. A weak random source on n bits with min-entropy k is called

an (n, k)-source. In the past, the problem of using general weak random sources in

algorithms has been studied extensively, and efficient solutions are provided even for

weak random sources with very small min-entropy. The focus of this thesis, however,

is the study of using general weak random sources in distributed computing and

cryptography.

A very useful tool in dealing with weak random sources is the extractor. An

extractor is an algorithm that takes as input one or more weak random sources, and

outputs a distribution that is close to uniform in statistical distance. Given such an

algorithm, we can first convert the weak random sources into distributions that are

close to being uniform, and then use these distributions in standard applications that

require uniform random bits.

Another reason for constructing explicit extractors is that these are functions

that resemble many properties of random functions. For example, under certain condi-

tions it can often be shown that a random function is a good extractor with high prob-

ability. Other objects that resemble the properties of random functions include for
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example expander graphs, error-correcting codes, hard functions and pseudo-random

generators. In fact, these objects are related to each other and since they somehow

look like random functions, they can often be used to derandomize applications that

require many uniform random bits. The problem of derandomization is also related

to some central open questions in complexity theory. For example, giving a certain

kind of explicit hard function (again, a random function is such a hard function with

high probability, but is not explicit) would imply that BPP = P [NW94, IW97].

Therefore, finding explicit constructions of extractors would help us gain insights into

the larger area of derandomization. In the past the problem of constructing certain

kinds of efficient extractors has been studied extensively. In this thesis we also make

improvements over previous results on extractor constructions.

1.3 Main Results

We summarize our main results in the following three sections.

1.3.1 Distributed Computing and Cryptography with Weak Random Sources

The problem of doing distributed computing with imperfect randomness was

first studied by Goldwasser, Sudan, and Vaikuntanathan [GSV05]. There they showed

that the task is possible, but the weak random sources they considered are fairly

restricted and they only achieved entropy δn, assuming that each process starts with

an n-bit weak random string. They then raised the question of whether the task

is possible with general weak random sources. In this thesis we provide a positive

answer to this question.
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The problem of using weak random sources in cryptography has been studied

by many researchers [MW97b, DS02, DO03, DOPS04, CPS07]. The most impressive

work is probably the negative result of Dodis et al. [DOPS04], where they showed

that almost all classical cryptographic tasks are impossible with just one general weak

random source. However, in the setting of several independent weak random sources,

a lot more can be done.

In this thesis, we provide a general framework to solve the problem of using

weak random sources in these applications. Our solution is similar to extractors: we

first develop a way to convert the weak random sources into distributions that are

close to uniform in statistical distance. While the correct tool for a single weak

random source is the extractor, here we have a network of players where each of them

has a weak random source, and the correct tool turns out to be network extractors.

In this thesis, we define network extractors, which are information theoretic

objects similar to extractors, and computational network extractors, which are the

counterparts in the computational setting. Informally speaking, assume that we have

a network of p parties, such that t of them are corrupted by an adversary and each

of the honest parties has access to an (independent) weak random source. Our goal

is to build a network extractor protocol such that at the end of the protocol, some g

honest parties end up with private random bits that are close to uniform. Ideally we

want g = p− t; however, this is not generally achievable.

In the information theoretic setting, we assume that the adversary has un-

limited computational power and can see whatever message that is transmitted in

the network. Thus we require the outputs to be statistically close to uniform and

8



private. In the computational setting, we instead assume that the adversary is com-

putationally bounded (i.e., a polynomial time Turing machine or a polynomial size

circuit), and we only require that the outputs are computationally indistinguishable

from uniform and private.

In the information theoretic setting, we design several efficient network ex-

tractor protocols. Using our protocols, we show that if the weak random source has

min-entropy > n/2, then in synchronous networks we can do essentially as well as

the case where each party has truly uniform random bits. We then show that both

in synchronous networks and asynchronous networks, a linear fraction of corrupted

parties can be tolerated even when the weak random sources only have min-entropy

2logδ n for an arbitrary constant 0 < δ < 1. These results imply protocols for Byzan-

tine Agreement and Leader Election where each player only has a (independent) weak

random source.

In the computational setting, under standard computational assumptions, we

construct computational network extractor protocols such that even if 99% of the

parties are corrupted, in the end 99% of the honest parties end up with private

random bits. Under the assumption that strong one way permutations exist, we

design computational network extractor protocols where all honest parties end up

with private random bits. Moreover, we show that if the weak random sources have

linear entropy, then it suffices to have just two honest parties. If the weak random

sources have entropy nδ, then it suffices to have just a constant number of honest

parties. As a corollary, we show that secure multi-party computation is possible

under these two circumstances. Our result is essentially optimal in the case of linear
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entropy since the negative result of [DOPS04] implies that the task is impossible with

just one honest party.

This part of work is based on joint work with Yael Kalai, Anup Rao and

David Zuckerman [KLRZ08, KLR09]. The detailed results appear in Chapter 4 and

Chapter 5.

1.3.2 Improved Constructions of Extractors

As mentioned earlier, a very useful and standard tool in these applications is

the extractor. In this thesis we also give improved constructions of certain kinds of

extractors.

Ideally, we want an algorithm Ext : {0, 1}n → {0, 1}m such that given any

(n, k)-source X, Ext(X) is close to being uniform. However, it is not hard to show

that this is impossible even if k is as large as n−1. Given this negative result, several

different directions have been explored by researchers.

One possibility is to give the extractor an additional independent short ran-

dom seed. With the help of the seed the task becomes possible. Such extractors are

thus called seeded extractors. In fact, most such extractors are “strong”, in the sense

that the output is close to being uniform even given the random seed. Strong seeded

extractors provide an optimal solution to the problem of simulating randomized algo-

rithms using weak random sources, and a long line of research has resulted in seeded

extractors with almost optimal parameters [LRVW03, GUV09, DW08, DKSS09].

Another direction is to study extractors for special classes of sources, which are

sources that have certain structures. These include for example samplable sources
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[TV00], bit-fixing sources [KZ07, GRS04], affine sources [GR05, Bou07], indepen-

dent sources [BIW04, BKS+05, Raz05, Rao06, BRSW06] and small space sources

[KRVZ06].

The results in this thesis fall into both kinds. Specifically, in this thesis we

construct extractors for independent sources and affine sources, as well as a special

case of strong seeded extractors known as non-malleable extractors. The detailed

results appear in Chapter 6.

1.3.2.1 Extractors for Independent Sources

In this model, the extractor is given as input several independent weak random

sources, and is supposed to output a distribution that is close to being uniform. Using

the probabilistic method, it can be shown that there exists an extractor for just two

independent weak random sources, with each having only logarithmic min-entropy.

However, despite considerable efforts on this problem [CG88, BIW04, BKS+05, Raz05,

Bou05, Rao06, BRSW06], the known constructions are far from achieving these pa-

rameters. Previously, the best explicit extractor for two independent (n, k) sources

only achieves min-entropy k ≥ 0.499n [Bou05], the best known extractor for three

independent sources achieves min-entropy k ≥ n0.9 [Rao06], and the best explicit

extractor for independent (n, nα) sources requires O(1/α) sources [Rao06, BRSW06].

In this thesis, we improve these results. Based on joint work with Kalai and

Rao [KLR09], we give an efficient construction of two-source extractors for any linear

entropy δn, based on a non-standard but reasonable computational assumption. The

assumption is that there exist one-way permutations that are very hard to invert.
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A candidate one-way permutation is given in [Gol09]. In fact, our construction can

even work for entropy nα for some constant 1/2 < α < 1 if the one-way permutation

is sufficiently hard to invert. Our construction also has other nice properties that

enable its applications in cryptography. In the case of three independent sources, we

give an unconditional explicit extractor that works for min-entropy k = n1/2+α for

any constant 0 < α < 1/2.

1.3.2.2 Extractors for Affine Sources

An affine source is the uniform distribution over some unkown affine subspace

of a vector space. In this thesis we focus on the case where the underlying field of

the vector space is F2. Here the entropy of the source is equal to the dimension of

the affine subspace.

An affine extractor is a deterministic function such that given any affine source

as the input, the output of the function is statistically close to the uniform distri-

bution. A weaker object, called an affine disperser, only requires that the output

distribution has a large support size.

Using the probabilistic method, it can again be shown that there exists a

deterministic affine extractor for any (n, k) affine source, as long as k > 2 log n and

m < k −O(1). However, again the known constructions are far from achieving these

parameters. In this thesis we make progress towards constructing optimal affine

extractors. We give an affine extractor that works for entropy k = n/
√

log log n and

an affine disperser for entropy k = n/
√

log n that both output nΩ(1) bits.
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1.3.2.3 Non-malleable Extractors

A non-malleable extractor is a strong seeded extractor, with some additional

properties. In fact, it dramatically strengthens the property of a strong extractor in

the following sense. For a strong extractor, the output must be close to the uniform

distribution, even given the random seed. For a non-malleable extractor, the output

must be close to the uniform distribution, even given the random seed as well as the

output of the extractor with the given input and an arbitrarily correlated random

seed.

This kind of extractors was first proposed by Dodis and Wichs [DW09] to

construct protocols for privacy amplification. Using the probabilistic method, they

showed that non-malleable extractors exist with good parameters. However, they were

not able to construct such non-malleable extractors. In this thesis, we construct the

first explicit non-malleable extractors, based on a widely-believed conjecture about

the distribution of prime numbers in arithmetic progressions. This part of work

is based on joint work with Yevgeniy Dodis, Trevor Wooley and David Zuckerman

[DLWZ11].

1.3.3 Privacy Amplification with an Active Adversary

This problem has also been studied by many researchers [MW97b, DKRS06,

RW03, KR09a, DW09, CKOR10], and again typical assumptions are that the two

parties have access to local private uniform random bits.

In this thesis we make two improvements over previous results. First, we show

that the two parties can use local weak random sources instead of truly uniform
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random bits. In the case where the two parties have two independent n-bit sources

with min-entropy > n/2, they can do essentially as well as the case where they

have truly random bits. In the case where the two parties only have independent

n-bit sources with entropy δn for an arbitrary constant 0 < δ < 1, they can achieve

privacy amplification with security parameter up to Ω(log k), where k is the entropy

of the shared weak random source. These results give the first protocols for privacy

amplification with local weak random sources.

Second, even in the case where the two parties have access to local uniform

random bits, we improve the parameters of previous protocols. The two parameters

that matter most in such protocols are the round complexity and the entropy loss.

Assume we want to achieve a security parameter of `. Non-constructively, Dodis and

Wichs [DW09] showed that there exists a two round protocol that achieves entropy

loss O(`). However, previously, only one of the two optima could be achieved explic-

itly: we can either achieve a round complexity of 2 at the price of entropy loss O(`2)

[DW09] or achieve entropy loss O(`) at the price of round complexity O(`) [CKOR10].

In this thesis we improve these results. In the case where the shared weak random

source has min-entropy rate > 1/2, we give the first protocol that simultaneously

achieves both optima– round complexity 2 and entropy loss O(`). In the case where

the shared weak random source has any linear min-entropy, we give a protocol that

runs in O(1) rounds and achieves optimal entropy loss O(`). A key ingredient in our

protocols is the non-malleable extractor that we construct.

Part of this work is based on joint work with Yevgeniy Dodis,Trevor Wooley

and David Zuckerman [DLWZ11]. The detailed results appear in Chapter 7.
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1.4 Organization of this Thesis

In Chapter 2 we give some basic definitions to set up the mathematical model

that we will study. In Chapter 3 we give some previous works that will be used in our

results. Since some part of this chapter is pretty technical and complicated, readers

are encouraged to skip this chapter on the first reading, and to return to it whenever

necessary. Following this, in Chapter 4 we discuss our constructions for distributed

computing with weak random sources, in Chapter 5 we discuss our constructions for

cryptography with weak random sources. Chapter 6 gives our improved constructions

of extractors. Finally in Chapter 7 we present our protocols for privacy amplification.
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Chapter 2

Basic Definitions

This chapter consists of a comprehensive listing of the formal definitions and

basic facts that we will use throughout the thesis. We also include here many technical

lemmas that will be used later in this thesis.

Throughout this thesis, we use common notations such as ◦ for concatenation

and [n] for {1, 2, · · · , n}. All logarithms are to the base 2, unless otherwise stated.

We often use capital letters for random variables and corresponding small letters for

their instantiations.

We will use the convention that N = 2n,M = 2m and K = 2k. We will use

Um to denote the uniform distribution over {0, 1}m.

2.1 Statistical Distance

Definition 2.1.1 (statistical distance). Let D and F be two distributions on a set

S. Their statistical distance is

|D − F | def= max
T⊆S

(|D(T )− F (T )|) =
1

2

∑
s∈S

|D(s)− F (s)|

If |D − F | ≤ ε we say that D is ε-close to F .

This measure of distance is nice because it is robust in the sense that if two
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distributions are close in this distance, then applying any functions to them cannot

make them go further apart.

Proposition 2.1.2. Let D and F be any two distributions over a set S s.t. |D−F | ≤

ε. Let g be any function on S. Then |g(D)− g(F )| ≤ ε.

2.2 Convex Combinations

A very useful concept in constructing extractors is the convex combination.

We have the following definition.

Definition 2.2.1. A distributionX is a convex combination of distributionsX1, X2, · · · , X`

if there exist positive constants α1, α2, · · · , α` such that

•
∑

i αi = 1.

• For every x ∈ supp(X), Pr[X = x] =
∑

i αi Pr[Xi = x].

A simple example of this concept, and one that we will often use in this thesis

is the following. Suppose X and Y are two random variables in the same probability

space, then the distribution of X is a convex combination of the distributions X|Y =

y, for every y ∈ supp(Y ).

The reason why the concept of convex combination is useful is that, in many

situations, when a distribution is a convex combination of several distributions with

some nice property, the distribution itself will also have this nice property. For ex-

ample, we have the following proposition.
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Proposition 2.2.2. [Rao07b](Preservation of properties under convex combination).

Let A,B,Q be distributions over the same finite probability space such that

Pr
q←RQ

[|(A|q = q)− (B|Q = q)| ≥ ε1] < ε2,

then |A−B| < ε1 + ε2.

The above proposition is often used to show that the output of an extractor

is close to the uniform distribution.

2.3 Min-Entropy and Sources of Randomness

Definition 2.3.1. The min-entropy of a random variable X is defined as

H∞(X) = minx∈supp(X){− log2 Pr[X = x]}.

We say X is an (n, k)-source if X is a random variable on {0, 1}n and H∞(X) ≥ k.

When n is understood from the context we simply say that X is a k-source.

Lemma 2.3.2. Let X be an (n, k) source. Let S ⊆ [n] with |S| = n′. Let X|S denote

the projection of X to the bit locations in S. Then for every l, X|S is 2−l-close to a

(n′, k − (n− n′)− l) source.

Proof. Let S be the complement of S.

Then X|S is a convex combination over X|S. For each setting of X|S = h, we

induce the distribution X|S|X|S = h.
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Define H = {h ∈ {0, 1}n−n′|H∞(X|S|X|S = h) < n′ − n + k − l}. Notice that

H∞(X|S|X|S = h) = H∞(X|X|S = h). Then by Proposition 2.3.8, for every h ∈ H,

Pr[X|S = h] < 2k−(n−n′)−l−k = 2−(−n′+n+l). Since |H| ≤ 2n−n
′
, by the union bound we

get that Pr[X|S ∈ H] ≤ 2−l].

2.3.1 Block Sources and Conditional entropy.

A block source is a source broken up into a sequence of blocks, with the

property that each block has min-entropy even conditioned on previous blocks.

Definition 2.3.3 (Conditional Min-Entropy). Given random variables A,B in the

same probability space, we define the conditional min-entropy

H∞(A|B) = min
b
H∞(A|B = b)

Definition 2.3.4 (Block sources). A distribution X = X1, X2, · · · , XC is called a

(k1, k2, . . . , kC)-block source if for all i = 1, . . . ,C, we have thatH∞(Xi|Xi−1, . . . , X1) ≥

ki. If ki = k for every i, we say that X is a k-block source.

If X = X1, · · · , Xt is a random variable (not necessarily a block source) over

{0, 1}n divided into t blocks in some way, and x1, . . . , xi are some strings with 0 ≤

i < t, we use the notation X|x1, . . . , xi to denote the random variable X conditioned

on X1 = x1,. . .,Xi = xi. For 1 ≤ i < j ≤ t, we denote by Xi,...,j the projection of X

into the blocks Xi, . . . , Xj. The following lemma is useful to prove that a distribution

is close to a block source.

Lemma 2.3.5. Let X = X1, . . . , Xt be t dependent random variables. For every

i = 1, 2, . . . , t, let X i denote the concatenation of the first i variables. Suppose each
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X i takes values in {0, 1}ni and for every i = 1, 2, . . . , t, X i is εi-close to ki-light, with∑
i εi < 1/10. Then for every ` > 10 log t we must have that X is

∑t
i=1 εi+ t2−`-close

to a block source, where each block Xi has min-entropy ki − ni−1 − 1− `.

Proof. We will need to define the notion of a submeasure. Let n = nt. Say that

M : {0, 1}n → [0, 1] is a submeasure on {0, 1}n if
∑

m∈{0,1}nM(m) ≤ 1. Note that

every probability measure is a submeasure. We abuse notation and let M(xi) denote

the marginal measure induced on the first i coordinates.

We say a submeasure on {0, 1}n is ε-close to k-light if∑
m∈{s:M(s)>2−k}

M(m) ≤ ε.

Note that when M is a probability measure, the above corresponds to saying

that M is ε-close to having min-entropy k.

As usual, for any event A ⊂ {0, 1}n, we denote Pr[M ∈ A] =
∑

m∈AM(m).

We now define the submeasures Mt+1 = X, and for i = t, t− 1, t− 2, . . . , 1,

Mi(m) =

{
0 M i

i+1(mi) > 2−ki ∨M i
i+1(mi) < 2−ni−`

Mi+1(m) otherwise

Let M = M1. Now note that for every j < i, M j
i is εj-close to kj-light, since

we only made points lighter in the above process. Further, for all m and i ≤ j,

M j
i (mj) ≤ 2−kj , since we reduced the weight of all m’s that violated this to 0. We

also have that for every m, i, M i(mi) = 0 or M i(mi) ≥ 2−ni−` by our construction.

Now define the sets Bi = {m ∈ {0, 1}n : Mi(m) 6= Mi+1(m)}. Set B = ∪iBi.

Then note that Pr[X ∈ B] ≤
∑t

i=2 Pr[Mi+1 ∈ Bi]. Each Bi, contains two types
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of points: points that were removed when moving from Mi+1 to Mi because they

were too heavy, and points that were removed because they were too light. We set

Ci = {m : Mi+1(mi) > 2−ki}, namely the “too heavy” points. We see that Pr[Mi+1 ∈

Ci] ≤ εi, since M i
i+1 is εi-close to ki-light. Set Di = {m : Mi+1(mi) < 2−ni−`}, namely

the “too light” points. We get Pr[Mi+1 ∈ Di] < 2−` by the union bound. Using both

these estimates, we get that Pr[X ∈ B] ≤
∑t

i=1 Pr[Mi+1 ∈ Bi] ≤
∑t

i=1 Pr[Mi+1 ∈

Ci] + Pr[Mi+1 ∈ Di] ≤
∑

i εi + t2−`.

Now define the distribution Z = X|X /∈ B. Then Z is
∑

i εi + t2−`-close to

X. For every i and z ∈ supp(Z), we have that Pr[Zi = zi|Zi−1 = zi−1] = Pr[Zi =

zi]/Pr[Zi−1 = zi−1] ≤ 2−ki+1/2−ni−1−` (since every point at most doubles in weight

over M), which proves the lemma.

Let X = X1, · · · , Xt be a random variable over {0, 1}n divided into t blocks

in some way, and x1, . . . , xi are some strings with 0 ≤ i < t. We use the notation

X|x1, . . . , xi to denote the random variable X conditioned on X1 = x1,. . .,Xi = xi.

For 1 ≤ i < j ≤ t, we denote by Xi,...,j the projection of X onto the blocks Xi, . . . , Xj.

Next we show that any weak source with linear min-entropy can be divided

into a constant number of blocks, such that the source is close to a convex combination

of block sources.

Lemma 2.3.6. Let X be an (n, αn) source for some constant 0 < α < 1. Let t = 4
α

.

Divide X evenly into t blocks X = X1 ◦X2 ◦ · · · ◦Xt. Then X is 2−Ω(n)-close to being

a convex combination of sources {Xj}j∈J such that for every j there exists g ∈ [t] for

which
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• Xj
1 , . . . , X

j
g−1 is fixed.

• H∞(Xj
g) ≥ α2

6
.

• H∞(X|Xj
g) ≥ α2

6
.

To prove this lemma, first we need the definition of a subsource.

Definition 2.3.7 (Subsource). Given random variables X and X ′ on {0, 1}n we

say that X ′ is a deficiency-d subsource of X and write X ′ ⊆ X if there exits a set

A ⊆ {0, 1}n such that (X|A) = X ′ and Pr[x ∈ A] ≥ 2−d.

Proposition 2.3.8. Let X be a random variable with H∞(X) = k. Let X ′ ⊂ X be

a subsource of deficiency d corresponding to some set A ⊂ {0, 1}n. Then H∞(X ′) =

k − d.

Lemma 2.3.9 ([BRSW06]). Let X be a random variable over {0, 1}n such that X

is ε-close to an (n, k) source with ε ≤ 1/4. Then there is a deficiency 2 subsource

X ′ ⊆ X such that X ′ is a (n, k − 3) source.

More generally, we have the statement that conditioning on typical values of

any function cannot reduce the min-entropy of our source by much more than we

expect.

Lemma 2.3.10 (Fixing a function). [BRSW06] Let X be a distribution over {0, 1}n,

F : {0, 1}n → {0, 1}m be a function, and ` ≥ 0 some number. For every s ∈

supp(F (X)), define Xs to be the subsource X|F (X) = s. Then there exists s ∈ {0, 1}m
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for which Xs has deficiency at most m. Furthermore, we have that

Pr
s←RF (X)

[deficiency of Xs ≤ m+ `] ≥ 1− 2−`

Proof. Let S be the set of s ∈ {0, 1}m such that Pr[F (x) = s] < 2−m−`. Since

|S| ≤ 2m, we have that Pr[F (X) ∈ S] < 2−`. If we choose s←R F (X) and s /∈ S, we

get that X|F (X) = s has deficiency ≤ m+ `. Choosing ` = 0 we get the first part of

the proposition.

We next give a lemma that is used to prove Lemma 2.3.6.

Lemma 2.3.11 (Fixing Entropies). Let X = X1 ◦X2 ◦ · · · ◦Xt be a t-block random

variable over {0, 1}n. Fix any s > 0 and let 0 = τ1 < τ2 < · · · < τc+1 = n be some

numbers. There exists a universe U such that for every X there exists a set of random

variables {Xj}j∈U and a random variable J over U , such that X = XJ (i.e., X is a

convex combination of {Xj}j∈U). {Xj} has the following properties:

• For every j ∈ U s.t. Pr[J = j] > 0, there exists a sequence ēj = ej1, · · · , e
j
t ∈ [c]t

such that for every 0 < i ≤ t and every sequence x1, · · · , xi−1 ∈ Supp(Xj
1,··· ,i−1);

τeji
< H∞(Xj

i |x1, · · · , xi−1) ≤ τeji+1

• with probability 1 − t2−s over J , Xj is a subsource of X with deficiency <

t2 log c+ ts.
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Proof. We prove this by induction on t. The base case where t = 1 is trivially true.

Now suppose this is true for up to t−1 blocks and we’ll prove it for t blocks. For every

x1 ∈ Supp(X1) define the source Y (x1) to be X2,··· ,t|x1. By the induction hypothesis,

there exists a universe U ′ and a random variable J ′ over U ′ such that Y (x1) = Y J ′ .

For every j′ ∈ U ′ s.t. Pr[J ′ = j′] > 0 there exists a sequence ēj′(x1) ∈ [c]t−1

such that Y j′ satisfies the first property with respect to ēj′(x1). Define the function

Fj′ : X1 → [c]t−1 that maps x1 to ēj′(x1).

Now let the new universe be U = Range(F (X1))×U ′. Note that U is the same

for all X. Define the new random variable J over U such that the event J = (ē, j′)

stands for (J ′ = j′, Fj′(X1) = ē). Then the convex combination X = XJ satisfies

property 1. Moverover, by Lemma 2.3.10, with probability 1 − 2−s, X1|Fj′(X1) = ē

is a deficiency (t− 1) log c+ s subsource of X1, and by the induction hypothesis with

probability 1− (t− 1)2−s over J ′, Y j′ is a deficiency (t− 1)2 log c+ (t− 1)s subsource

of Y (x1). Thus with probability at least 1− (t−1)2−s−2−s = 1− t2−s, the deficiency

of Xj is at most (t− 1)2 log c+ (t− 1)s+ (t− 1) log c+ s < t2 log c+ ts.

Corollary 2.3.12. If in the lemma above X has min-entropy k, and Xj is a deficiency

t2 log c+ ts subsource of X as in property 2 with ēj the sequence corresponding to Xj

as in property 1, then
∑t

i=1 τeji+1 ≥ k − t2 log c− ts.

Proof. If this was not the case, we could find some string in the support of X that is

too heavy. Specifically, we take the heaviest string allowed in each successive block

to get x = x1 ◦ x2 ◦ · · · ◦ xt. Then it must be Pr[Xi = xi|x1, · · · , xi−1] ≥ 2
−τ

e
j
i
+1

for any 0 < i ≤ t. Together with the fact that Xj has deficiency < t2 log c + ts
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we get Pr[X = x] > 2−(t2 log c+ts)Πt
i=12

−τ
e
j
i
+1 = 2−(t2 log c+ts)2

−
∑t
i=1 τej

i
+1 > 2−k. This

contradicts the fact that X has min-entropy k.

Proof of Lemma 2.3.6. We’ll use Lemma 2.3.11. Let the parameters in that

lemma be s =
√
k, c = 6

α2 and τi = i−1
c
n for 0 < i ≤ c+ 1. Then Lemma 2.3.11 shows

that X is a convex combination of {Xj}j∈U and with probability 1−t2−s = 1−2−n
Ω(1)

,

Xj is a subsource with deficiency < t2 log c + ts < 0.01k. Now Corollary 2.3.12 says

that for such a Xj, we must have
∑t

i=1 τeji+1 ≥ k − t2 log c − ts > 0.99k. We now

show that there must exist at least two eji ’s s.t. eji ≥ 2. Otherwise suppose there is at

most one eji s.t. eji ≥ 2. For eji = 1 we have τeji+1 = τ2 = n
c
. For eji ≥ 2 we have the

min-entropy of the block Xj
i conditioned on any fixing of previous blocks is at most

n
t
. Assume for the sake of simplicity that n

ct
= 1.5

α
is an integer, thus n

t
appears in set

{τi} and we must have τeji+1 ≤
n
t
. Therefore

∑t
i=1 τeji+1 ≤

n
c
(t − 1) + n

t
< tn

c
+ n

t
=

2α
3
n+ α

4
n < 0.99αn = 0.99k, which is a contradiction.

Thus, there must exist at least two eji ’s s.t. eji ≥ 2, so τeji
≥ n

c
= α2

6
n. Let

0 < i1 < i2 ≤ t be the two corresponding i’s. Let g = i1 and further condition on any

fixing of Xj
1 , . . . , X

j
g−1. Now by Lemma 2.3.11, we see X is 2−Ω(n)-close to being a

convex combination of sources {Xj}j∈J that satisfy the properties in Lemma 2.3.6.

We use the following standard lemma about conditional min-entropy. (For a

proof, we refer the reader to the proof of Lemma 5 in [MW97a]).

Lemma 2.3.13. Let X and Y be random variables and let Y denote the range of Y .
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Then for all ε > 0

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε

Sometimes a random variable may only be close to having a certain amount

of min-entropy, and we have the following lemma, which can be viewed as a general-

ization of Lemma 3.5.14.

Lemma 2.3.14. Let X be an (n, k)-source and X ′ be a random variable such that

|X −X ′| < ε. Let Z be another random variable and Z denote the range of Z. Then

for all ε1 > 0

Pr
Z

[
(X ′|Z = z) is

ε|Z|
ε1

close to having min-entropy k − log |Z| − log

(
1

ε1

)]
≥ 1−ε1

Proof. For a particular Z = z, Pr[X ′ = x′|Z = z] = Pr[X′=x′,Z=z]
Pr[Z=z]

. Since X is an

(n, k)-source X must have size of support at least 2k. Choose a subset S in the

support of size ε12k/|Z| and let X̄ be the source that is uniformly distributed on S.

Then H∞(X̄) = k − log |Z| − log(1/ε1). Let R be the set {r ∈ S : Pr[X ′ = r|Z =

z] > |Z|/(ε12k)}, then

|(X ′|Z = z)− X̄| =
∑
r∈R

(Pr[X ′ = r|Z = z]− |Z|/(ε12k)).

If Pr[Z = z] > ε1
|Z| , then

|X ′|(Z = z)− X̄| <
∑
r∈R

Pr[X ′ = r, Z = z]− 2−k

ε1/|Z|
≤
∑

r∈R Pr[X ′ = r]− Pr[X = r]

ε1/|Z|

≤ ε

ε1/|Z|
=
ε|Z|
ε1

.

26



The probability this does not happen is at most ε1
|Z| |Z| = ε1.

Sometimes we need the definition of average conditional min-entropy.

Definition 2.3.15. The average conditional min-entropy is defined as

H̃∞(X|W ) = − log
(

Ew←W

[
max
x

Pr[X = x|W = w]
])

= − log
(
Ew←W

[
2−H∞(X=x|W=w)

])
.

Average conditional min-entropy tends to be useful for cryptographic appli-

cations. It is an essentially weaker notion than min-entropy, as min-entropy implies

average conditional min-entropy with a small loss in parameters. We have the follow-

ing lemmas.

Lemma 2.3.16 ([DORS08]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )−

s] ≥ 1− 2−s.

Lemma 2.3.17 ([DORS08]). If a random variable B has at most 2` possible values,

then H̃∞(A|B) ≥ H∞(A)− `.

2.3.2 Somewhere Random Sources

Definition 2.3.18 (Somewhere Random sources). A source X = (X1, · · · , Xt) is

(t× r) somewhere-random (SR-source for short) if each Xi takes values in {0, 1}r and

there is an i such that Xi is uniformly distributed.

Definition 2.3.19. An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt),

such that some Xi is a k-source. A somewhere k-source is a convex combination of

elementary somewhere-k-sources.
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Definition 2.3.20. (aligned SR-source) [Rao06] We say that a collection of SR-

sources X1, · · · , Xu is aligned if there is some i such that the i’th row of every SR-

source in the collection is uniformly distributed.

2.3.3 Affine Sources

Definition 2.3.21. (affine source) Let Fq be the finite field with q elements. De-

note by Fnq the n-dimensional vector space over Fq. A distribution X over Fnq is an

(n, k)q affine source if there exist linearly independent vectors a1, · · · , ak ∈ Fnq and

another vector b ∈ Fnq s.t. X is sampled by choosing x1, · · · , xk ∈ F uniformly and

independently and computing

X =
k∑
i=1

xiai + b.

In this thesis we focus on the case where q = 2 and we will just write (n, k)

affine sources instead of (n, k)2 affine sources.

In the case of affine sources, the min-entropy coincides with the standard

Shannon entropy, and we will just call it entropy.

The following lemma explains the behavior of a linear function acting on an

affine source.

Lemma 2.3.22. (Affine Conditioning). Let X be any affine source on {0, 1}n. Let

L : {0, 1}n → {0, 1}m be any linear function. Then there exist independent affine

sources A,B such that:
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• X = A+B.

• For every b ∈ Supp(B), L(b) = 0.

• H(A) = H(L(A)) and there exists an affine function L−1 : {0, 1}m → {0, 1}n

such that A = L−1(L(A)).

Proof. Without loss of generality, assume the support of X is a linear subspace (if

not, we can do the analysis for the corresponding linear subspace, and then add the

affine shift). Consider the set {x ∈ Supp(X) : L(x) = 0}. Note that this set is a

linear subspace. Let B be the affine source whose support is this subspace and let

b1, ..., bt be a basis for this subspace. Next we complete the basis to get a basis for

the support of X. Let A be the affine source whose support is the span of the basis

vectors in the completed basis that are not in B. Thus X = A+B.

Note that H(A) ≤ H(L(A)) since L(a) 6= 0 for every a ∈ Supp(A). On the

other hand, since L is a deterministic function we have H(L(A)) ≤ H(A). Thus

H(A) = H(L(A)). In other words, L is a bijection between Supp(A) and Supp(L(A)).

Let Y = L(A). Since A is an affine source there exists a vector a ∈ {0, 1}n such that

A = a+ Ā where Ā is the uniform distribution over a linear subspace. Thus

Y = L(A) = L(a) + L(Ā).

Let Ȳ = Y − L(a) = L(Ā). Since L is a linear function and Ā is uniform

distributed over a linear subspace, Ȳ is also uniformly distributed over a linear sub-

space. Note that H(Ȳ ) = H(Y ) = H(L(A)) = H(L(Ā)), thus L is a linear bijection
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between the linear subspaces of Supp(Ā) and Supp(Ȳ ). Therefore there exists a linear

function L′ such that Ā = L′(Ȳ ). Thus

A = a+ Ā = a+ L′(Ȳ ) = a+ L′(Y − L(a)) = L′(Y ) + a− L′(L(a)).

Take L−1 to be the affine function L′+a−L′(L(a)). Then A = L−1(L(A)).

Now we have the following lemma that exhibits a nice structure of affine

sources.

Lemma 2.3.23. Let X be any affine source on {0, 1}n. Divide X into t arbitrary

blocks X = X1 ◦X2 ◦ ... ◦Xt. Then there exist positive integers k1, ..., kt such that,

• ∀j, 1 ≤ j ≤ t and ∀(x1, .., xj−1) ∈ Supp(X1, .., Xj−1), H(Xj|X1=x1,...,Xj−1=xj−1
) =

kj.

•
∑t

i=1 ki = H(X).

Proof. For any i, 1 ≤ i ≤ t, let Yi = X1 ◦X2 ◦ ... ◦Xi. Note Yi is a linear function of

X, thus Yi is also an affine source. Now for any j, note that Yj−1 is a linear function

Lj of Yj. Thus by Lemma 2.3.22, there exist independent affine sources Aj, Bj such

that Yj = Aj + Bj, H(Lj(Yj)) = H(Aj) and for every b ∈ Supp(B), Lj(b) = 0. This

implies that Yj−1 = Lj(Yj) = Lj(Aj +Bj) = Lj(Aj). Now since H(Lj(Yj)) = H(Aj),

we have that ∀(x1, .., xj−1) ∈ Supp(X1, .., Xj−1), there exists a unique aj ∈ Supp(Aj)

such that Lj(aj) = (x1, .., xj−1).
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Let kj = H(Bj). Then,

H(Xj|X1=x1,...,Xj−1=xj−1
) = H(Xj|Aj=aj) = H(Yj|Aj=aj) = H(Aj+Bj|Aj=aj) = H(Bj) = kj

where the last equality holds because Aj, Bj are independent.

Next, observe that H(Yj) = H(Aj)+H(Bj) = H(Lj(Yj))+H(Bj) = H(Yj−1)+

kj. A simple induction thus gives that

t∑
i=1

ki = H(X).

This lemma essentially says that if we divide an affine source into several

blocks, then a block has the same entropy conditioned on any fixing of the previous

blocks. Moreover, the sum of these entropies equals the entropy of the original source.

Thus we can view each block as carrying some fixed additional entropy, regardless of

what the previous blocks are. We note that this is very different from general weak

random sources.

2.4 Cryptographic Definitions

Definition 2.4.1. A function µ(·) is negligible if for every polynomial q(·) there

exists a value N such that for all n > N it holds that µ(n) < 1/q(n).

Definition 2.4.2. Let D = {Dn}n∈N and F = {Fn}N∈N be two distribution ensem-

bles. We say that D and F are computationally indistinguishable, denoted by

31



D ≈ F , if for every non-uniform algorithm A running in time poly(n) there exists a

negligible function ε such that for every n ∈ N,

|Pr[A(Dn) = 1]− Pr[A(Fn) = 1]| ≤ ε(n).

Remark. Often we abuse notation, and let Dn ≈ Fn denote the fact that the two

ensembles are computationally indistinguishable.

Definition 2.4.3. If D = {Dn}n∈N and F = {Fn}N∈N are two distribution ensembles,

and there exists a negligible function ε(n) such that for every n ∈ N,

|Dn − Fn| ≤ ε(n),

then we say that D and F are statistically close, and denote it by

D ≡ F .

Remark. Often we abuse notation, and let Dn ≡ Fn denote the fact that the two

ensembles are statistically close.

Lemma 2.4.4. Let {Xn} and {Yn} be two distribution ensembles. Let E = {En} be

a sequence of events for which there exists a negligible function ε such that Pr[En] =

1− ε(n). Then {Xn|En} ≈ {Yn|En} implies that {Xn} ≈ {Yn}.

We will also use the the following generalization of Lemma 2.4.4.

Lemma 2.4.5. Let {Xn} and {Yn} be two distribution ensembles. Let J be a set

such that for every j ∈ J , Ej = {Ej
n} is a sequence of events for which {Xn|Ej

n} ≈
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{Yn|Ej
n}. Then, if there exists a negligible function ε such that Pr[∪j∈JEj

n] = 1−ε(n),

then {Xn} ≈ {Yn}.
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Chapter 3

Building Blocks

In this chapter we describe some of the tools and previous works that we will

use in this thesis. Readers can skip this chapter in a first reading, and return for

more details when clarification is needed in later chapters.

3.1 Extractors, Dispersers, Mergers and Condensers

Definition 3.1.1. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong seeded

extractor for min-entropy k and error ε if for every min-entropy k source X,

|(Ext(X,R), R)− (Um, R)| < ε,

where R is the uniform distribution on d bits independent of X, and Um is the uniform

distribution on m bits independent of R.

Definition 3.1.2. A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a strong two

source extractor for min-entropy k1, k2 and error ε if for every independent (n1, k1)

source X and (n2, k2) source Y ,

|(TExt(X, Y ), X)− (Um, X)| < ε
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and

|(TExt(X, Y ), Y )− (Um, Y )| < ε,

where Um is the uniform distribution on m bits independent of (X, Y ).

Definition 3.1.3. (affine extractor) A function AExt : Fnq → {0, 1}m is a deterministic

(k, ε)-affine extractor if for every (n, k)q affine source X,

|AExt(X)− Um| ≤ ε.

Here Um is the uniform distribution over {0, 1}m and | · | stands for the statistical

distance.

Definition 3.1.4. (affine disperser) A function ADisp : Fnq → {0, 1}m is a determin-

istic (k, ε)-affine disperser if for every (n, k)q affine source X,

|Supp(ADisp(X))| ≥ (1− ε)2m.

The function is called a zero-error disperser if ε = 0.

Definition 3.1.5. A function C : {0, 1}n×{0, 1}d → {0, 1}m is a (k → l, ε)-condenser

if for every k-source X, C(X,Ud) is ε-close to some l-source. When convenient, we

call C a rate-(k/n→ l/m, ε)-condenser.

Definition 3.1.6. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ε)-

somewhere-condenser if for every k-source X, the vector (C(X, y)y∈{0,1}d) is ε-close to
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a somewhere-l-source. When convenient, we call C a rate-(k/n→ l/m, ε)-somewhere-

condenser.

Definition 3.1.7 (Merger). A function M : ({0, 1}n)s × {0, 1}d → {0, 1}n is called

an (m, ε)-merger (of (n, s)-somewhere-random sources), if for every (n, s)-somewhere

random source X = (X1, · · · , Xs), and for R being uniformly distributed over {0, 1}d,

the distribution of M(X,R) is ε-close to having min-entropy m. We say that the

merger is strong if the average over r ∈ {0, 1}d of the statistical distance between

M(X, r) and an (n,m)-source is ≤ ε.

3.1.1 Strong Linear Seeded Extractors

We need the following definition and property of a specific kind of extractors.

Definition 3.1.8. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong seeded

extractor for min-entropy k and error ε if for every min-entropy k source X,

Pr
u←RUd

[|Ext(X, u)− Um| ≤ ε] ≥ 1− ε,

where Um is the uniform distribution on m bits. We say that the function is a linear

strong seeded extractor if the function Ext(·, u) is a linear function over GF(2), for

every u ∈ {0, 1}d.

Proposition 3.1.9 ([Rao09]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear strong

seeded extractor for min-entropy k with error ε < 1/2. Let X be any affine source

with entropy k. Then,
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Pr
u←RUd

[|Ext(X, u)− Um| = 0] ≥ 1− ε

3.1.2 Reconstructive Extractors

In this thesis we are going to use a special kind of extractors, called reconstruc-

tive extractors. Informally, the word “reconstructive” means that, if some algorithm

A can distinguish the output of the extractor from the uniform distribution with

some sufficiently large probability, then there is another algorithm that can use A to

reconstruct the input source. Following [Uma05], we define reconstructive extractors:

Definition 3.1.10. A (n, t,m, d, a, ε, δ)-reconstructive extractor is a triple of func-

tions:

• A polynomial time computable extractor function Ext : {0, 1}n × {0, 1}t →

{0, 1}m

• An advice function A : {0, 1}n × {0, 1}d → {0, 1}a

• A poly(n, 1/ε) time randomized oracle reconstruction procedure R : {0, 1}a →

{0, 1}n

That satisfy the property that for every x ∈ {0, 1}n and D : {0, 1}m → {0, 1} for

which

|Pr[D(Ext(x, Ut), Ut) = 1]− Pr[D(Um, Ut) = 1]| ≥ ε,

we must have that

Pr
w

[RD(A(x,w)) = x] ≥ δ.
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Note that Ext as above must be a seeded extractor for n bit sources with

entropy larger than a, since any function that distinguishes the output from uniform

can be used to get a procedure that guesses x with probability roughly 2−a.

We have the following theorem, which follows from the discussion in section 6

of [Uma05]:

Theorem 3.1.11 ([Uma05]). There is a constant β > 0 such that for every n, a, ε

with a = nΩ(1), there exists (n, t = O(log(n/ε))),m = nβ, d = O(log(n/ε)), a, ε, 1/2)

reconstructive extractor.

An almost immediate consequence of this theorem is the following theorem.

Theorem 3.1.12. For every n, k, ε with k = nΩ(1) and ε = 1
poly(nlogn)

, there is a

polynomial time computable function RExt : {0, 1}n × {0, 1}d → {0, 1}m such that

d = O(log(n/ε)), m = kΩ(1) and if f is a one way function for k/3 sources and X is

an (n, k) source, then for every distinguisher A of size poly(nlogn),

|Pr[A(f(X),RExt(X,Ud), Ud) = 1]− Pr[A(f(X), Um, Ud) = 1]| = negl(n).

Proof. We set RExt to be the reconstructive extractor promised by Theorem 3.1.11,

set up so that a = k/2.

Assume for the sake of contradiction that there was a distinguishing circuit D

of size poly(nlogn) and a polynomial q such that for infinitely many n’s,

|Pr[A(f(X),RExt(X,Ud), Ud) = 1]− Pr[A(f(X), Um, Ud) = 1]| ≥ 1

q(n)
.
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By a standard averaging argument we have

Pr
x←X

[|Pr[D(f(x),RExt(x, Ut), Ut) = 1]− Pr[D(f(x), Um, Ut) = 1]| ≥ 1

2q(n)
] ≥ 1

2q(n)

Note 1
2q(n)

≥ ε since ε = 1
poly(nlogn)

. Thus by the definition, there is a circuit RD

of size poly(n, 1/ε)size(D) = poly(nlogn) such that for every x s.t. |Pr[D(f(x),RExt(x, Ut), Ut) =

1] − Pr[D(f(x), Um, Ut) = 1]| ≥ 1
2q(n)

≥ ε, Pr[RD(f(x), A(x,W )) = x] = 1/2. Thus

we have

Pr[RD(f(X), A(X,W )) = X] ≥ 1

4q(n)
,

where the probability is over X and W .

By Lemma 3.5.14,

Pr
a←RA(X,W )

[H∞(X|A(X,W ) = a) ≥ k/3] ≥ 1− 2a+k/3−k = 1− 2−Ω(k).

Also, by averaging, we have that

Pr
a←RA(X,W )

[Pr[RD(f(X), A(X,W )) = X|A(X,W ) = a] ≥ 1

8q(n)
] ≥ 1

8q(n)
.

Note 1
8q(n)

≥ 2−Ω(k) since k = nΩ(1). Thus, by a union bound, there is some fix-

ing ofA(X,W ) = a for whichH∞(X|A(X,W ) = a) ≥ k/3 and Pr[RD(f(X), A(X,W )) =

X|A(X,W ) = a] ≥ 1
8q(n)

. This contradicts the fact that f is one-way for k/3-

sources.
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We also need the following lemma.

Lemma 3.1.13. Let X, Y be two independent random variables on {0, 1}n and Z be

a random variable on {0, 1}m that is independent of (X, Y ). Let f : {0, 1}n → {0, 1}d

and g : {0, 1}n × {0, 1}d → {0, 1}m be two deterministic functions. Let R = f(X). If

there exists a non-uniform adversary A that distinguishes between (g(Y,R), R,X, Y )

and (Z,R,X, Y ) with probability ε, then there exists another non-uniform adversary

B of size 2d ·n ·Size(A) that distinguishes between (g(Y,R), R, Y ) and (Z,R, Y ) with

probability at least ε.

Proof. Assume without loss of generality that

Pr[A(g(Y,R), R,X, Y ) = 1]− Pr[A(Z,R,X, Y ) = 1] ≥ ε.

Note that R is a deterministic function of X, thus for any fixing of R = r,

(g(Y,R), Z, Y )|(R = r) is independent of X|(R = r). Therefore, for every fixing of

R = r, there exists a fixing of X|(R = r) and a non-uniform adversary Ar, that has

this fixing hardwired into it and emulates A w.r.t. this fixing, s.t.

Pr[Ar(g(Y,R), Y ) = 1|R = r]− Pr[Ar(Z, Y ) = 1|R = r] ≥

Pr[A(g(Y,R), R,X, Y ) = 1|R = r]− Pr[A(Z,R,X, Y ) = 1|R = r].

Let B be an adversary that on input (g(Y, r), r, Y ) emulates Ar(g(Y, r), Y ).
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Then we have

Pr[B(g(Y,R), R, Y ) = 1]− Pr[B(Z,R, Y ) = 1] =∑
r

Pr[R = r] (Pr[Ar(g(Y,R), Y ) = 1|R = r]− Pr[Ar(Z, Y ) = 1|R = r]) ≥∑
r

Pr[R = r] (Pr[A(g(Y,R), R,X, Y ) = 1|R = r]− Pr[A(Z,R,X, Y ) = 1|R = r]) =

Pr[A(g(Y,R), R,X, Y ) = 1]− Pr[A(Z,R,X, Y ) = 1] ≥ ε.

Moreover, B is of size 2d · n · Size(A).

3.2 Primes in Arithmetic Progressions

Definition 3.2.1. Let p(r, a) be the least prime in the arithmetic progression a

modulo r.

We can now state a special case of a well-known conjecture.

Conjecture 3.2.2. There exists a constant c > 0, such that for r a power of 2 and

a = 1, one has p(r, a) = O(r logc r).

For the applications in this thesis, we don’t really need r to be a power of

2; it would suffice if the conjecture held for integers rn, where rn is a smooth inte-

ger of about n bits computable in time polynomial in n. This conjecture is widely

believed for c = 2, all r, and all a relatively prime to r. For more on this conjec-

ture, see, for example, the discussion following equation (1) of [HB78]. The best

unconditional conclusion is substantially weaker. Thus, one has p(r, a) = O(r5.2) (see

[Xyl09, HB92].)

41



3.3 Fourier Analysis

The following definitions from Fourier analysis are standard (see e.g., [Ter99])

, although we normalize differently than in many computer science papers, such as

[Rao07a]. For functions f, g from a set S to C, we define the inner product 〈f, g〉 =∑
x∈S f(x)g(x). Let D be a distribution on S, which we also view as a function from

S to R. Note that ED[f(D)] = 〈f,D〉. Now suppose we have functions h : S → T

and g : T → C. Then

〈g ◦ h,D〉 = ED[g(h(D))] = 〈g, h(D)〉.

Let G be a finite abelian group, and let φ a character of G, i.e., a homomor-

phism from G to C×. We call the character that maps all elements to 1 the trivial

character. Define the Fourier coefficient f̂(φ) = 〈f, φ〉. We let f̂ denote the vector

with entries f̂(φ) for all φ. Note that for a distribution D, one has D̂(φ) = ED[φ(D)].

Since the characters divided by
√
|G| form an orthonormal basis, the inner

product is preserved up to scale: 〈f̂ , ĝ〉 = |G|〈f, g〉. As a corollary, we obtain Parse-

val’s equality:

‖f̂‖2
`2 = 〈f̂ , f̂〉 = |G|〈f, f〉 = |G|‖f‖2

`2 .

Hence by Cauchy-Schwarz,

‖f‖`1 ≤
√
|G|‖f‖`2 = ‖f̂‖`2 ≤

√
|G|‖f̂‖`∞ . (3.1)

For functions f, g : S → C, we define the function (f, g) : S × S → C by

(f, g)(x, y) = f(x)g(y). Thus, the characters of the group G × G are the functions
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(φ, φ′), where φ and φ′ range over all characters of G. We abbreviate the Fourier

coefficient (̂f, g)((φ, φ′)) by (̂f, g)(φ, φ′). Note that

(̂f, g)(φ, φ′) =
∑

(x,y)∈G×G

f(x)g(y)φ(x)φ′(y) =

(∑
x∈G

f(x)φ(x)

)(∑
y∈G

g(x)φ′(x)

)
= f̂(φ)ĝ(φ′).

3.4 A Non-Uniform XOR Lemma.

We’ll need the following extension of Vazirani’s XOR lemma. We can’t use

traditional versions of the XOR lemma, because our output may not be uniform. Our

statement and proof parallels Rao [Rao07a].

Lemma 3.4.1. Let (W,W ′) be a random variable on G×G for a finite abelian group

G, and suppose that for all characters φ, φ′ on G with φ nontrivial, one has

|E(W,W ′)[φ(W )φ′(W ′)]| ≤ α.

Then the distribution of (W,W ′) is α|G| close to (U,W ′), where U is the uniform

distribution on G which is independent of W ′. Moreover, for f : G×G→ R defined

as the difference of distributions (W,W ′)− (U,W ′), we have ‖f‖`∞ ≤ α.

Proof. As implied in the lemma statement, the value of f(a, b) is the probability

assigned to (a, b) by the distribution of (W,W ′) minus that assigned by (U,W ′).

First observe that

f̂(φ, φ′) = 〈f, (φ, φ′)〉 = E(W,W ′)[φ(W )φ′(W ′)]− E(U,W ′)[φ(U)φ′(W ′)].

Since U and W ′ are independent, this last term equals

E(U,W ′)[φ(U)] E(U,W ′)[φ
′(W ′)] = EU [φ(U)] EW ′ [φ

′(W ′)] = 0,
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since φ is nontrivial. Therefore, by hypothesis, when φ is nontrivial, one finds that

|f̂(φ, φ′)| ≤ α.

When φ is trivial, we get

f̂(φ, φ′) = E(W,W ′)[φ
′(W ′)]− E(U,W ′)[φ

′(W ′)] = 0.

Hence ‖f‖`1 ≤
√
|G×G|‖f̂‖`∞ ≤ |G|α.

3.5 Previous Works that We Use

We are going to use condensers recently constructed based on the sum-product

theorem. The following construction is due to Zuckerman [Zuc07].

Construction 3.5.1. Let F = Fq be a field where q = 2p for p prime. Define the

point-line incidence graph as the bipartite graph G = (V,W,E) with vertices V = F 2

the set of points, and W the set of lines over F , and (p, l) is an edge in G iff p and

l are incident. Let the function h : E → V ×W map an edge to its two endpoints.

Equivalently, h is the map from F 3 to (F 2)2 such that h(a, b, c) = ((b, ab+ c), (a, c)).

The condenser C : F 3 × {0, 1} → F 2 is C(e, i) = h(e)i.

The following theorem is proved in [Zuc07].

Theorem 3.5.2. [Zuc07] Suppose δ < 0.9 and qδ = ω(1). The function C above is a

rate-(δ → (1 + α/2)δ, ε)-somewhere-condenser, where ε = q−αδ/20 for some constant

α > 0.
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Note that each bit of the output of the condenser is a degree 2 polynomial of

the bits of the input. Repeating the condenser for a constant number of times, we

get the following theorem:

Theorem 3.5.3 ([BKS+05, Zuc07]). For any constant β, δ > 0, there is an effi-

cient family of rate-(δ → 1 − β, ε = 2−Ω(n))-somewhere condensers Zuc : {0, 1}n →

({0, 1}m)D where D = O(1) and m = Ω(n).

We now show that this condenser actually works even when the min-entropy

of the source is very high. First we need the following improved theorem about line

point incidences in finite fields.

Theorem 3.5.4 (Incidence Theorem). [Vin07] Let F = Fq, where q is either prime

or 2p for p prime. Let P,L be sets of points and lines in F 2 and |P |, |L| ≤ N = qα

with 1 + γ ≤ α ≤ 2− γ for some γ > 0. Then the number of incidences

I(P,L) ≤ 2N
3
2
− γ

4 .

The following lemma is from [Zuc07].

Lemma 3.5.5. [Zuc07] If X, Y is not ε-close to a somewhere-k-source, then there

exists sets S ⊆ supp(X), T ⊆ supp(Y ), |S|, |T | < 2k+1/ε, such that

Pr[X ∈ S, Y ∈ T ] > ε/2.

Theorem 3.5.6. Suppose 1
2
< δ ≤ 1− γ for some γ > 0. The function C above is a

rate-(δ → (1 + γ/12)δ, ε) somewhere-condenser, where ε = q−γδ/20.
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Proof. We essentially follow the proof in [Zuc07]. As in that proof, we analyze the

equivalent function h. We may assume that the input to h is uniform on a set of edges

of size K = 2k = q3δ, and set k′ = (1 + γ/12)(2k/3). Suppose the output (X, Y ) of h

is not ε-close to a somewhere-k′-source. Let P = S and L = T be the sets of size less

than K0 = 2k
′+1/ε given by Lemma 3.5.5. Note that K0 ≤ 2q2δ(1+γ/12)+δ(γ/20) < q2−γ.

Now we calculate the number of incidences I(P,L) in two ways. On the one

hand, since each edge is an incident point-line pair, and at least ε/2 fraction of these

pairs lie in P × L, the number of incidences I(P,L) ≥ εK/2. On the other hand, by

Theorem 3.5.4,

I(P,L) ≤ 2K
3/2−γ/4
0 = O(K(1+γ/12)(3/2−γ/4)2/3/ε2) = O(K1−γ/12/ε2).

This gives a contradiction for ε = K−γ/60, and the theorem is proved.

We need the following two source extractor from [Raz05].

Theorem 3.5.7 ([Raz05]). For any n1, n2, k1, k2,m and any 0 < δ < 1/2 with

• n1 ≥ 6 log n1 + 2 log n2

• k1 ≥ (0.5 + δ)n1 + 3 log n1 + log n2

• k2 ≥ 5 log(n1 − k1)

• m ≤ δmin[n1/8, k2/40]− 1
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There is a polynomial time computable strong 2-source extractor Raz : {0, 1}n1×

{0, 1}n2 → {0, 1}m for min-entropy k1, k2 with error 2−1.5m.

We need the following theorem from [Rao06].

Theorem 3.5.8 ([Rao06]). For every constant γ < 1 and integers n, n′, t s.t. t < nγ

and t < n′γ there exists a constant α < 1 and a polynomial time computable function

2SRExt : {0, 1}tn × {0, 1}tn′ → {0, 1}m s.t. if X is a (t × n) SR-source and Y is an

independent aligned (t× n′) SR-source,

|(2SRExt(X, Y ), Y )− (Um, Y )| < ε

and

|(2SRExt(X, Y ), X)− (Um, X)| < ε,

where Um is independent of X, Y , m = min[n, n′]−min[n, n′]α and ε = 2−min[n,n′]Ω(1)
.

Theorem 3.5.9 ([Rao06, BRSW06]). There exist constants c > 0 and c′ and a

polynomial time computable function IExt : ({0, 1}n)u → {0, 1}k such that for every

n, k with k = k(n) = Ω(log4 n), if X1, X2, . . . , Xu are independent (n, k) sources then

|IExt(X1, . . . , Xu)− Uk| < 2−k
c

Theorem 3.5.10 (Somewhere random vs Independent Source Extractor [Rao06,

BRSW06]). There exists constants 0 < γ < 1, c and a polynomial time computable

function SRIExt : ({0, 1}n)C × {0, 1}tk → {0, 1}k such that for every n, k, t with k >
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log10 t, k > log10 n and C > c log t
log k

), if X = X1, ..., XC is the concatenation of C

independent (n, k) source and Y is an independent t× k-SR-source,

|(X, SRIExt(X, Y ))− (X,Uk)| < ε

|(Y, SRIExt(X, Y ))− (Y, Uk)| < ε

where Uk is independent of X and Y , ε = 2−k
γ
.

Theorem 3.5.11 (General Source vs Somewhere random source with few rows Ex-

tractor [BRSW06]). There exist constants α, β < 1 and a polynomial time computable

function BasicExt : {0, 1}n × {0, 1}kγ+1 → {0, 1}m such that for every n, k(n) with

k > log10 n and constant 0 < γ < 1/2, if X is an (n, k) source and Y is a (kγ × k)

(k − kβ)-SR-source,

|(Y,BasicExt(X, Y ))− (Y, Um)| < ε

and

|(X,BasicExt(X, Y ))− (XUm)| < ε

where Um is independent of X, Y , m = k − kΩ(1) and ε = 2−k
α
.

We use the following lossless condenser constructed in [GUV09].

Theorem 3.5.12 ([GUV09]). For all constants α > 0, and every n ∈ N, k ≤ n and

ε > 0, there is an explicit (k → k+d, ε) (lossless) condenser Cond : {0, 1}n×{0, 1}d →

{0, 1}m with d = (1 + 1/α) · (log n+ log k + log(1/ε)) +O(1) and m ≤ 2d+ (1 + α)k.
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We use the following strong seeded extractor in [GUV09].

Theorem 3.5.13 ([GUV09]). For every constant α > 0, and all positive integers n, k

and ε > exp(−n/2O(log∗ n)), there is an explicit construction of a strong (k, ε) extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)) and m ≥ (1− α)k.

We need the following simple lemma about statistical distance.

Lemma 3.5.14 ([MW97b]). Let X and Y be random variables and let Y denote the

range of Y . Then for all ε > 0

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε

We need the following lemma about conditioning on the seed of a condenser.

Lemma 3.5.15. Let Cond : {0, 1}n × {0, 1}d → {0, 1}m be a (k → l, ε)-condenser.

For any (n, k)-source X, let R be the uniform distribution over d bits independent

of X. With probability 1 − 2
√
ε over the fixings of R = r, Cond(X, r) is

√
ε-close to

being an l − 2d source.

Proof. Let W = Cond(X,R). We know that W is ε close to having min-entropy l.

Now for a fixed R = r, let Sr = {w ∈ Supp(W ) : Pr[W = w|R=r] > 2−l+2d}. Note that

if Pr[W = w|R=r] > 2−l+2d then Pr[W = w] ≥ Pr[W = w|R=r] Pr[R = r] > 2−l+d.

Pick ε1 > 0 and let PrR[Pr[W |R=r ∈ Sr] > ε1] = ε2, then PrW [Pr[W = w] >

2−l+d] > ε1ε2. Thus the statistical distance between W and any l-source is at least

(1− 2−d)ε1ε2 > ε1ε2/2. Therefore ε1ε2 < 2ε.

Therefore with probability 1− 2
√
ε over R, ε1 <

√
ε. This implies that W |R=r

is
√
ε-close to having min-entropy l − 2d.
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Our extractor for affine sources use strong linear seeded extractors as ingredi-

ents. Specifically, we use the construction of Trevisan [Tre01] and the improvement

by Raz et al. [RRV02].

Theorem 3.5.16 ([Tre01, RRV02]). For every n, k ∈ N with k < n and any 0 < ε < 1

there is an explicit (k, ε)-strong linear seeded extractor LExt : {0, 1}n × {0, 1}d →

{0, 1}Ω(k) with d = O(log2(n/ε)).

We need to use the following extractor for an affine somewhere random source.

Theorem 3.5.17 ([Rao09]). For every constant γ < 1 and integers n, t s.t. t < nγ

there exists a constant α < 1 and a polynomial time computable function ASRExt :

{0, 1}tn → {0, 1}n−nα s.t. for every (t×n) affine-SR-source X, ASRExt(X) is 2−n
Ω(1)

-

close to uniform.

Lemma 3.5.18. [ILL89][Leftover Hash Lemma] For any 0 < k < n, let X be an

(n, k)-source and R be the uniform distribution on {0, 1}n independent of X. Let

l > 0 and m = k − 2l. Treat x and r as elements in the field F2n and define the

function Hash(x, r) to be the last m bits of x · r. Then (Hash(X,R), R) is 2−l-close to

uniform.

We are going to use a simple linear merger given in [LRVW03].

Construction 3.5.19. Let n, s be integers. Define the function

Merg : ({0, 1}n)s × {0, 1}d → {0, 1}n
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in the following way: Let Fq be a finite field with q elements where q is a power of 2.

Map each element in {0, 1}n into F`q and each element in {0, 1}d into Fsq, using some

injective mapping. Let x = (x1, · · · , xs) ∈ (F`q)s and z = (z1, · · · , zs) ∈ Fsq. The value

of Merg(x, z) is computed as

Merg(x, z) =
s∑
i=1

xi · zi

where the operations are performed in the vector space F`q.

The following theorem is proved in [LRVW03], by using a field of size O(1/ε)

in the above construction.

Theorem 3.5.20. [LRVW03] For every ε > 0 and integers n, s, there exists an ex-

plicit (m, ε)-merger of (n, s)-somewhere-random sources Merg : ({0, 1}n)s×{0, 1}d →

{0, 1}n with d = O(s log(1/ε)) and m = n/2 − O(d). Moreover, for any (n, s)-

somewhere-random source X, with probability 1 − O(ε) over z ∈ {0, 1}d, Merg(X, z)

is ε-close to having min-entropy m.

Theorem 3.5.21. [Bou07] There is a polynomial time computable function BAExt :

{0, 1}n → {0, 1}m such that m = Ω(n) and for every affine source X of entropy n/2,

BAExt(X) is 2−Ω(n)-close to uniform. Moreover, each bit of the output is a degree 3

polynomial of the bits of the input.

We need one last ingredient, the simple inner product function as a two source

extractor when the sum of the entropy rates of the two independent sources is greater

than 1. For a finite field F, let Had : Fl × Fl → F be the inner product function, i.e.,

Had(x, y) = x · y.
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Theorem 3.5.22. [CG88, Vaz85] For every constant δ > 0, there exists a polynomial

time algorithm Had : ({0, 1}n)2 → {0, 1}m such that if X is an (n, k1) source, Y is

an independent (n, k2) source and k1 + k2 ≥ (1 + δ)n, then

|(Y,Had(X, Y ))− (Y, Um)| < ε

with m = Ω(n) and ε = 2−Ω(n).

To prove our construction is an extractor, we need the following definition and

lemma.

Definition 3.5.23. (ε-biased space) A random variable Z over {0, 1} is ε-biased if

|Pr[Z = 0] − Pr[Z = 1]| ≤ ε. A sequence of 0-1 random variables Z1, · · · , Zm is

ε-biased for linear tests if for any nonempty set S ⊂ {1, · · · ,m}, the random variable

ZS =
⊕

i∈S Zi is ε-biased.

The following lemma is due to Vazirani. For a proof see for example [Gol95]

Lemma 3.5.24. Let Z1, · · · , Zm be 0-1 random variables that are ε-biased for linear

tests. Then, the distribution of (Z1, · · · , Zm) is ε · 2m/2-close to uniform.
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Chapter 4

Distributed Computing with General Weak

Random Sources

We first describe the model of the network that we consider. We assume that

p processors communicate with each other via point-to-point channels in order to per-

form a task. However, an unknown t of the processors are faulty. We allow Byzantine

faults: faulty processors may behave arbitrarily and even collude maliciously. We

call the set of faulty processors the adversary, and we only consider a non-adaptive

adversary – the set of faulty processors is fixed in advance and does not change. We

assume that the communication channels are not private, so the adversary can see

all communication. This is called the full information model. We note that we could

obtain stronger results in a network with private channels, however in the interest of

space we focus on the full information model.

Most of our results are for synchronous networks: communication between

processors takes place in rounds and every message transmitted at the beginning of

a round is guaranteed to reach its destination at the end of the round. In this case

we allow rushing: the faulty processors may wait for all good processors to transmit

their messages for a particular round, before transmitting their own messages. We

also have results for asynchronous networks– here the only guarantee is that every
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message will eventually be received.

We assume each processor has access to an unknown, arbitrary (n, k)-source

of randomness, and that these sources are mutually independent. This independence

assumption seems justifiable if we view the processors as being physically far away

from each other. Such sources may also arise if the adversary manages to acquire

(say via a virus) a small amount of information about each of the honest processors’

(truly random) sources. In this case, conditioning on the adversary’s information

leaves each of the processors with independent weak sources.

For the case of distributed computing, we mainly focus on two basic problems:

Byzantine agreement and leader election/collective coin-flipping.

Byzantine Agreement. The goal of a protocol for Byzantine agreement is for

the processors to agree on the result of some computation, even if some t of them

are faulty. Byzantine agreement is fundamental because it can be used to simulate

broadcast and maintain consistency of data.

Following the work of Ben-Or [BO83], a series of randomized protocols for

asynchronous as well as synchronous networks appeared, some of which assume the

existence of private communication channels between pairs of processors (for instance

[Rab83]) while others do not require secret communication (for instance [CC85]).

In the full information model, Goldwasser et al. gave an O(log p) round protocol

which tolerates t < p/3 faulty processors [GPV06] in the synchronous model. In

the asynchronous model, the best known Byzantine agreement protocol still requires
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2O(t2/p) rounds [BO83, BT85] if it succeeds with probability 1 and requires polylog(p)

rounds if it succeeds with probability 1− o(1) [KKK+08].

Leader Election and Collective Coin Flipping. The goal of a protocol for

leader election is to select a uniformly random leader from a distributed network

of n processors. In the presence of faulty processors, we would like to bound the

probability that one of the faulty processors gets selected as the leader. Another

related problem, called the collective coin flipping, aims to produce a random coin

whose bias is bounded in a network which may consists of faulty processors. under

the assumption that the processors have access to uniformly random bits, collective

coin flipping can be reduced to the leader election problem: if a leader is successfully

elected, then we can have the leader flip a coin and broadcast the coin flip to all the

other processors.

Ben-Or and Linial [BOL78] were the first to study collective coin-flipping under

what we call the BL model: the full information model with reliable broadcast in a

synchronous network. A long sequence of work [Sak89, AN93, BN00, CL95, ORV94,

Zuc97, RZ01, Fei99] has resulted in a protocol which tolerates (1/2 − α)p faulty

processors and requires only log∗(p)+O(1) rounds to elect a leader (and hence perform

a collective coin flip) in the BL model [RZ01, Fei99].

4.1 Previous Results

For protocols using weak sources, the only results are due to Goldwasser et

al. [GSV05]. They require all weak sources to have min-entropy rate at least 1/2. In

55



the full information model, they only obtain results for weak sources that are more

restricted than block sources1. Under the assumption that the processors have access

to general (n, k)-sources, they give results only for the case of private channels. They

posed the open question of whether protocols can be designed in the full information

model assuming only that each processor has access to general (n, k)-sources.

4.2 Our Results

We answered the above question in the affirmative by defining and constructing

network extractors. As briefly mentioned in the introduction, these are protocols

where the processors interact with each other, and at the end of the protocol some

(ideally all) of the honest processors end up with private random bits that are close

to uniform. In this chapter we define and construct such objects in the information-

theoretic setting, and in the next chapter we study these objects in the computational

setting. The results in this chapter are based on work with Yael Kalai, Anup Rao

and David Zuckerman [KLRZ08].

In order to define network extractor, we need some notation. Processor i

begins with a sample from a weak source xi ∈ {0, 1}n and ends in possession of a

hopefully uniform sample zi ∈ {0, 1}m. Let b be the concatenation of all the messages

that were sent during the protocol. Capital letters such as Zi and B denote these

strings viewed as random variables.

1They refer to these sources as block sources, though they are not as general as block sources are
defined in this paper and the extractor literature.
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Definition 4.2.1 (Network Extractor). A protocol for p processors is a (t, g, ε)

network extractor for min-entropy k if for any min-entropy k independent sources

X1, . . . , Xp over {0, 1}n and any choice of t faulty processors, after running the pro-

tocol, the number of processors i for which |(B,Zi)− (B,Um)| < ε is at least g. Here

Um is the uniform distribution on m bits, independent of B, and the absolute value

of the difference refers to variation distance. We say that a protocol is a synchronous

extractor if it is a network extractor that operates over a synchronous network. We

say that it is an asynchronous extractor if it is a network extractor that operates over

an asynchronous network.

We now have the following results about network extractors.

As long as the min-entropy rate of the sources is greater than 1/2, we give

nearly optimal network extractors. In particular, as long as the fraction of faulty

processors t is bounded by a constant less than 1, we show how to build a one round

synchronous network extractor which leaves almost every non-faulty processor with

private randomness.

Theorem 4.2.2 (High Entropy Synchronous Extractor). For all p, t, n, α, β > 0,

there exists a constant c = c(α) and a two-round (t, p−(1+α)t−c, 2−kΩ(1)
) synchronous

extractor for min-entropy k ≥ (1
2

+ β)n in the full-information model. The protocol

is one round for t = Ω(p).

If the min-entropy of the general sources is much smaller, we can still design

a good network extractor, though fewer processors end up with private random bits.
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The new protocol ensures roughly p−(2+ log logn
log log k

)t honest processors end up with pri-

vate randomness, thus tolerating a linear fraction of faulty processors. This protocol

runs in a constant number of rounds even with min-entropy k = 2(logn)Ω(1)
:

Theorem 4.2.3 (Low Entropy Synchronous Extractor). For all p, t, β > 0, k >

log p, and n ≤ 2O(t), there exists a constant c = c(β) and a (1/β + 1) round (t, p −

(1.1 + 1/β)t − c, 2−k
Ω(1)

) synchronous extractor for min-entropy k ≥ 2logβ n in the

full-information model.

In the asynchronous setting, we get slightly weaker results:

Theorem 4.2.4 (High Entropy Asynchronous Extractor). For all p, t, n, β > 0, there

exists a one-round (t, p− 3t− 1, 2−k
Ω(1)

) asynchronous extractor for min-entropy k ≥

(1
2

+ β)n in the full-information model.

Theorem 4.2.5 (Low Entropy Asynchronous Extractor). There exist constants c1, c2 >

0 such that for all p, t, β > 0, k > log p, and poly(t) ≤ n ≤ 2O(t), there exists a

(1/β + 1) round (t, p − c1t/β − c2, 2
−kΩ(1)

) asynchronous extractor for min-entropy

k ≥ 2logβ n in the full-information model.

Applying our network extractors to Byzantine Agreement and Leader Election,

we obtain the following results.

In the synchronous setting, we essentially match the perfect-randomness case

[GPV06] when the min-entropy rate is greater than 1/2, and we can tolerate a linear

fraction of faults even with min-entropy 2(logn)Ω(1)
.
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Theorem 4.2.6 (Synchronous Byzantine Agreement). Let α, β > 0 be any con-

stants. For p large enough, assuming each processor has access to an independent

(n, k)-source, there exists synchronous O(log p) expected round protocols for Byzan-

tine Agreement in the full information model with the following properties.

1. The protocol for k ≥ (1/2 + β)n tolerates (1/3− α)p faulty processors.

2. The protocol for k ≥ nβ tolerates (1/4− α)p faulty processors.

3. The protocol for k ≥ 2logβ n tolerates p/(3.1 + 1/β) faulty processors.

In the asynchronous case, we can tolerate a linear fraction of faults in only a

polylogarithmic number of rounds, as is the case with perfect randomness [KKK+08].

Theorem 4.2.7 (Asynchronous Byzantine Agreement). Let α, β > 0 be any con-

stants. For p large enough, assuming each processor has access to an independent

(n, k)-source, there exists a constant 0 < γ < 1 and asynchronous polylog(p) ex-

pected round protocols for Byzantine Agreement in the full information model with

the following properties.

1. The protocol for k ≥ (1/2 + β)n tolerates (1/8− α)p faulty processors.

2. The protocol for k ≥ 2logβ n tolerates βγp faulty processors.

We obtain essentially the same results if the processors’ min-entropy rate is

above 1/2, and we can tolerate a linear fraction of faults with min-entropy 2(logn)Ω(1)
.
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Theorem 4.2.8 (Leader Election). Let α, β > 0 be any constants. For p large

enough, assuming each processor has access to an independent (n, k)-source, there ex-

ists log∗ p+O(1) round protocols for leader election in the BL model with the following

properties.

1. The protocol for k ≥ (1/2 + β)n tolerates (1/2− α)p faulty processors.

2. The protocol for k ≥ nβ tolerates (1/3− α)p faulty processors.

3. The protocol for k ≥ 2logβ n tolerates (1/(2 + 1/β)− α)p faulty processors.

4.3 The Constructions

In this section we discuss how to build network extractors ( Definition 4.2.1)

in a full-information network.

4.3.1 Synchronous Network Extractors

4.3.1.1 First Attempts

To show how extractors for independent sources can be used to construct

network extractors, we start with some simple protocols. We shall just sketch the

arguments for why these protocols are good network extractors, reserving formal

proofs for our best protocols.
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Protocol 4.3.1. For a synchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

• Let IExt be a 2 source extractor for entropy 0.1tk sources of length 1.1tn.

We break up the players into two sets, A = [1, 1.1t] and the rest of the players in
B.

Communication in Round 1 : Every player i ∈ A announces their string xi.

Computation :

1. Let yj = x1, . . . , x1.1t denote the concatenation of these strings received
by j.

2. For every j ∈ B, j’th player computes zj = IExt(yj, xj).

A first protocol one might think of is something along the lines of Protocol 4.3.1. The

idea is to partition the players into two subsets A,B such that A is large enough to

guarantee that at least one of the players in A is honest. We see that for every j,

the distribution Y j (note that Y j may be different for different j, since the faulty

players may transmit different strings to the non-faulty players) in the running of the

above protocol has min-entropy at least 0.1tk. Further, Y j is independent of Xj for

every j ∈ B. Thus Zj is in fact ε-close to uniform and independent of Y j by the

properties of IExt. This means that every non-faulty player in the set B ends up with

private randomness. By adjusting the constants, we can get a similar protocol that

is a (t, p − (2 + γ)t, ε) synchronous network extractor in the full-information model,

as long as t < p/(2 + γ), for every constant γ > 0.
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There are two problems with the above protocol. First, the best known polyno-

mial time 2-source extractor constructions at the time of this writing [Bou05, Raz05]

require that at least one of the sources has min-entropy rate close to half. This means

we only get explicit protocols for such high entropy. Second, the above network ex-

tractor only guarantees that at most p− 2t players get private randomness, while we

hope that as many as p− t players can get private randomness. We shall improve our

results on both these fronts. In Protocol 4.3.2, we show how to use Theorem 3.5.11

to get results for low entropy.
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Protocol 4.3.2. For a synchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

• Let SRExt be as in Theorem 3.5.11 with parameters n1,m1, ε1, k1.

• Let IExt be a C source extractor with parameters n2, k2,m2, ε2 as in Theo-
rem 3.5.9.

• We assume that m0.9
1 ≥

(
t+C
C

)
.

We break up the players into two sets, A = [1, t+ C] and the rest of the players in
B.

Communication in Round 1 : Every player i ∈ A announces their string xi.

Computation :

1. Let yi be the
(
t+C
C

)
×m1 matrix whose j’th row is obtained by computing

yij = IExt(xii1 , x
i
i2
, . . . , xiiC), where xi1, . . . , x

i
C+t are the strings received by

player i.

2. For every j ∈ B, player j computes zj = SRExt(xj, y
j).

Again, the analysis is quite simple. Since the set A contains t + C players,

at least C of them must be non-faulty. Thus, after the first round, Y j is ε1 close

to being a somewhere random source, for every j ∈ B. Thus, for every j ∈ B, Y j

independent of Xj and by the properties of SRExt, all non-faulty players in B get

truly random bits. The above protocol is a (t, p − 2t, ε1 + ε2) synchronous extractor

in the full-information model, as long as t < p/2.

The drawback of this approach is that our extractor SRExt from Theorem 3.5.11
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only works when the somewhere random source has much fewer rows than the length

of each row. This protocol only succeeds in the case that the entropy of the sources is

larger than
(
t+C
C

)
. On the other hand, this protocol does work for polynomially small

entropy, since Theorem 3.5.11 and Theorem 3.5.9 can handle polynomially small en-

tropy. In particular, this protocol works as long as n, k � p. We shall have to work

harder to get a protocol that does not require this much entropy.

4.3.1.2 Protocol for Low Entropy

We have seen that in the case that the entropy is significantly larger than

the number of players, or the entropy rate is larger than half, we have very simple

network extractor protocols. In this section we describe better results for the case of

low entropy sources. We shall start by describing a network extractor protocol that

is good enough to get the following theorem:

Theorem 4.3.3 (Polynomial Entropy Synchronous Extractor). There exists a con-

stant c > 0 such that for every γ > δ > 0, β > 0 and p large enough, there exists

a 1 round (δp, (1 − 2γ)p, 2−k
c
) synchronous extractor for min-entropy k ≥ nβ in the

full-information model.

Building on the ideas that go into proving the above theorem, we can give a

O(log log n/ log log k) round protocol that works even when the entropy k is as small

as log10 n. This result appears in section 4.3.1.5.

Theorem 4.3.4. If k > log p and n ≤ exp(t) then for t large enough there exists a

(t, p − 2t − (1.1 log logn
log log k

)t, 2−k
Ω(1)

) synchronous network extractor for min-entropy k >

log10 n that runs in O(log log n/ log log k) rounds in the full-information model.
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Our protocol will be a variation on Protocol 4.3.2. Instead of trying every

possible C-tuple of strings from the set A, we shall use a derandomized sample of

these tuples.

We shall need the concept of an AND-disperser :

Definition 4.3.5 (AND-disperser). An (l, r, d, δ, γ) AND-disperser is a bipartite graph

with left vertex set [l], right vertex set [r], left degree d s.t. for every set V ⊂ [r] with

|V | = δr, there exists a set U ⊂ [l] with |U | ≥ γl whose neighborhood is contained in

V .

Each vertex on the left identifies a d-tuple of vertices on the right. Thus

when l =
(
r
d

)
, we can easily build an AND-disperser with great performance, just

by considering every possible such tuple. We shall construct a much better AND

disperser, i.e., one where l, r are much closer to each other.

In our application, we shall need a (l, r,C, δ, γ) AND-disperser with l as small

as possible, δ as small as possible and γ as large as possible. We shall prove the

following lemma:

Lemma 4.3.6. For every C, δ > 0, there exist constants h, γ > 0 and a polynomial

time constructible family of (hr, r,C, δ, γ) AND-dispersers.

Before we see how to prove this lemma, we describe the rest of our construction.

Another well studied object that we need is a construction of a bipartite ex-

pander.
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Definition 4.3.7 (Bipartite Expander). A (l, r, d, β) bipartite expander is a bipartite

graph with left vertex set [l], right vertex set [r], left degree d and the property that

for any two sets U ⊂ [l], |U | = βl and V ⊂ [r], |V | = βr, there is an edge from U to

V .

Pippenger proved the following theorem:

Theorem 4.3.8 (Explicit Bipartite Expander [Pip87, LPS88]). For every β > 0,

there exists a constant d(β) < O(1/β2) and a family of polynomial time constructible

(l, l, d(β), β) bipartite expanders.

We shall actually need unbalanced expanders, which can be easily obtained

just by deleting vertices from the above graph. We get the following corollary:

Corollary 4.3.9. For every 1 > β > 0 and constant h > 0, there exists a con-

stant d(β, h) and a family of polynomial time constructible (r, hr, d(β, h), β) bipartite

expanders.

We use these objects to design Protocol 4.3.10, which is the protocol in The-

orem 4.3.3. We can show that Protocol 4.3.10 is a network extractor for entropy

k.
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Protocol 4.3.10. For a synchronous network

Player Inputs: Player i has xi ∈ {0, 1}n
Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

• Let 1 > γ > δ > 0 be any constants.

• Let SRExt, n,m, ε1, k be an extractor with parameters as in Theorem 3.5.11.
Let IExt be a C source extractor with parameters n, k,m2 = k, ε2 as in The-
orem 3.5.9.

• Set r = γp.

• Let G1, γ
′, h be such that there is a (hr, r,C, γ−δ

γ
, γ′)-AND-disperser promised

by Lemma 4.3.6.

• Set λ = min{γ′, γ−δ
1−γ}.

• Let G2 denote the (p−r, hr, d, λ) bipartite expander given by Corollary 4.3.9.

We break up the players into two sets, A = [1, r] and the rest of the players in B.
We identify every player in A with a vertex in the right vertex set of the graph G1

and identify every player in B with a vertex in the left vertex set of the graph G2.
We identify the left vertex set of G1 with the right vertex set of G2.

Communication in Round 1 : Every player i ∈ A announces his string xi.

Computation :

1. For every vertex g in the left vertex set of G1, every remaining
player j computes the string yjg = IExt(xjg1

, xjg2
, . . . , xjgC), where here

xjg1
, xjg2

, . . . , xjgC are the strings announced by the C neighbors of g.

2. Every player j ∈ B computes the d×k matrix sj whose w’th row is yjjw ,
where here jw is the w’th neighbor of j in G2.

3. Every player j ∈ B computes the private string SRExt(xj, s
j).
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Proof of Theorem 4.3.3. Let SRExt be as in Theorem 3.5.11, set up to extract from

an (n, k = nγ) source and an independent k0.9 × k somewhere random source with

error 2−k
Ω(1)

. Let IExt,C be as in Theorem 3.5.9, set up to extract k random bits from

C independent (n, k) sources with error 2−k
Ω(1)

.

Let X1, . . . , Xp be any independent (n, k) sources. Since there are at most

t = δp faulty players in the set A, at least a γp−δp
r

= γ−δ
γ

fraction of the strings

xi for i ∈ A must be samples from an (n, k) source. Since G1 is a (hr, r,C, γ−δ
γ
, γ′)

AND-disperser, we must have that at least a γ′ fraction of the vertices g in the left

vertex set of G1 are such that Yg is ε2 close to uniform.

Now every non-faulty player j ∈ B who has at least one such g as a neighbor,

ends up with a distribution Sj that is ε2 close to being a d × k somewhere random

source. Let H denote the set of non-faulty players in B that don’t get such a some-

where random source. Then we see that |H| < λ(p − r) = λ(1 − γ)p < (γ − δ)p,

since G2 is a (p − r, hr, d, λ, γ′}) expander and by the definition of λ. Thus, all but

(γ − δ)p + t = γp of the players in B compute a somewhere random source. Then,

by the properties of the extractor SRExt, each of these players computes a private

random string with an additional error of ε1. Since both of these errors are 2−k
Ω(1)

,

we get that the final error is also 2−k
Ω(1)

.

Next, we complete the proof by showing how to prove Lemma 4.3.6.

Proof of Lemma 4.3.6. We break up [r] into equally sized disjoint sets S1, . . . , S δr
2C

, so

that for every i, |Si| = 2C/δ. Then consider all subsets T ⊂ Si, with |T | = C. The

number of such subsets is
(

2C/δ
C

)
δr
2C

= hr for some constant h.
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We define the bipartite graph with left vertex set [hr], right vertex set [r] and

left degree C, by connecting every vertex on the left with the corresponding subset

of elements of [r]. To see that this graph is an AND-disperser, let V ⊂ [r] be any

subset of density δ. Then, by averaging, we must have that V is at least δ/2-dense in

at least a δ/2 fraction of the Si’s. But every Si in which V is δ/2 dense has at least

2C
δ
δ
2

= C elements of V . For every such Si, there is a vertex in the left vertex set of

the graph whose neighbors all lie in V .

Thus, there must be at least δ
2
δr
2C

= γhr such vertices.

Protocol 4.3.10 addresses the issue of getting network extractors with low en-

tropy (we can at least handle polynomially small entropy). However, it only guaran-

tees that close to p−2t of the p−t non-faulty players end up with useable randomness.

We shall soon see that we cannot hope to give a one round protocol which does better

than this, for low min-entropy.

4.3.1.3 Protocol for High Entropy Rate and Block Sources

Next we show that in the case that each player has access to a block source with

just 2 blocks (Definition 2.3.4) or a source with entropy rate greater than half, we can

give protocols that guarantee that almost all non-faulty players end up with useable

randomness. The idea is that in this case, we can essentially run multiple copies of

the above protocol at the same time. We partition the players into a constant number

of sets. We can argue that most of the partitions must have a significant number of

non-faulty players. We then run the previous protocol on every set in the partition.
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Protocol 4.3.11. For a synchronous network

Player Inputs: Player i has xi, x
′
i ∈ {0, 1}n

Player Outputs: Player i ends up with zi ∈ {0, 1}m

Sub-Routines and Parameters:

• Let 1 > γ > δ > 0 be any constants.

• Let SRExt, n,m, ε1, k be an extractor with parameters as in Theorem 3.5.11.
Let IExt be a C source extractor with parameters n, k,m2 = k, ε2 as in The-
orem 3.5.9.

• Set α = (1− δ)/2. Set r = αp.

• Let G1, γ
′, h be such that there is a (hr, r,C, 1−δ

1+δ
, γ′)-AND-disperser promised

by Lemma 4.3.6.

• Set λ = min{γ′, γ − δ}.

• Let G2 denote the (p−r, hr, d, λ) bipartite expander given by Corollary 4.3.9.

We partition the players into 1/α equally sized sets B1, . . . , B1/α, each of size r.
Let A1, . . . , A1/α denote the corresponding complements, i.e., Ai = [p] \Bi.

Communication in Round 1 : Every player i announces xi.

Computation :

1. For i = 1, 2, . . . , 1/α,

(a) We identify every player in Ai with a vertex in the right vertex set
of the graph G1 and identify every player in Bi with a vertex in the
left vertex set of the graph G2. We identify the left vertex set of G1

with the right vertex set of G2.

(b) For every vertex g in the left vertex set of G1, each player j ∈
Bi compute the string yjg = IExt(xjg1

, xjg2
, . . . , xjgC), where here

xjg1
, xjg2

, . . . , xjgC are the strings received by j for the C neighbors
of g.

(c) Every player j ∈ Bi computes the d× k matrix sj whose w’th row
is yjjw , where here jw is the w’th neighbor of j in G2.

(d) Every player j ∈ Bi computes the private string SRExt(x2
j , s

j).
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We can prove the following theorem:

Theorem 4.3.12 (Polynomial Entropy Synchronous Extractor for Block Sources).

There exists a constant c > 0 such that for every γ > δ > 0, β > 0 and p large

enough, there exists a 1 round (δp, (1 − γ)p, 2−k
c
) synchronous extractor for (k, k)

block sources with min-entropy k ≥ nβ in the full-information model.

Proof. We shall analyze Protocol 4.3.11. Let SRExt be as in Theorem 3.5.11, set up

to extract from an (n, k = nγ) source and an independent k0.9×k somewhere random

source with error 2−k
Ω(1)

. Let IExt,C be as in Theorem 3.5.9, set up to extract k

random bits from C independent (n, k) sources with error 2−k
Ω(1)

.

Let X1, . . . , Xp be any independent (n, k) sources. Note that for every i, there

are at least (1−α− δ)p = (1− δ)p/2 non-faulty players in the set Ai. This is at least

a (1− α− δ)/(1− α) = (1− δ)/(1 + δ) fraction of the number of players in this set.

By the properties of G1 and G2, this means that at most a λ fraction of

the players in each of the Bi’s wouldn’t compute strings that are close to uniformly

random, if each of them computed these strings correctly. However, a δ fraction of

the players are faulty. Thus we get that at least 1 − λ − δ ≥ 1 − γ fraction of the

players end up with randomness that is ε1 + ε2 close to uniform.

A special case of this above protocol is when the players all have access to a

source with min-entropy rate greater than half. In this case, we can show that the

players can easily get a block source, just by splitting their sources into two equal

parts. This gives us the following theorem:
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Theorem 4.3.13 (High Entropy Synchronous Extractor). There exists a constant

c > 0 such that for every γ > δ > 0, constant β > 0 and p large enough, there

exists a 1 round (δp, (1 − γ)p, 2−k
c

+ 2−cβnp) synchronous extractor for min-entropy

k ≥ (1
2

+ β)n in the full-information model.

Proof. Let X be any (n, (1/2 + β)n) source. Let X1 be the first n/2 bits of X and

X2 be the remaining bits.

Then we have that:

Claim 4.3.14. X1, X2 is 2−Ω(βn) close to being a block source with min-entropy 3βn/5

in each block.

To see this, first observe that by Lemma 2.3.2 (setting l = βn/10), we get that

X1 is 2−βn/10 close to having min-entropy (1/2+β)n−n/2−βn/10 = 9βn/10. Then,

by Lemma 2.3.5, setting ` = βn/10, we get that X1, X2 is 2(2−βn/10 +2−βn/10+1)-close

to being a block source with min-entropy 9βn/10− 1− 2βn/10 ≥ 6βn/10 in the first

block and (1/2 + β)n− n/2− 1− 2βn/10 ≥ 3βn/5 in the second block.

Thus, all of the sources are simultaneously 2−Ω(βn)p-close to being block sources.

We can now run Protocol 4.3.11 to get random bits.

4.3.1.4 Lower bounds

In this section, we show that there is no one round network extractor protocol

that can do much better than our construction for the case of general sources with

k = nδ over synchronous networks in the full information model. Namely, for general

weak random source with min-entropy rate < 1
2
, there is no one round network
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extractor that can tolerate p/2 faulty players or guarantee p− 2t honest players end

up with private random bits.

Theorem 4.3.15. There is no one round (t, p− 2t, 1/4) synchronous extractor pro-

tocol for general (n, n/2− 1) sources, in the full information model.

Proof. For the purpose of contradiction, let us assume that such a protocol exists for

min-entropy k < n/2.

This protocol must call for some number of players to transmit messages in

the first round of the protocol. Let us assume that each player starts with strings

xi ∈ {0, 1}n and that in the first round player i transmits some function fi(xi) of the

input, where fi : {0, 1}n → {0, 1}mi .

We say that i transmits k bits if the size of the image |fi({0, 1}n)| ≥ 2k.

We note that if i does not transmit k bits, then there must be some point

a ∈ {0, 1}mi such that |f−1
i (a)| ≥ 2n−k ≥ 2k. Setting Xi to be the flat distribution

over f−1
i (a), we get a source Xi with min-entropy at least k s.t. fi(Xi) is a constant.

On the other hand, if i transmits k bits, then we pick 2k points {x1, . . . , x2k}

such that fi is injective on this set. If we set Xi to be the flat distribution on

this set, we get a source with min-entropy k for which for every a ∈ supp(fi(Xi)),

H∞(Xi|fi(Xi) = a) = 0, i.e. the source has no entropy left over after conditioning on

the output of fi.

There are now two cases:
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At most t players transmit n/2 bits. In this case, by our discussion above, the

adversary can replace every player that transmits at least n/2 bits with a faulty

player and choose min-entropy n/2 weak sources Xi for every other player, in

such a way that the transcript of the first round transmissions is a constant.

The private random string that player i generates is then just a deterministic

function of Xi. We can then find a deficiency 1 subsource X ′i ⊂ Xi such that

the first bit of this private string is constant. Note that X ′i has min-entropy at

least n/2− 1, which means the protocol must fail in this case.

More than t players transmit n/2 bits. In this case, by our discussion above, for

each player i that transmits n/2 bits, we can pick a k-source Xi such that the

entropy of the source conditioned on the first round transcript is 0. Thus every

such player cannot generate any private randomness. We pick some other t

players to be faulty. Thus at most p − 2t − 1 players will end up with private

randomness.

4.3.1.5 Protocol for Even Smaller Min-Entropy

Now we prove the general theorem of synchronous extractor, Theorem 4.3.4.

In fact we prove a stronger version, which gives a generic way to transform an in-

dependent source extractor that needs C sources into a network extractor protocol

which runs in roughly logC
log log k

+ 3 rounds and ensures p− (3 + logC
log log k

)t honest players

end up with private random bits.
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We relax the requirement that C is a constant in Assumption 4.3.16, and only

require C = o(log n):

Assumption 4.3.16. We assume we have access to a strong C-Source extractor IExt :

({0, 1}n)C → {0, 1}k with error ε for (n, k) sources, where C = o(log n). Throughout

this section we reserve C for the number of sources that IExt needs to function.

Remark 4.3.17. Theorem 3.5.9 gives such an extractor with C = o(log n).

First we shall construct a more sophisticated AND-disperser.

Towards this we need the following theorem:

Theorem 4.3.18. [AFWZ95] Let H be a d-regular graph on n vertices and A be the

probability transition matrix of the random walk on H. Let 1 = λ0 > λ1 ≥ ... ≥ λn−1

be the eigenvalues of A. Let W be a set of w vertices in H and put µ = w/n. Let τ

denote the fraction of random walks of length D− 1 that stay in W . Assume (for the

lower bound only) that k is odd and that µ+ λn−1(1− µ) ≥ 0. Then

µ(µ+ λn−1(1− µ))k−1 ≤ τ ≤ µ(µ+ λ1(1− µ))k−1.

Lemma 4.3.19 (AND-disperser). There exists a constant c > 0 such that if D =

o(logM) then for every constant 0 < α < 1 and large enough M , there exists an

explicit construction of an (N,M,D, α, β) AND-disperser G such that M < N ≤

MdD and β > µD. Here d = cα−8, µ = α2/3.

Proof. We use random walks on expander graphs to construct the AND-disperser.

Take any d0-regular expander graph G0 on M vertices, let 1 = λ0 > λ1 ≥ ... ≥ λM−1
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be the eigenvalues of the probability transition matrix of the random walk on G0. For

any subset of vertices W with |W | = αM , let τ denote the fraction of random walks

of length D − 1 that stay in W . If µ0 = α + λM−1(1− α) > 0, then Theorem 4.3.18

gives a lower bound of τ as τ ≥ αµD−1
0 ≥ µD1 , where µ1 = min{α, µ0}. Take all the

walks of length D − 1 as the vertices in [N ] and have each vertex in [N ] connect to

the D vertices in [M ] that are in the corresponding walk, we get an AND-disperser

as desired.

The problem with the above construction is that some walks may have repeated

vertices, thus some vertices in [N ] may have degree less than D. On the other hand

we need every vertex in [N ] to have degree exactly D(Think of D = C and we have

to use C independent sources for the extractor).

To deal with this problem, we make a slight modification. Instead of using

walks of length D−1, we take all the walks of length l = 2D−1 on G0. Among these

walks, we delete all the walks that have more than D repeated vertices. The remaining

walks then have at least D distinct vertices. We then take all the remaining walks as

vertices of [N ] and for each vertex in [N ], connect it to the first D distinct vertices in

[M ] that are in the corresponding walk. We bound the number of walks which have

more than D repeated vertices to show that there are still enough walks left. This

then gives us the desired AND-disperser. Note as D = o(logM) the AND-disperser

can be constructed in polynomial time.

We use a special family of Ramanujan graphs X on M vertices as constructed

in [LPS88]. The graph X is regular with degree d0 = p + 1, p prime and has large

girth: g(X) = Ω(log |X|) = Ω(logM).
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For a walk (w0, .., wl), call wi a repeat if there exists a j < i such that wj = wi,

and new otherwise. Note l = 2D − 1 = o(logM) = o(g(X)). Thus for sufficiently

large M , l < g(X) and the only possible way to get repeats is to backtrack in the

walk.

Define a “backtracking pair” in a walk to be a sub-walk of length 2m− 2 for

somem such that the order of the vertices in the sub-walk is v1, v2, ..., vm−1, vm, vm−1, ..., v2, v1.

Now consider any walk with more than D repeats. If we remove all the backtracking

pairs in it, it becomes a walk without repeats and the new walk will have length

y ≤ D − 1. For a fixed y, the length of all the backtracking pairs is l − y. Thus

there are l−y
2

backtracking steps and at most
(

l
l−y

2

)
choices for the positions of these

steps. For each such choice there are at most Md
l+y
2

0 choices for the other l+y
2

steps.

Therefore the total number of walks with more than D repeats is at most

P ≤
D−1∑
y=0

(
l
l−y

2

)
Md

l+y
2

0

≤
D−1∑
y=0

(
2el

l − y
)
l−y

2 Md
l+y
2

0 ≤
D−1∑
y=0

(4e)
l−y

2 Md
l+y
2

0

< M
D−1∑
y=0

(4ed0)
l+y
2 ≤MD(4ed0)

3D
2
−1

Thus the fraction of walks with more than D repeats is at most

η = MD(4ed0)
3D
2
−1/Md2D−1

0 < D

(
(4e)3

d0

)D
2

While by Theorem 4.3.18 the fraction of walks that stay in W is at least

τ ≥ µ2D
1 = (µ4

1)
D
2 , where µ1 = min{α, α + λM−1(1 − α)}. By the property of the
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expander X, |λM−1| ≤ 2
√
d0−1
d0

[LPS88]. Let d0 = c1α
−4 for a sufficiently large global

constant c1 > 0, we have

α + λM−1(1− α) > α− 2α2

√
c1

> 0.9α.

Thus µ > 0.9α and

τ ≥ (µ4
1)

D
2 > (0.94α4)

D
2 =

(
0.94c1

(4e)3
· (4e)3

d0

)D
2

> 2D

(
(4e)3

d0

)D
2

= 2η.

Therefore the fraction of random walks that stay in W and have at least D

distinct vertices is at least

β = τ − η > 1

2
τ ≥ 1

2
µ2D

1 > (α2/3)D = µD.

Note N < Md2D−1
0 ≤ MdD with d = d2

0 ≤ cα−8 for a global constant c > 0,

and N > Md2D−1
0 −MD(4ed0)

3D
2
−1 > M .

The second ingredient we’ll use is a family of “m-expanding” graphs.

Definition 4.3.20. [TUZ01] An undirected graph is m-expanding if every two dis-

joint sets of vertices of size at least m are joined by an edge.

In [TUZ01] almost optimal parameters for explicit m-expanding graphs are

achieved:
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Theorem 4.3.21. [TUZ01] For any N,m > 0 there exists an explicit m-expanding

d-regular graph on N vertices with d = O(N
m

polylogN)

Notice that in the case N
m

is a constant, it suffices to use a constant degree

expander as in Theorem 4.3.8. In our protocols we’ll often view these graphs as

bipartite graphs, with N vertices on both sides.

The last ingredient we need is the extractor for somewhere random source and

independent sources in Theorem 3.5.10. This theorem says that it suffices to take a

r × k somewhere random source and another O( log r
log k

) independent (n, k) sources to

extract almost uniform random bits.

4.3.1.6 High-Level Ideas of the synchronous extractor

We now outline the high-level ideas of the synchronous extractor, Proto-

col 4.3.24.

Idea 1 : The synchronous extractor is a multiple roundprotocol. Each round is a

generalization of Protocol 4.3.10. The difference is that the number of inde-

pendent sources needed may no longer be a constant. Thus we use the more

sophisticated AND-disperser as in Lemma 4.3.19. Note that the reason we

need a protocol like Protocol 4.3.10 is that we need more than one independent

sources to extract random bits (If there is a one-source extractor, then we don’t

need such protocols).

Idea 2 : By the end of the first round, all but a small fraction of the receivers obtain a

somewhere random source. If the number of rows in the SR-source is small, then
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by Theorem 3.5.11 a player can extract random bits using the SR-source and

his own weak source. This is just Protocol 4.3.10. If the number of rows in the

SR-source is not small enough, then we need more than one independent sources

together with the SR-source to extract random bits. Thus we can run the one-

round protocol again. The key observation is that the number of independent

sources needed will decrease in each round.

Idea 3 : Assume at the beginning of round l, the number of independent sources

needed (except the SR-source) is Cl. Then, the AND-disperser gives a set of Cl-

tuples of which a fraction of roughly 1/2Θ(Cl) is “good” (consisting of all honest

players). The m-expanding graph of Theorem 4.3.21 gives a bipartite graph

with degree roughly O(2Θ(C1)) (except for a poly-logarithmic factor, which won’t

affect our result much). The property of the m-expanding graph guarantees that

in each round all but a small fraction of the receivers obtain an SR-source.

Idea 4 : The degree of the m-expanding graph is exactly the number of rows in the

SR-source obtained by the end of round l. Thus by Theorem 3.5.10 the number

of independent sources we need now is roughly Cl+1 = O( log 2Θ(Cl)

log k
) = O( Cl

log k
),

which says the number of independent sources needed will decrease by a factor

of roughly log k in each round. We then iterate until this number decreases to 1,

at which time a player can extract random bits that are close to uniform using

the SR-source and his own weak source. This will take roughly logC
log log k

rounds.
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4.3.1.7 Synchronous network extractor protocol

Now we describe our protocol for synchronous extractor. First we need a sub

protocol, Protocol 4.3.22, a generalization of Protocol 4.3.10, for one round in the

whole protocol.
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Protocol 4.3.22. For a synchronous one round network

Player Inputs: There are two sets of players, A and B. Every player ui ∈ A has
a weak random string xi ∈ {0, 1}n and an optional r1×k somewhere random string
yi ∈ {0, 1}r1k
Player Outputs: For every player uj ∈ B, uj ends up with a supposed r2 × k
somewhere random string yj ∈ {0, 1}r2k

Sub-Routines and Parameters:

• Let IExt be a C source extractor as in Assumption 4.3.16. Let SRIExt be
the Somewhere Random source vs. independent source extractor as in The-
orem 3.5.10.

• |A| = (1 + α)t for some given constant α > 0.

• If this is the first round of the whole protocol, let D = C be the number
of (n, k) sources IExt needs. Otherwise let D = O( log r1

log k
) be the number of

independent sources SRIExt needs, when the somewhere random source has
r1 rows. Construct an (N,M = |A|, D, α1 = 0.9α

1+α
, β1) AND-disperser G with

N ≤MdD1 , β1 ≥ µD1 as in Lemma 4.3.19.

• If D is a constant, let m = min{µD1 N, 0.1αt} and construct the bipar-
tite expander H on 2N vertices promised by Theorem 4.3.8 with degree
d2 = O((N/m)2). Otherwise let m = min{µD1 N,

|A|
2D
} and construct an m-

expanding graph H on N vertices promised by Theorem 4.3.21 with degree
d2 = O(N

m
polylogN). View H as a bipartite graph with N vertices on each

side. Identify each player in A with a vertex in [M ] and identify each player
in B with a vertex in the left vertex set of H. Identify [N ] with the right
vertex set of H.

Round 1 :

1. Every player ui ∈ A sends his random string xi and his somewhere
random string yi(if ui has such a string) to all the players in B.

2. For every player vj ∈ B, his corresponding vertex in H has d2 neighbors
in the right vertex set of H: wj1, ..., wjd2 . Each of these neighbors wjq
in turn has D neighbors in [M ]. Let the D neighbors be uq1, ..., uqD and
without loss of generality assume q1 < q2 < ... < qD.

• If this is the first round of the whole protocol, compute
sjq = IExt(xq1, xq2, ..., xqD). Otherwise compute sjq =
SRIExt(xq1, xq2, ..., xqD, yq1).

• Compute sjq for every neighbor wjq and form a d2 × k somewhere
random string yj = sj1 ◦ ... ◦ sjd2

.
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We also need the following sub protocol, Protocol 4.3.23, which guarantees

that if at least 3t honest players already get private random bits, then in the next

round all the other honest players who haven’t announced their strings will get private

random bits.

Protocol 4.3.23. For a synchronous one round network

Player Inputs: There are two sets of players, A and B. Every player ui ∈ A has
private random bits zi ∈ {0, 1}k
Player Outputs: For every honest player uj ∈ B, uj ends up with private random
bits zj ∈ {0, 1}m, while every honest player ui ∈ A still has 0.9k private random
bits left.

Sub-Routines and Parameters:

• Let Raz be the strong 2-sources extractor in Theorem 3.5.7.

• |A| > 3t.

Round 1 :

1. Every player ui ∈ A takes 0.1 fraction of his private random bits zi, let
the fraction be yi and sends yi to all the players in B.

2. For every player uj ∈ B, let sj be the concatenation of all the yi received
from the players in A. Compute zj = Raz(sj, xj).

The synchronous extractor is now described as Protocol 4.3.24.
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Protocol 4.3.24. For a synchronous network

Player Inputs: Every player ui has a weak random string xi ∈ {0, 1}n
Player Outputs: For some players uj, uj ends up with private random bits
zj ∈ {0, 1}m

Sub-Routines and Parameters:

• Protocol 4.3.22 and Protocol 4.3.23.

• Let BasicExt be the extractor in Theorem 3.5.11.

• α > 0 is a given constant.

• R is given as the number of rounds of the protocol.

Divide p players into R + 1 disjoint sets A1, ..., AR+1, where |A1| = |A2| = ... =
|AR−1| = (1 +α)t and |AR| = min{p− (1 +α)(R− 1)t, 3(1 +α)t}. AR+1 is the set
of remaining players. It’s possible that AR+1 = Φ.

Round l, l = 1, ..., R− 1 : Run Protocol 4.3.22 with A = Al, B = Al+1 and
parameter α. In round 1, players in A don’t have the optional somewhere
random strings yi. In subsequent rounds, players in A have the somewhere
random strings yi obtained by the end of the previous round.

Round R− 1 : At the end of round R − 1, player uj in AR computes zj =
BasicExt(xj, yj). Here xj is uj’s weak random string, yj is the somewhere
random string obtained by the end of this round.

Round R(Last Round) : If AR+1 6= Φ, run Protocol 4.3.23 with A = AR, B =
AR+1.

4.3.1.8 Proof of the theorem

We prove the following stronger theorem:

Theorem 4.3.25. If k > log p and n ≤ poly(p) then as long as t > p0.1, for suffi-
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ciently large p there exists a (t, p− 1.1(3 + logC
log log k

)t, ε+ 2−k
Ω(1)

) synchronous extractor

that runs in at most 1.1 logC
log log k

+ 3 rounds in the full-information model. Here ε is the

error of the extractor in Assumption 4.3.16.

Remark 4.3.26. The parameter p0.1 can be replaced by pδ for any constant δ > 0

and the constant 1.1 can be replaced by 1 + α for any constant α > 0.

In all the analysis below we call a supposed somewhere random string y “valid”

if it contains at least one row that is ε-close to being truly random for some small

error ε.

To analyze Protocol 4.3.24 we first establish the following lemma:

Lemma 4.3.27. Let Cl be the number of independent (n, k) sources needed for IExt

or SRIExt in round l of the synchronous extractor. Define Badl as the number of

honest players in Al that don’t have a valid somewhere random string for l ≥ 2 and

let Bad1 = 0. There exist constants c1 > 0, c2 > 0 such that for every constant α > 0,

the following claims hold.

1. ∀l, Badl ≤ 0.1αt and Cl = o(log n)

2. If Cl > log k, then

Cl+1 ≤
c1 log(c2/α)

log k
Cl

3. If Cl ≤ log k and Cl = ω(1), then Cl+1 is a constant C(α)

4. If Cl is a constant, then by the end of round l, all but Badl honest players in

Al obtain random bits that are ε+ l2−k
Ω(1)

-close to uniform and independent of

the whole transcript.
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Proof. We prove 1 by induction. For l = 1, the number of independent (n, k) sources

needed for IExt is C1 = C = o(log n) by Assumption 4.3.16. Also Bad1 = 0 < 0.1αt.

Now assume for round l, Cl = o(log n) and Badl ≤ 0.1αt. Note Cl = o(log n) =

o(log t) as n = O(poly(p)) and t > p0.1. Let Ul denote the subset of honest players

in Al that have a valid somewhere random source for l ≥ 2, and the subset of honest

players in Al for l = 1, then |Ul| ≥ (1 + α)t − t − Badl ≥ 0.9αt. Thus |Ul||Al| ≥
0.9α
1+α

.

Consider Protocol 4.3.22 for round l. An AND-disperser G = (N,M,D, α1, β1) is

constructed with M = |Al| = (1+α)t,D = Cl = o(log t), α1 = 0.9α
1+α

. By Lemma 4.3.19,

N ≤ MdD1 = MdCl1 for some constant d1 ≤ c′1α
−8
1 , and there exists a subset V ⊂ [N ]

with |V | = β1N > µD1 N s.t. Γ(V ) ⊂ Ul. V is the set of “good” tuples that consist of

all honest players.

As D = o(log t), |Al|
2D

> t0.9 and µD1 N > µD1 M > t0.9. Thus min{µD1 N,
|Al|
2D
} >

t0.9 andmin{µD1 N, 0.1αt} > t0.9. Also, ifD is super-constant, thenm = min{µD1 N,
|Al|
2D
} ≤

|Al|
2D

< 0.1αt. Otherwise m = min{µD1 N, 0.1αt} ≤ 0.1αt. Therefore t0.9 < m ≤ 0.1αt.

Also m < β1N = |V |. By the property of the m-expanding graph and the bipartite

expander, for any subset of players W ⊂ Al+1 with |W | ≥ m, there is an edge between

W and V . Now if an honest player uj ∈ Al+1 has a neighbor vjq ∈ V , then all the

neighbors of vjq in [M ], uq1, ..., uqD are honest players. Moreover if l ≥ 2, then all

these honest players have a valid somewhere random string yqi. Note that each some-

where random string yi is only a function of the strings broadcasted so far, and thus

is independent of any xj of an honest player j who has not announced his random

string. Therefore sjq = IExt(xq1, xq2, ..., xqD) or sjq = SRIExt(xq1, xq2, ..., xqD, yq1) is ε-

close to uniform and yj = sj1◦ ...◦sjd2 is a valid somewhere random source. Therefore

86



Badl+1 ≤ m ≤ 0.1αt. By induction Badl ≤ 0.1αt for all l.

Now consider the number of independent (n, k) sources needed for a player in

round l+1. The somewhere random string yj obtained by player uj ∈ Al+1 at the end

of round l is of size d2×k, where d2 is the degree of the m-expanding graph or bipartite

expander H in round l. If Cl = ω(1) then in round l we use an m-expanding graph. By

Theorem 4.3.21, d2 = O(N
m

polylog(N)), where N
m

= max{(2d1)D, ( 1
µ1

)D} ≤ c8D
3 α−8D

for some constant c3 > 0 and D = Cl as d1 ≤ c′1α
−8
1 , µ1 > α2

1/3. Thus

Cl+1 = O(
log d2

log k
) = O(

log(N/m)

log k
+

log logN

log k
)

Now N ≤ MdD1 = (1 + α)tdD1 , therefore logN ≤ D log d1 + log(1 + α)t ≤

D log d1 log(1 + α)t as we can safely assume d1 ≥ 4, D ≥ 1, t ≥ 4. Thus

log logN

log k
≤ logD + log log d1 + log log((1 + α)t)

log k
=

logD

log k
+O(1)

as k > log p > log t.

On the other hand

log(N/m)

log k
≤ 8D log(c3/α)

log k

Therefore

Cl+1 = O(
D log(c3/α)

log k
+ 1) = O(

Cl log(c3/α)

log k
+ 1)
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As long as Cl = ω(1), the above gives that Cl+1 < Cl. As C1 = o(log n), we

have Cl = o(log n) for all l. Thus claim 1 holds.

Now if Cl ≤ log k, then Cl+1 = O(log(c3/α) + 1) = C(α) is a constant. Thus

claim 3 holds.

If Cl > log k, then Cl log(c3/α)
log k

+ 1 < Cl(log(c3/α)+1)
log k

= Cl log(2c3/α)
log k

. Thus

Cl+1 = O(
Cl log(c3/α)

log k
+ 1) ≤ c1

Cl log(2c3/α)

log k
=
c1 log(c2/α)

log k
Cl

for c2 = 2c3. Thus claim 2 holds.

If Cl is a constant C(α), then in round l of the synchronous extractor, we use

the bipartite expander H with d2 = O((N/m)2) by Theorem 4.3.8. Note N/m ≤

max{ 1

µ
Cl
1

,
(1+α)td

Cl
1

0.1αt
} is a constant, therefore d2 = O((N/m)2) = d2(α) is a constant.

For sufficiently large p this gives d2 < kγ, where γ is the parameter in Theorem 3.5.11.

Therefore, at the end of round l, all but Badl honest players uj in Al obtain private

random bits by computing zj = BasicExt(xj, yj). The fact that BasicExt is strong

implies that zj is also close to independent of the whole transcript. As in each round

of the protocol the error increases by 2−k
Ω(1)

, the error of the random bits obtained

by honest players in Al is at most ε+ l2−k
Ω(1)

. Thus claim 4 holds.

Proof of Theorem 4.3.25. Run Protocol 4.3.24 with parameter α and R to be chosen

later. Let Cl be the number of independent (n, k) sources needed in round l and

let l0 be the first round where Cl0 ≤ log k. By Lemma 4.3.27, at the end of round

l = l0 + 1, Cl becomes a constant and by the end of round R = l0 + 2, all but Badl0+2
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honest players in Al0+2 obtain private random bits. Now by Lemma 4.3.27 there exist

constants c1 > 0, c2 > 0 such that if Cl ≥ log k, then Cl+1 ≤ c1 log(c2/α)
log k

Cl.

By the recursion Cl+1 ≤ c1 log(c2/α)
log k

Cl we have

Cl0 ≤
(
c1 log(c2/α)

log k

)l0−1

C1 =

(
c1 log(c2/α)

log k

)l0−1

C

To make Cl0 ≤ log k it suffices to have

(
c1 log(c2/α)

log k

)l0−1

C ≤ log k

we get

l0 ≥
log C− log log k

log log k − log c1 − log log(c2/α)
+ 1 =

log C− log c1 − log log(c2/α)

log log k − log c1 − log log(c2/α)
.

Thus it suffices to take

R = l0 + 2 =

⌈
log C− log c1 − log log(c2/α)

log log k − log c1 − log log(c2/α)

⌉
+ 2 ≤ (1 + o(1))

log C

log log k
+ 3. (4.1)

Recall that the beginning of round R is the end of round R − 1, thus at the

end of round R − 1 all but BadR ≤ 0.1αt of the honest players in AR get private

random bits.

If AR+1 6= φ, then in round R, we run Protocol 4.3.23. As |AR| ≥ 3(1 + α)t

and there can be at most (1 + 0.1α)t players in AR that don’t send out a string yi

that is ε′-close to uniform and independent of each other, the concatenated string sj is
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ε′-close to a weak random source with min entropy rate at least 2
3

and is independent

of xj. Therefore by Theorem 3.5.7 zj is close to being uniform and private.

Now there are at most (1+α)(R−1)t honest players in the first R−1 rounds.

In round R there can be at most 0.1αt honest players in AR that don’t get private

random bits. Therefore the number of honest players that get private random bits is

at least p− t− (1 + α)(R− 1)t− 0.1αt > p− (1 + α)Rt. By Lemma 4.3.27 the error

is at most ε+R2−k
Ω(1)

.

Note that R ≤ (1 + o(1)) logC
log log k

+ 3 and C = o(log n). Together with the fact

k > log p = Ω(log n) this implies that the error R2−k
Ω(1)

= 2−k
Ω(1)

.

Choose α = 0.03, we see (1+α)R = 1.03((1+o(1)) logC
log log k

+3) < 1.1( logC
log log k

+3),

and R < 1.1 logC
log log k

+ 3 for p large enough.

Therefore Protocol 4.3.24 is a (t, p− 1.1(3 + logC
log log k

)t, ε+ 2−k
Ω(1)

) synchronous

extractor that runs in at most 1.1 logC
log log k

+ 3 rounds.

By using the extractor in Theorem 3.5.9 and arithmetic manipulation of (4.1),

we have the following corollaries for special (n, k) sources, which tolerate a linear

fraction of faulty players:

Corollary 4.3.28. For every constant α, δ > 0 and p large enough, there is a (t <

p
2+α

, p − (2 + α)t, 2−k
Ω(1)

) synchronous extractor that runs in at most 2 rounds for

k = nδ in the full-information model.
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Corollary 4.3.29. There exists a constant c > 0 such that for every constant α > 0

and p large enough, there is a (p0.1 < t < p
3+α

, p − (3 + α)t, 2−k
Ω(1)

) synchronous

extractor that runs in at most 3 rounds for k ≥ 2c
√

logn in the full-information model.

Corollary 4.3.30. For every constant α, δ > 0, there exists a constant c > 0 such

that for p large enough, there is a (p0.1 < t < δp
(1+α)(1+δ)

, p− (1 +α)(1/δ+ 1)t, 2−k
Ω(1)

)

synchronous extractor that runs in at most 1/δ + 1 rounds for k ≥ 2c logδ n in the

full-information model.

Remark 4.3.31. Corollary 4.3.28 is just Theorem 4.3.3, which gives a synchronous

extractor that achieves a tolerance of roughly t < p/2 and guarantees p − 2t honest

players end up with private random bits for k ≥ nδ. If t = Θ(p), then the protocol

runs in one round. Moreover, in this case we don’t need t > p0.1 or n ≤ poly(p), since

C is a constant.

Corollary 4.3.29 and Corollary 4.3.30 give synchronous extractors that run in

constant rounds and tolerate a linear fraction of faulty players, even for min-entropy

as low as 2logδ n.

4.3.2 Asynchronous Network Extractors

In this section we discuss asynchronous network extractors. Recall that in

an asynchronous network the only guarantee is that a message sent will eventually

be received. Thus to design network extractors in an asynchronous full-information

network is much harder than in a synchronous full-information network. However,

we manage to obtain only slightly weaker results in this case.
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First we have the following protocol for weak sources with high min-entropy

(k > n/2).

Protocol 4.3.32. For an asynchronous network

Player Inputs: Every player ui has xi ∈ {0, 1}n
Player Outputs: For some honest players uj, uj ends up with zj ∈ {0, 1}m.

Sub-Routines and Parameters:
Let Raz be the strong 2-sources extractor in Theorem 3.5.7.

Round 1 : Divide p players into 2 sets A and B, with |A| = 2t+1, |B| = p−2t−1.
Each player ui does the following:

1. Every player ui ∈ A sends his random string xi to all players in B.

2. For every player uj ∈ B, uj waits to receive t+ 1 strings. Let yj be the
concatenation of all these strings. Compute zj = Raz(yj, xj).

Theorem 4.3.33 (High Entropy Asynchronous Extractor). As long as n ≥ log2 p,

Protocol 4.3.32 is a (t < p/3, p−3t−1, 2−k
Ω(1)

) asynchronous extractor for min entropy

k ≥ (1/2 + γ)n, where γ > 0 is any constant.

Proof. As |A| = 2t+1, every honest player uj in B will eventually receive t+1 strings

from A. At least one of these strings is from a honest player, thus yj has min-entropy k

(the min-entropy can be poly-logarithmic in the length of yj if n = polylog(p)). Note

the random string xj has min-entropy k ≥ (1/2 + γ)n. As long as n ≥ log2 p it’s easy

to check that xj and yj satisfy the conditions of Theorem 3.5.7. Thus zj = Raz(yj, xj)

is 2−k
Ω(1)

-close to being uniform and independent of the transcript. Moreover, there

are at least |B| − t = p− 3t− 1 honest players in B.
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Note that if we have a strong 2-source extractor for poly-logarithmic min-

entropy, then Protocol 4.3.32 actually works for small min-entropy. However currently

the best known 2-source extractor requires one source to have min-entropy rate > 1/2

if the other has only poly-logarithmic min-entropy.

For smaller min-entropy, a simple protocol for asynchronous full-information

network is Protocol 4.3.34, which is a generalization of the protocol given in [GSV05].

Protocol 4.3.34. For an asynchronous network

Player Inputs: Every player ui has xi ∈ {0, 1}n
Player Outputs: For some players {uj}, uj ends up with zj ∈ {0, 1}m

Sub-Routines and Parameters:
Let IExt be a strong C source extractor with parameters n, k,m = k, ε as in Theo-
rem 3.5.9.

Divide the players into p/C disjoint sets, S1, ...Sp/C, each of size C. For set Si, let
the players in that set be ui1, ...uiC.

Round 1 : For each set Si, i = 1, ..., p/C, each player uij in Si does the following:

1. If j 6= 1, send xij to ui1.

2. If j = 1, wait to receive C − 1 strings {xil, l 6= 1} from the other C − 1
players.

• If ui1 successfully receives C− 1 strings {xil, l 6= 1}, compute zi1 =
IExt(xi1, ..., xiC) and send a message “complete” to all the other
players {ul1, l 6= i}.
• If ui1 receives p/C−t “complete” from the players {ul1, l 6= i} before

he receives C − 1 strings {xil, l 6= 1}, then ui1 sends a “complete”
to all the other players {ul1, l 6= i} and aborts.

Theorem 4.3.35. Protocol 4.3.34 is a (t < p/(2C), (p/C− 2t), ε) asynchronous net-

work extractor for min-entropy k, where ε is the error of the extractor IExt.
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Proof. We say a set Si is “good” if there’s no faulty player in Si, and “bad” otherwise.

If Si is good, then ui1 will eventually receive C − 1 strings from the other players in

Si, or he will receive p/C − t “complete” messages before that. Either way, ui1 will

end or abort and send a “complete” to all uj1, j 6= i.

If Si is bad, then ui1 may never get all the C− 1 strings. However, eventually

he’ll receive p/C−t “complete” messages, as there are at least p/C−t good sets. Thus

ui1’s procedure will also end eventually. Therefore the whole protocol will eventually

end.

Now consider the time the protocol ends. If no ui1 in a good set Si aborts,

then every ui1 gets private random bits by computing zi1 = IExt(xi1, ..., xiC). The

number of such ui1s is at least p/C− t.

Otherwise, some ui1 in a good set Si aborts. Consider the logically first ui1

that aborts, he aborts because he receives p/C− t “complete”s. At least p/C− 2t of

these “complete”s are from uj1s in good sets, who don’t abort as ui1 is the first one

that aborts. Therefore these uj1s have obtained private random bits by computing

zj1s. It follows Protocol 4.3.34 is a (t < p/(2C), (p/C− 2t), ε) asynchronous network

extractor for min-entropy k.

Note if we use the independent source extractor in Theorem 3.5.9, then for

min-entropy k = nβ we have C = O(1/β). Thus the tolerance of Protocol 4.3.34

depends on β, while in the synchronous case for min-entropy k = nβ we can tolerate

t < p/2 faulty players. A natural question arises: can we use the same ideas in

synchronous extractor to improve the asynchronous extractor?
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A problem here is that in an asynchronous network the faulty players may

not send out their strings as expected, thus an honest player may wait forever, which

causes the protocol to fail. However, we manage to obtain similar results as the

synchronous case, using additional ideas.

Specifically, we have the following theorem.

Theorem 4.3.36. There exists a constant c > 0 such that if log log logn
log log k

= o(1) and

poly(t) ≤ n ≤ exp(t), then for sufficiently large t there exists a (t, p−c log logn
log log k

t, 2−k
Ω(1)

)

asynchronous extractor that runs in O(log log n/ log log k) rounds in the full-information

model.

We also get the following corollaries:

Corollary 4.3.37. There exists a constant c > 0 such that for every constant δ > 0

and t large enough, as long as t < p/c, there is a (t, p − ct, 2−k
Ω(1)

) asynchronous

extractor that runs in at most 2 rounds for k = nδ in the full-information model.

Corollary 4.3.38. There exists a constant c > 0 such that if poly(t) ≤ n ≤ exp(t),

then for every constant δ > 0 and t large enough, as long as t < δp
c

, there is a

(t, p − ct/δ, 2−kΩ(1)
) asynchronous extractor that runs in at most 1/δ + 1 rounds for

k = 2logδ n in the full-information model.

To construct protocols for these theorems, we need some modifications to

the ingredients used in the synchronous protocol. First we need a modified AND-

disperser:
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Lemma 4.3.39. There exist global constants b, d > 0 and 0 < µ < 1 s.t. if D =

o(logM), then for sufficiently large M there exists an (N,M, bD, α, β) AND-disperser

with the following properties:

1. α = b−1
b

, M < N ≤MdbD and β > µbD.

2. For any subset W ⊂ [M ] with |W | = αM , let Q = {v ∈ [N ], |Γ(v) ∩W | < D}

and γ = |Q|/N , then γ < µbD

3
.

Proof. Similar as in the proof of Lemma 4.3.19, take a Ramanujan graph X on M

vertices with degree d0 as constructed in [LPS88]. Take all the random walks on X

with length 2bD− 1 and delete the walks with more than bD repeated vertices. Take

the remaining walks to be vertices of [N ] and for each vertex in [N ], connect it to the

first bD distinct vertices in [M ].

Now β is the fraction of walks that stay in W and have at least bD distinct

vertices. Let µ1 = min{α, α+λM−1(1−α)}. By the same analysis as in Lemma 4.3.19,

if we choose d0 = d0(α) = d0(b) large enough, we can make β > 1
2
µ2bD

1 ≥ µbD for some

constant 0 < µ = µ2
1/2

1
b = µ(b) < 1 and M < N < Md2bD−1

0 ≤MdbD, where d = d2
0.

Now for any vertex v ∈ [N ], if |Γ(v) ∩ W | < D, then the walk of length

2bD − 1 corresponding to v must have less than (b + 1)D vertices in W . Let the

random variable Y denote the number of vertices in W for a random walk of length

2bD − 1, then EY = α2bD = 2(b− 1)D. By the chernoff bound of random walks on

expander graph [Gil98],
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γ = Pr(Y < (b+ 1)D) ≤ Pr(|Y − EY | > (b− 3)D) ≤ 2−cbD

for some constant c > 0.

Now we have

µbD/γ > µbD/2−cbD = (µb2cb)D = (
1

2
(2cµ2

1)b)D

Note µ1 = min{α, α+λM−1(1−α)} and α = b−1
b

goes to 1 as b goes to infinity.

Thus for a sufficiently large constant b we have 2cµ2
1 > 1 and 1

2
(2cµ2

1)b > 3. Therefore

(1
2
(2cµ2

1)b)D > 3 and γ < µbD

3
.

Another modification is that instead of using an m-expanding graph, we now

need to use an extractor graph. For convenience we need the following definition of

an extractor.

Definition 4.3.40. Ext : [N ]× [D]→ [M ] is a (K, ε)-extractor if for every subset S ⊆

[N ] of size K, |Ext(US, U[D])− U[M ]| ≤ ε, where UX denotes the uniform distribution

on the set X.

Such an extractor can be viewed naturally as a bipartite graph Ext(N,M,D)

where the left vertex set is [N ], right vertex set is [M ] and every left vertex has degree

D. It can be equivalently viewed as a function Ext : {0, 1}n×{0, 1}d → {0, 1}m where

n = logN, d = logD,m = logM that works for min-entropy k = logK. We’ll use

the graph version of Ext in the protocol.
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Note that we don’t need a strong extractor here. However we need an extractor

with large output. For a (k, ε) extractor that uses d truly random bits and has output

length m, what we care about here is the entropy-loss defined by ∆ = k+d−m for an

extractor and ∆ = k−m for a strong extractor. Nonconstructively, one can show that,

for any n and k ≤ n, there exist strong extractors Extn,k : {0, 1}n×{0, 1}d → {0, 1}k−∆

with d = log(n−k)+2 log(1/ε)+O(1) and entropy loss ∆ = 2 log(1/ε)+O(1)[RTS97].

Definition 4.3.41. An optimal strong extractor is a strong extractor Extn,k : {0, 1}n×

{0, 1}d → {0, 1}k−∆ with d = log(n − k) + 2 log(1/ε) + O(1) and entropy loss ∆ =

2 log(1/ε) +O(1).

We have the following lemma:

Lemma 4.3.42. Assume we can explicitly construct optimal strong extractors, then

for any N > K > 0 and M > 0, there is a polynomial time computable (K, ε)

extractor Ext : [N ]× [D]→ [M ] with D = O( M
Kε2

polylogN).

Proof. First construct the strong extractor Exts : {0, 1}n × {0, 1}d → {0, 1}k−∆ with

d = O(log n) + 2 log(1/ε) + O(1) and entropy loss ∆ = 2 log(1/ε) + O(1), where

n = logN and k = logK. This gives us output length m = k − ∆. We want the

output length to be logM , thus we need another logM − m bits. Notice Exts is

a strong extractor, thus we can add the bits of the seed to the output while still

keeping the error ε. We’ll add bits of the seed to the output until the output length

is logM . If m + d < logM , then we add another logM − m − d random bits to

both the seed and the output, i.e., Ext(x, y ◦ z) = Exts(x, y) ◦ y ◦ z. Here y is the
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seed of length d and z is the additional logM −m − d random bits. The new seed

length in this case will be d = logM − m = logM − logK + ∆. Thus D = 2d =

max{O( 1
ε2

polylogN), O( M
Kε2

)} = O( M
Kε2

polylogN). Now Ext : [N ] × [D] → [M ] is a

(K, ε)-extractor with D = O( M
Kε2

polylogN).

In fact currently we don’t have an explicit construction of the optimal strong

extractor. Currently the best known explicit extractor that achieves optimal entropy

loss requires the seed length to increase by a poly-logarithmic factor:

Theorem 4.3.43. [RRV99] For every n, k ∈ N , and ε > 0 such that k ≤ n, there

are explicit strong (k, ε)-extractors Ext : {0, 1}n × {0, 1}d → {0, 1}k−∆ with entropy

loss ∆ = 2 log(1/ε) +O(1) and d = O(log2 n log(1/ε) log k).

Using this extractor, we get slightly weaker results. Note d = O(log3 n log(1/ε)).

Thus in the graph representation the left degree will be D = 2d = 2O((log logN)3 log(1/ε)).

As a result, we will not be able to handle min-entropy as low as k = polylog(n).

However, when the min-entropy is larger, we’ll be able to improve the number of

honest players who end up with private random bits.

The following proposition is well known.

Proposition 4.3.44. Let Ext(N,M,D) be a bipartite graph with left vertex set [N ],

right vertex set [M ] and left degree D. For any subset S ⊂ [M ], let BadS = {u ∈

[N ], | |Γ(u)∩S|
D
− |S|

M
| > ε}. If Ext is a (K, ε) extractor, then |BadS| ≤ K.
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4.3.2.1 High-Level Ideas of the Asynchronous Extractor

We now outline the high-level ideas of the asynchronous extractor. In the

highest level the asynchronous extractor does the same thing as the synchronous

extractor. The goal is to have the number of independent sources needed decrease in

each round by a factor of roughly log k, with the help of somewhere random source

of fewer and fewer rows and the extractor in Theorem 3.5.10. Once the number of

independent sources needed decreases to 1, a player can extract random bits using

the SR-source and his own weak source2. However, additional ideas are needed to

ensure that this can work:

Idea 1 : In one round of the protocol, where players in A send their strings to players

in B, we can no longer put only (1 + α)t players in A. Otherwise there could

be a majority of faulty players in A and the players in B could wait forever or

receive strings only from faulty players. Similarly we can no longer only use

tuples of size C, as if there’s only one faulty player in a tuple, then a player in

B will never receive that tuple. Therefore, we need to increase the size of A

and the size of the tuple.

Idea 2 : The AND-disperser in Lemma 4.3.39 deals with the above problem. More

specifically, consider tuples of size bC for some constant b. Let the total num-

ber of such tuples be s1, the number of tuples that have less than C honest

players be t1 and the number of tuples that consist of all honest players be h1.

2In some cases the number of independent sources needed cannot decrease to 1, but it will decrease
to a constant. In this case we’ll use Protocol 4.3.34
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Lemma 4.3.39 shows that for a large enough b, h1 > t1. Now imagine we have

the players in B wait to receive C strings from a tuple, and receive such strings

from s1−t1 tuples. The key observation is that every player in B will eventually

receive so many strings, and at least one tuple that sends the strings consists

of all honest players. This is because every tuple that consists of at least C

honest players will eventually send out C strings, and the number of such tuples

is s1 − t1. Also h1 > t1 so at least one of the tuples must consist of all honest

players. Now the players in B can compute a valid somewhere random source.

Idea 3 : One problem with the above idea is that the number s1 − t1 is too large,

which will cause the number of rows of the SR-source to be too large. Recall in

the synchronous extractor we use an m-expanding graph to reduce this number,

here instead we use an extractor graph. This is because an extractor graph

roughly keeps the right fraction of “good” and “bad” tuples in the neighbors

for most vertices, so that the argument in Idea2 can still work.

Idea 4 : The use of extractor graph will leave us a small fraction of honest players

in B that don’t have the nice property discussed above. These players could

wait forever in the protocol. To deal with this we use the same idea as in

Protocol 4.3.34, where the players send “Complete” messages to each other.

This will only increase the fraction of unlucky players by a little bit.

4.3.2.2 Asynchronous Network Extractor Protocol

Now we describe our asynchronous network extractor. First we need the fol-

lowing sub protocols:
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Protocol 4.3.45. For an asynchronous one round network

Player Inputs: There are two sets of players, A and B. Each player ui ∈ A has a
string xi ∈ {0, 1}n and an optional r1 × k somewhere random string yi ∈ {0, 1}r1k.
Player Outputs: For every player uj ∈ B, uj ends up with a supposed r2 × k
somewhere random string yj ∈ {0, 1}r2k.

Sub-Routines and Parameters:

• Let IExt be the C source extractor as in Assumption 4.3.16. Let SRIExt
be the Somewhere Random source vs. independent source extractor as in
Theorem 3.5.10.

• |A| = 3bt where b is the constant promised to exist in Lemma 4.3.39. |B| = at
where a is another constant.

• If this is the first round of the whole protocol, let D = C be the number
of (n, k) sources IExt needs. Otherwise let D = O( log r1

log k
) be the number of

independent sources SRIExt needs, when the somewhere random source has
r1 rows. Construct an (N,M = |A|, bD, α = b−1

b
, β) AND-disperser G with

N ≤MdbD, β ≥ µbD as in Lemma 4.3.39.

• Construct a (K, ε0) extractor graph Ext : [N1]× [D1]→ [M1] of Lemma 4.3.42

with N1 = |B|,M1 = N,K = t/2bD, ε0 = µbD

3
. Let D2 = (1 − 2ε0)D1 + 1.

Identify each player in A with a vertex in [M ] and identify each player in B
with a vertex in [N1]. Identify [M1] with [N ].

Round 1 :

1. Every player ui ∈ A sends his string xi and his somewhere random string
yi(if ui has such a string) to all the players in B.

2. For every player vj ∈ B, his corresponding vertex in [N1] has D1 neigh-
bors in [M1]: wj1, ..., wjD1 . Each of these neighbors wjq in turn has
bD neighbors in [M ]. Let the bD neighbors be uq1, ..., uqbD and we call
(uq1, ..., uqbD) a tuple. Thus each vj ∈ B is connected to D1 tuples. For
each of these tuples, vj waits to receive D strings sent from that tuple.
Without loss of generality assume for tuple (q1, q2, ..., qbD) the first D
strings received are xq1, ..., xqD and q1 < q2 < ... < qD.

• If this is the first round of the whole protocol, compute
sjq = IExt(xq1, xq2, ..., xqD). Otherwise compute sjq =
SRIExt(xq1, xq2, ..., xqD, yq1).

• If vj successfully computes D2 sjqs, let yj be the concatenation of
these sjqs, send “Complete” to all the other players in B and end.

• If vj receives |B| − t− 2K “Complete” before he computes D2 sjqs,
send “Complete” to all the other players in B, let yj be any arbitrary
string and abort.
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Protocol 4.3.46. For an asynchronous one round network

Player Inputs: There are two sets of players, A and B. Every player ui ∈ A has
private random bits zi ∈ {0, 1}k.
Player Outputs: For every honest player uj ∈ B, uj ends up with private random
bits zj ∈ {0, 1}m, while every honest player ui ∈ A still has 0.9k private random
bits left.

Sub-Routines and Parameters:

• Let Raz be the strong 2-sources extractor in Theorem 3.5.7.

• |A| ≥ 10t.

Round 1 :

1. Every player ui ∈ A takes 0.1 fraction of his private random bits zi, let
the fraction be yi and sends yi to all the players in B.

2. For every player uj ∈ B, uj waits to receive 7t yis. Let sj be the
concatenation of all the yis. Compute zj = Raz(sj, xj).

The asynchronous network extractor is described as Protocol 4.3.47.

103



Protocol 4.3.47. For an asynchronous network

Player Inputs: Every player ui has a weak random string xi ∈ {0, 1}n.
Player Outputs: For some players uj, uj ends up with private random bits
zj ∈ {0, 1}m

Sub-Routines and Parameters:

• Protocol 4.3.45, Protocol 4.3.46 and Protocol 4.3.34.

• BasicExt is the extractor in Theorem 3.5.11.

• SRIExt is the Somewhere Random vs Independent Source extractor in Theo-
rem 3.5.10.

• b is the constant promised to exist by Lemma 4.3.39.

• R is given as the number of rounds of the protocol.

Divide p players into R disjoint sets A1, ..., AR. |A1| = |A2| = ... = |AR−1| = 3bt.

OP :AR is the set of remaining players.

NOP :|AR| = min{p− 3b(R− 1)t, 10t}. AR+1 is the set of remaining players. It’s
possible that AR+1 = Φ.

Round l, l = 1, ..., R− 1 : Run Protocol 4.3.45 with A = Al, B = Al+1. In
round 1, players in A don’t have the optional somewhere random string yi.
In subsequent rounds, players in A have the somewhere random string yi
obtained by the end of the previous round.

OP, Round R, the last Round : Run Protocol 4.3.34 on AR with SRIExt as
the extractor.

NOP, Round R− 1 : At the end of round R−1, player uj in AR obtains private
random bits by computing zj = BasicExt(xj, yj). Here xj is uj’s weak random
string, yj is the somewhere random string obtained by the end of the previous
round.

NOP, Last Round : If AR+1 6= Φ, run Protocol 4.3.46 with A = AR, B = AR+1.
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Remark 4.3.48. In the above protocol OP stands for the step when we use the

optimal seeded extractor as in Definition 4.3.41, NOP stands for the step when we

use the non-optimal seeded extractor as in Theorem 4.3.43.

4.3.3 Proof of the Theorems

We prove the following theorem about asynchronous extractor:

Theorem 4.3.49. Assume we have explicit construction of the optimal seeded ex-

tractor in Definition 4.3.41. There exist constants c1, c2 > 0 such that if k > log p

and n ≤ poly(p) then as long as t > p0.1, for sufficiently large p, there exists a

(t, p/c1 − c2( logC
log log k

+ 1)t, ε + 2−k
Ω(1)

) asynchronous extractor that runs in at most

1.1 logC
log log k

+ 2 rounds in the full-information model. Here ε is the error of the extractor

in Assumption 4.3.16.

Remark 4.3.50. The parameter p0.1 can be replaced by pδ for any constant δ > 0

and the constant 1.1 can be replaced by 1 + α for any constant α > 0.

To prove this theorem we need the following lemma, which is similar to

Lemma 4.3.27 for the synchronous extractor.

Lemma 4.3.51. Let Cl be the number of independent (n, k) sources needed for IExt

or SRIExt in round l of the asynchronous extractor. Define Badl to be the number of

honest players in Al that don’t have a valid somewhere random string for l ≥ 2 and

let Bad1 = 0. Assume we use the optimal seeded extractor in Definition 4.3.41 in the

protocol. There exist a constant c0 > 0 such that the following claims hold.
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1. ∀l, Badl ≤ 2t and Cl = o(log n)

2. If Cl > log k, then Cl+1 ≤ c0
log k

Cl

3. If Cl ≤ log k, then Cl+1 is a constant C ≤ c0

Proof. Similar as in Lemma 4.3.27, we prove 1 by induction. For l = 1, the number

of independent (n, k) sources needed for IExt is C1 = O( logn
log k

) = o(log n) by Theo-

rem 3.5.9. Also Bad1 = 0 < 2t.

Let b be the constant promised to exist by Lemma 4.3.39. Now assume for

round l, Cl = o(log n) and Badl ≤ 2t. Note bCl = o(log n) = o(log t) as n =

O(poly(p)) and t > p0.1. Let Ul denote the subset of honest players in Al that have

a valid somewhere random source for l ≥ 2, and the subset of honest players in Al

for l = 1, then |Ul| ≥ 3bt − t − Badl ≥ 3(b − 1)t. Thus |Ul||Al| ≥
b−1
b

, which means the

honest players consist of a large fraction of the players.

Consider Protocol 4.3.45 for round l. An AND-disperser G = (N,M, bD, α, β)

is constructed with M = |Al| = 3bt,D = Cl, α = b−1
b

. By Lemma 4.3.39, N ≤

MdbD = MdbCl for some constant d, and there exists a subset V ⊂ [N ] with |V | =

βN > µbDN s.t. Γ(V ) ⊂ Ul. V is the set of “good” tuples that consist of all honest

players (note |V | > 0 as D = o(logN)).

Let W = {v ∈ [N ], |Γ(v)∩Ul| < D} and γ = |W |/N , then β > µbD = 3ε0 > 3γ.

W is the set of “bad” tuples that consist of less tha D = Cl honest players.

Now consider the extractor Ext : [N1] × [D1] → [M1]. As M1 = N and we

identify the vertices in [M1] and [N ], we can equivalently view V and W as subsets
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of [M1]. Let S1 = {v ∈ [N1], |Γ(v)∩V |
D1

≤ β − ε0}, S2 = {v ∈ [N1], |Γ(v)∩W |
D1

≥ γ + ε0}

and S0 = [N1]/(S1 ∪ S2). S0 is the set of players in B that have roughly the right

fraction of “good” and “bad” tuples in the neighbors. As Ext is a (K, ε0) extractor,

by Proposition 4.3.44 |S1| ≤ K and |S2| ≤ K. Therefore |S0| ≥ N1− 2K = |B|− 2K.

For each honest player uj ∈ S0, |Γ(uj) ∩ V | > (β1 − ε0)D1 and |Γ(uj) ∩W | <

(γ + ε0)D1. Thus uj has at least (1 − γ − ε0)D1 + 1 > (1 − 2ε0)D1 + 1 = D2

neighbors in [M1]/W . Each of these neighbors corresponds to a tuple of size bD that

consists of at least D honest players. For each of these tuples, uj will eventually

receive D strings. Thus uj will receive D strings from D2 tuples eventually. Also,

as D2 = (1 − 2ε0)D1 + 1 > (1 − (β − ε0))D1 + 1, at least one of these D2 tuples

must be in V and thus consists of all honest players. The strings sent from this tuple

and received by uj are all from honest players. Therefore if uj finishes computing

the D2 sjqs, then at least one of them is close to uniform and thus uj obtains a valid

somewhere random string yj. We have at least |S0| − t = |B| − t − 2K such honest

players, therefore eventually every player uj in B will finish computing yj or receive

|B| − t− 2K “complete” and abort. Thus the protocol for any round will eventually

end.

Now if no player aborts then all honest players obtain valid somewhere random

strings. Otherwise consider the first honest player who aborts, he aborts because he

receives |B| − t− 2K “complete”. Let the number of faulty players in B be tB, then

at least |B|− t− 2K− tB “complete” are from honest players that don’t abort. Thus

at least |B| − t− 2K − tB honest players obtain valid somewhere random strings. As

K = t/2bD ≤ t/2, Badl+1 ≤ t+ 2K ≤ 2t. Therefore Badl ≤ 2t holds for all l.

107



Now consider the number of independent (n, k) sources needed for a player in

round l + 1. The somewhere random string yj obtained by player uj ∈ Al+1 at the

end of round l is of size D2 × k, where D2 = (1 − 2ε0)D1 ≤ D1. By Lemma 4.3.42,

D1 = O( M1

Kε20
polylogN1) = 2O(D)polylog(t). Therefore by Theorem 3.5.10 the number

of independent (n, k) sources needed in round l + 1 is

Cl+1 = O(
logD2

log k
) = O(

D

log k
+

log log t

log k
) ≤ c1(

Cl
log k

+ 1)

for some constant c1 > 0 as k > log p > log t.

Now it’s clear that as long as Cl = ω(1), Cl+1 < Cl. As C1 = o(log n) we have

Cl = o(log n) for all l. Thus claim 1 holds.

Let c0 = 2c1. If Cl ≤ log k, then Cl+1 ≤ c1( Cl
log k

+ 1) ≤ c0 is a constant.

Therefore claim 3 holds.

If Cl > log k, then Cl
log k

> 1 and thus

Cl+1 ≤ c1(
Cl

log k
+ 1) ≤ 2c1(

Cl
log k

) ≤ c0

log k
Cl.

Thus claim 2 holds.

Proof of Theorem 4.3.49. Run Protocol 4.3.47 with round number R to be chosen

later. Let Cl be the number of independent (n, k) sources needed in round l. By

Lemma 4.3.51, there exists a constant c0 > 0 such that if Cl ≥ log k, then Cl+1 ≤
c0

log k
Cl. Consider the first round l0 when Cl0 ≤ log k. Let R = l0, by Lemma 4.3.51
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CR+1 will be a constant C ≤ c0. In round R+1 we run Protocol 4.3.34 on AR+1 where

each ui1 ∈ AR+1 waits to receive C − 1 strings from the other players and compute

zi1 = SRIExt(xi1, xi2, ..., xiC , yi1). By the same analysis in Theorem 4.3.35, at least

|AR|/C −BadR − t ≥ |AR|/c0 − 3t honest players end up with private random bits.

By the recursion Cl+1 ≤ c0
log k

Cl we get

Cl0 ≤
(

c0

log k

)l0−1

C1 =

(
c0

log k

)l0−1

C

To ensure Cl0 ≤ log k it suffices to have(
c0

log k

)l0−1

C ≤ log k.

we get

l0 ≥
log C− log log k

log log k − log c0

+ 1 =
log C− log c0

log log k − log c0

Thus it suffices to take

R =

⌈
log C− log c0

log log k − log c0

⌉
≤ (1 + o(1))

log C

log log k
+ 1.

Now |AR+1| = p−3bRt, therefore the number of honest players that get private

random bits is at least |AR+1|/c0− 3t = p/c0− 3(bR/c0 + 1)t. In each round when we

apply the extractor, the error will increase by 2−k
Ω(1)

, thus the total error is at most

ε+R2−k
Ω(1)

.
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Note that R ≤ (1 + o(1)) logC
log log k

+ 1. Thus for p large enough R < 1.1 logC
log log k

+ 1.

Together with the fact C = o(log n) and k > log p = Ω(log n) this implies that the

error R2−k
Ω(1)

= 2−k
Ω(1)

.

Choose c1 = c0, c2 = 3(1.1b/c0 +1), we have that Protocol 4.3.47 is a (t, p/c1−

c2( logC
log log k

+ 1)t, ε + 2−k
Ω(1)

) asynchronous extractor that runs in at most 1.1 logC
log log k

+ 2

rounds in the full-information model.

If we use the extractor in Theorem 4.3.43, then we get the following theorem:

Theorem 4.3.52. There exists a constant c1 > 0 such that if log log logn
log log k

= o(1)

and n = poly(p), then as long as t > p0.1, for sufficiently large p there exists a

(t, p−c1( logC
log log k

+1)t, ε+2−k
Ω(1)

) asynchronous extractor that runs in at most 1.1 logC
log log k

+2

rounds in the full-information model. Here ε is the error of the extractor in Assump-

tion 4.3.16.

Remark 4.3.53. The parameter p0.1 can be replaced by pδ for any constant δ > 0

and the constant 1.1 can be replaced by 1 + α for any constant α > 0.

Proof. [Proof Sketch] Run Protocol 4.3.47 with round number R to be chosen later.

Now basically repeat the proof of Lemma 4.3.51 and Theorem 4.3.49. Let Badl be

the number of honest players in Al that don’t have a valid independent somewhere

random source for l ≥ 2, and define Bad1 = 0. Let Cl be the number of independent

(n, k) sources needed for a player in round l. Again by induction we can show that

∀l, Badl ≤ 2t. What is different now is the relation between Cl+1 and Cl.
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Consider the (K, ε0) extractor graph Ext : [N1] × [D1] → [M1] constructed in

the protocol. Similar as in Lemma 4.3.42, we have

D1 = max{M1

Kε20
, 2O((log logN1)3 log(1/ε0))}.

Note M1

Kε20
= 2O(D) and O((log logN1)3 log(1/ε0)) = O(D(log log t)3). Thus

D1 = 2O(D(log log t)3) ≤ 2O(Cl(log log p)3) = 2O(Cl(log logn)3).

The last equality follows because n = poly(p). Thus

Cl+1 = O(
logD1

log k
) ≤ O(

Cl(log log n)3

log k
) ≤ c0(log log n)3

log k
Cl

for some constant c0 > 0.

Therefore

Cl ≤
cl−1

0 (log log n)3(l−1)

logl−1 k
C.

If log log logn
log log k

= o(1), then log k > c0(log log n)3 and Cl will eventually decrease

to 1. Let l0 be the first round where Cl0 ≤ 1 and R = l0 − 1, then by the end of

round R all but BadR+1 of the honest players in AR+1 obtain private random bits by

computing zj = BasicExt(xj, yj).

Let
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cl0−1
0 (log log n)3(l0−1)

logl0−1 k
C ≤ 1

We get

l0 ≥
log C

log log k − 3 log log log n− log c0

+ 1

Thus it suffices to take

R =

⌈
log C

log log k − 3 log log log n− log c0

⌉
≤ (1 + o(1))

log C

log log k
+ 1.

The equality follows because log log logn
log log k

= o(1).

If AR+2 6= φ, then in round R + 1, we run Protocol 4.3.46 with A = AR+1

and B = AR+2. As |AR+1| ≥ 10t and BadR+1 ≤ 2t, every player in AR+2 will

eventually receive |AR+1| − BadR+1 − t ≥ 7t strings. Among these strings at most

BadR+1 + t ≤ 3t are not ε′ close to uniform and independent of each other. Thus the

concatenated string sj is ε′ close to have min entropy rate at least 4
7

and independent

of xj. Therefore by Theorem 3.5.7 zj = Raz(sj, xj) is 2−k
Ω(1)

close to uniform and

independent of the transcript so far.

Now there are at most 3bRt honest players in the first R rounds. In round

R+1 there can be at most BadR+1 ≤ 2t honest players that don’t get private random

bits. Therefore the number of honest players that get private random bits is at least

p− t− 3bRt− 2t = p− (3bR + 3)t. In each round when we apply the extractor, the

error increases by 2−k
Ω(1)

, thus the total error is at most ε+R2−k
Ω(1)

.
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Note that R ≤ (1 + o(1)) logC
log log k

+ 1. Thus for p large enough R < 1.1 logC
log log k

+ 1.

Together with the fact C = o(log n) and log log log n = o(log log k) this implies that

the error R2−k
Ω(1)

= 2−k
Ω(1)

.

Choose c1 = 3(1.1b+ 1), we have Protocol 4.3.47 is a (t, p− c1( logC
log log k

+ 1)t, ε+

2−k
Ω(1)

) asynchronous extractor that runs in at most 1.1 logC
log log k

+ 2 rounds in the full-

information model.

Using the extractor in Theorem 3.5.9 where C = O( logn
log k

), the above theorem

gives the following theorem about (n, k) sources, and corollaries which tolerate a

linear fraction of faulty players.

Theorem 4.3.54. There exists a constant c > 0 such that if log log logn
log log k

= o(1) and

n = poly(p), then as long as t > p0.1, for sufficiently large p there exists a (t, p −

c log logn
log log k

t, 2−k
Ω(1)

) asynchronous extractor that runs in O(log log n/ log log k) rounds in

the full-information model.

Corollary 4.3.55. There exists a constant c > 0 such that for every constant δ > 0

and p large enough, there is a (t < p
c
, p− ct, 2−kΩ(1)

) asynchronous extractor that runs

in at most 2 rounds for k = nδ in the full-information model.

Corollary 4.3.56. There exists a constant c > 0 such that if n = poly(p), then for

every constant δ > 0 and p large enough, there is a (p0.1 < t < δp
c
, p − ct/δ, 2−kΩ(1)

)

asynchronous extractor that runs in at most 1/δ + 1 rounds for k = 2logδ n in the

full-information model.
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Remark 4.3.57. The asynchronous network extractor tolerates a linear fraction of

faulty players and guarantees a linear fraction of honest players end up with private

random bits, even for min-entropy roughly as small as k = 2logδ n.

In the case k = nδ, we don’t need t > p0.1 and we can deal with n ≥ poly(p),

since C is a constant. Moreover if t = Θ(p), then the protocol runs in one round.

4.4 Applications in Distributed Computing

In this section we use our network extractors to get new protocols for Byzantine

agreement, leader election and collective coin flipping using weak random sources.

4.4.1 Collective Coin-Flipping and Leader Election

We use the following theorem as a black box.

Theorem 4.4.1 ([RZ01, Fei99]). For every β < 1/2, there exists a polynomial time

computable log∗ p + O(1) round protocol for leader election tolerating t ≤ βp faulty

players, as long as each player has O(log p) truly random bits, in the full-information

model with a broadcast channel.

Given this theorem, the obvious protocol in the case that each player only

has access to a weak random source is to first run a network extractor and then run

the protocol for leader election assuming that each player has access to truly random

bits. We can do slightly better than this by observing that our network extractor for

low entropy sources (Theorem 4.3.3) actually separates the players into two sets, and

guarantees that at most roughly t of the players in a set of size roughly p − t don’t
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have access to private randomness.

Theorem 4.4.2 (Leader Election for Low Entropy). Let α, γ > 0 be any con-

stants. There exists a constant β > 0 such that if each player has access to a (n, nγ)

source, with γβ log n > log log p and p is large enough, there exists a polynomial time

computable synchronous log∗ p + O(1) round protocol for Leader Election tolerating

(1/3− α)p faulty players in the full information model.

Proof Sketch. Let t = δp and let 1/3 > γ > δ be a constant very close to δ. We start

by running Protocol 4.3.10 on the players. This leaves us with a set of players of size

1 − γp, of which at most γp players have access to bits which are p2−k
Ω(1)

close to

being truly random. Since we can choose β in the theorem, we can make this error

an arbitrarily small constant.

Since γ < 1/3, this set of players has a γ
1−γ < 1/2 fraction of faulty players.

The rest of the players have randomness that is close to being private and uniform.

We then run the protocol promised by Theorem 4.4.1 on this set to elect a

leader.

In the case that we have access to sources of randomness with min-entropy

rate greater than 1/2 or access to block sources with 2 blocks each, we can use our

much better network extractors for these situations to get results that match the best

results for the case that each player has access to truly random bits.

When the min-entropy is even smaller, we can use the network extractor from

Theorem 4.3.4 and its corollaries (Corollary 4.3.29, Corollary 4.3.30) to get the fol-

lowing theorems.

115



Theorem 4.4.3. There exists a constant c > 0 such that for any constant α > 0 and

p large enough, there exists a polynomial time computable log∗ p+O(1) rounds protocol

for Leader Election tolerating t ≤ (1/4 − α)p faulty players in the full information

model, assuming each player has a weak source with min-entropy k ≥ 2c
√

logn.

Theorem 4.4.4. For all constants α, δ > 0, there exists a constant c > 0 such that

for sufficiently large p there exists a polynomial time computable log∗ p+O(1) rounds

protocol for Leader Election tolerating t ≤ (1/(2 + 1/δ) − α)p faulty players in the

full information model, assuming each player has a weak source with min-entropy

k ≥ 2c logδ n.

4.4.2 Byzantine Agreement

First we state the best protocols that are available for the case of Byzan-

tine agreement when each player has access to truly random bits. For synchronous

networks, the following theorem is available:

Theorem 4.4.5 ([GPV06]). For every β < 1/3 − ε, there exists a O( log p
ε2

) round

protocol for Byzantine agreement in a synchronous network tolerating βp Byzantine

faults in the full information model.

In the case of asynchronous networks, we have the following theorem:

Theorem 4.4.6 ([KKK+08]). For any constants ε, c > 0 there exists an expected

polylog(p) round protocol for Byzantine agreement in an asynchronous full-information

network tolerating t < p
6+ε

faulty players with success probability 1− 1/ lnc n.
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Now we discuss how to achieve Byzantine agreement when each player only has

access to weak sources. We observe that for Byzantine agreement, it suffices that more

than 2p/3 of the players achieve consensus. Once we have a protocol that guarantees

this, we can easily guarantee that all non-faulty players share the consensus, simply

by taking a majority vote among the first d2p
3
e votes received.

Theorem 4.4.7 (Synchronous Byzantine Agreement for Low Entropy). Let α, γ >

0 be any constants. There exists a constant β > 0 such that if each player has

access to a (n, nγ) source, with γβ log n > log log p and p is large enough, there

exists a polynomial time computable synchronous O(log p) expected round protocol

for Byzantine Agreement tolerating (1/4 − α)p faulty players in the full information

model.

Proof Sketch. Let t = δp and let 1/4 > γ > δ be a constant very close to δ. We start

by running Protocol 4.3.10 on the players. This leaves us with a set of players of size

(1−γ)p, of which at most γp players don’t have access to bits which are p2−k
Ω(1)

close

to being truly random. Since we can choose β in the theorem, we can make this error

an arbitrarily small constant.

Since γ < 1/4, this set of players has a γ
1−γ < 1/3 fraction of faulty players.

The rest have randomness that is close to being private and uniform.

We then run the protocol promised by Theorem 4.4.5 on this set. This guar-

antees that we achieve consensus on this set. Finally, we have one more round where

every player in this special set transmits their agreed value to the rest of the players.

Everybody takes a majority vote to decide on their final value. Since at most 1/3 of
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the players in the set transmit a value that is not the consensus value, we terminate

with a consensus for every non-faulty player.

As before, in the case that the players have access to sources with min-entropy

rate greater than half, or block sources with two blocks, we use our network extractors

to obtain protocols that are as good as the best protocols when the players have access

to truly random bits.

When the min-entropy is even smaller, we can use the network extractor from

Theorem 4.3.4 and its corollaries (Corollary 4.3.29, Corollary 4.3.30) to get the fol-

lowing theorems.

Theorem 4.4.8. There exists a constant c > 0 such that for any constant α > 0 and

p large enough, there exists an expected O(log p) rounds Byzantine Agreement protocol

tolerating t ≤ (1/5 − α)p faulty players in the synchronous full information model,

assuming each player has a weak source with min-entropy k ≥ 2c
√

logn.

Theorem 4.4.9. For all constants α, δ > 0, there exists a constant c > 0 such that for

p large enough there exists an expected O(log p) rounds Byzantine Agreement protocol

tolerating t ≤ (1/(3 + 1/δ) − α)p faulty players in the synchronous full information

model, assuming each player has a weak source with min-entropy k ≥ 2c logδ n.

For asynchronous Byzantine Agreement, we have the following theorems:

Theorem 4.4.10 (Asynchronous Byzantine Agreement for High Entropy). For any

constant ε > 0 there exists an expected polylog(p) rounds Byzantine Agreement pro-

tocol tolerating t < p
8+ε

faulty players in the asynchronous full information model,
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assuming each player has a weak source with min-entropy k ≥ (1/2 + γ)n for some

constant γ > 0.

Proof Sketch. First run Protocol 4.3.32, then apply the protocol in Theorem 4.4.6 on

set B. Note |B| = p − 2t − 1 ≥ (6 + ε)t while all the honest players in B obtain

private random bits that are 2−k
Ω(1)

to uniform by Theorem 4.3.33. There can be at

most t faulty players in B. Thus BA can be achieved on B in expected polylog(p)

rounds. We then have one more round where each player in B sends his agreed value

to all players in A, and every player in A waits to receive 2t+ 1 values and takes the

majority vote as his value. Note as B has at least 2t+1 honest players every player in

A will eventually receive 2t+ 1 values, of which at most t are faulty. Thus by taking

majority vote every player in A will also agree to the correct value.

For polynomially small min-entropy, we have the following theorem:

Theorem 4.4.11. There exists a constant 0 < α < 1 such that for every constant δ >

0 and p large enough, there exists an expected polylog(p) rounds Byzantine Agreement

protocol tolerating t ≤ αp faulty players in the asynchronous full information model,

assuming each player has a weak source with min-entropy k ≥ nδ.

proof sketch. First run Protocol 4.3.47. By Corollary 4.3.55 there is a constant c > 0

such that at least p − ct honest players end up with private random bits. Take

α = 1/7c, then as long as t ≤ αp we have p − ct ≥ 6p/7 > 5p/6. Thus we can run

the protocol in Theorem 4.4.6 to achieve BA in p − ct honest players in expected
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polylog(p) rounds. Now we do the same thing as in Theorem 4.4.10, use one more

round to achieve BA in all the honest players.

Similarly we have the following theorem:

Theorem 4.4.12. There exists a constant 0 < α < 1 such that for every constant β >

0 and p large enough, there exists an expected polylog(p) rounds Byzantine Agreement

protocol tolerating t ≤ αβp faulty players in the asynchronous full information model,

assuming each player has a weak source with min-entropy k ≥ 2logβ n.
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Chapter 5

Cryptography with General Weak Random

Sources

In this chapter we study the problem of using general weak random sources in

cryptography. This kind of questions have been considered by quite a few researchers

[MW97b, DS02, DO03, DOPS04, CPS07]. Dodis et al. [DS02, DOPS04] showed

how to make interactive proofs sound with respect to weak sources, and showed how

to build secure signatures under some strong assumptions. Canetti et al. [CPS07]

showed how to obtain universally composable (UC) security, under the assumption

that there exists a common reference string (CRS), which is a samplable high min-

entropy source.

The negative results have been more impressive. Dodis et al. [DOPS04] showed

that almost all of the classic cryptographic tasks, including encryption, bit commit-

ment, secret sharing, and secure two-party computation (for nontrivial functions),

are impossible even with an (n, 0.9n)-source. Given these negative results, we seek

to provide some positive results on the problem of secure multi-party computation

where each party only has access to a general weak random source. The point here is

that we now have more than one general weak random source, so we can indeed do

something non-trivial.
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As briefly described in the introduction, we attack this problem by building

network extractor in the computational setting. In this setting we assume that the

adversary is computationally bounded, i.e., it is a polynomial time Turing machine or

a polynomial sized circuit. Thus, we also only require that the output distribution of

the honest processors to be indistinguishable from being private and uniform. Below

we give the formal definition of a computational network extractors.

Here we assume that all the processors involved (honest and faulty) are com-

putationally bounded (i.e., run in time poly(n), where n is the length of the weak

random sources), and the outputs need only be computationally (rather than statis-

tically) indistinguishable from uniform. We restrict our attention to the synchronous

setting.

Definition 5.0.13 (Computational Network Extractor). A protocol for p processors

is a (t, g) computational network extractor for min-entropy k if for any min-entropy

k independent sources X1, . . . , Xp over {0, 1}n and any choice of t faulty processors,

with probability 1− negl(n), after running the protocol there are g honest processors

G = {i1, . . . , ig} such that

{(B, (Xi)i 6∈G, (Zi)i∈G}n∈N ≈ {B, (Xi)i 6∈G, Ugm}n∈N

where Ugm is the uniform distribution on gm bits, independent of B and (Xi)i 6∈G, and

where ≈ denotes computational indistinguishability.

Like most cryptographic constructions, our constructions of computational

network extractors rely on some computational assumptions. However, in this case,
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we show that we can achieve better results than network extractors in the information

theoretic setting–most, or even all, honest processors get private randomness, even

for weak random sources with low min-entropy.

Our first result shows that if trapdoor permutations exist, then there exists

a computational network extractor for sources with min-entropy k = nΩ(1), in which

almost every non-faulty processor ends up with a (computationally) private random

string.

Theorem 5.0.14. Assume that trapdoor permutations exist. Then for every α, β, γ, δ >

0 there exists a constant 0 < c < 1 (that depends only on β) such that for every

nδ ≤ p ≤ kc there exists a (t = γp, p− (1 + α)t) computational network extractor for

min-entropy k ≥ nβ in the full information model.

Next, we show that under a stronger assumption, we can actually construct

computational network extractors where all of the honest processors end up with

private random bits. The assumption is that there exist one-way permutations that

are (very) hard to invert, even when the input is sampled from a weak source.

Definition 5.0.15 (One-Way Functions for Weak Sources). We call a family of poly-

nomial time computable permutations f : {0, 1}n → {0, 1}n one-way for k-sources

if for every (n, k) source X, and every circuit A of size 2O(log2 n), Pr[A(f(X)) = X] is

negligible.

We note this is equivalent to saying that f is exponentially hard to invert

under the uniform distribution.
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Proposition 5.0.16. If f = {fn : {0, 1}n → {0, 1}n} is one way for k-sources, then

for every circuit A of size 2O(log2 n), Prx←U [A(fn(x)) = x] = negl(n)2−(n−k), and vice

versa.

About our assumption

• Ideally, we would like to achieve our goals assuming that it is hard to invert

these permutations with polynomial sized circuits. This is actually enough for

achieving error 1/poly(n). For our cryptographic applications we need the error

to be negligible, thus we need the stronger definition above.

• We actually do not need the function f to be a permutation. All we need is

that the function f is not “too lossy.” More formally, for any constant δ > 0 we

assume the existence of a family of functions f = {fn : {0, 1}n → {0, 1}n}n∈N

and a constant γ = γ(δ) such that for every (n, δn)-source X, f(X) is a (n, γn)-

source.

A candidate function is suggested by Goldreich in [Gol09]. We note that the

assumption that there exist one-way functions w.r.t. weak random sources has been

used before. For example, Canetti [Can97] conjectured that the discrete-log function

is one-way w.r.t. any weak source with sufficient min-entropy. Assumptions of a

similar flavor were also used in several other crypto results, e.g., [Wee05, DP08, Pie09].

Under this assumption, we obtain the following results.

Theorem 5.0.17 (Network Extractors for Linear Min-Entropy). Fix a constant δ >

0, and suppose that there exists a family of one-way permutations for (n, 0.3δn)-
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sources. Then, there is a network extractor protocol where each player takes as input

an independent (n, δn)-source, and as long as there are at least 2 honest players, all

the honest players end up with a string that is computationally indistinguishable from

being uniform and private.

Theorem 5.0.18 (Network Extractors for Polynomial Min-Entropy). Fix a constant

δ > 0, and suppose that there exists a family of one-way permutations for (n, 0.3nδ)-

sources. Then, there exists a constant u = u(δ) such that there is a network extractor

protocol where each player takes as input an independent (n, nδ)-source, and as long

as there are at least u honest players, all the honest players end up with a string that

is computationally indistinguishable from being uniform and private.

Our network extractor constructions establish that as long as such one-way

permutations exist, weak sources are the same as true randomness for the purpose of

running cryptographic protocols, as formalized below.

Corollary 5.0.19. Fix a constant δ > 0. Assume that there exists a family of one-

way permutations for (n, 0.3δn)-sources, and assume that there exists a family of

enhanced trapdoor permutations. Then any functionality can be computed securely

even if each party has only access to an (independent) (n, δn)-source, as long as there

are at least two honest parties.

Corollary 5.0.20. Fix a constant δ > 0. Assume that there exists a family of

one-way permutations for (n, 0.3nδ)-sources, and assume that there exists a family

of enhanced trapdoor permutations. Then there exists a constant u = u(δ) such that
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any functionality can be computed securely even if each party has only access to an

(independent) (n, nδ)-source, as long as there are at least u honest parties.

5.1 The Constructions

In this section we describe our constructions of computational network extrac-

tors. We first describe the constructions under standard computational assumptions.

5.1.1 Computational Network Extractors under Standard Assumptions

5.1.1.1 High Level Ideas

We now focus on the case where each player has an independent (n, k) source,

for k = nβ. The information theoretic protocols for this setting of parameters start

with a large set of players (more than t players) revealing their sources. This immedi-

ately results with a significant loss in the number of players that end up with private

randomness. Namely, the guarantee is that only p − 2t players end up with private

randomness. Thus, this network extractor is meaningful only in the case of honest

majority.

In the computational setting, we construct a protocol in which only a small

set of honest players (much smaller than t) reveal their sources. At first this seems to

be useless, since it may be the case that all the players who reveal their sources are

malicious. However, we guarantee that some small subset of the players who reveal

their sources are indeed honest. More specifically, the players reveal their sources in

some pre-specified order until the point where “enough” honest players (though much

less than t) revealed their sources. At first this seems impossible to do since we do not
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know who the honest players are. Nonetheless, we achieve this using computational

assumptions.

We construct a protocol that proceeds in d rounds, where in the j’th round

all the players in the j’th set (which is of size significantly smaller than t) announce

their sources to all the players. The intuition is that if, in some round j, a sufficient

number of honest players announce their sources then we are in good shape, since the

rest of the players can use the announced strings to generate a somewhere random

matrix: each row in the matrix corresponds to the output of a C-source extractor

applied to C of the announced strings. On the other hand, if almost all of the players

in the set are dishonest, we didn’t lose much by having them announce their private

sources, and it seems like we made some kind of progress since the fraction of honest

players among the remaining players has gone up.

However, instructing all the players to announce their sources in the appro-

priate round is obviously not a good idea, since then all of the honest players will

completely reveal their sources to the adversary. Yet, consider the first round j in

which a significant number of honest players announce their sources. At the end of

this round, only a small set of honest players have announced their sources, and every

honest player who hasn’t announced her source is in possession of a private random

string! We use this fact to our advantage.

We change the above protocol by using computational assumptions to ensure

that after this “good” round the players do not reveal any information about their

source (to a computationally bounded adversary). To this end, instead of instructing

each player to announce her source in the appropriate round, we instruct each player to
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announce a function f of her source. On the one hand, this function f should maintain

the entropy of the source (i.e., should be injective). On the other hand, f should

hide all information about the source. These two requirements, of being injective

and hiding, can be achieved simultaneously only in the computational setting, under

cryptographic assumptions. Moreover, in order to hide all information about the

source, the function f needs to be randomized.

Note that at the end of the “good” round, many of the players have a random

string. So, one could try using part of this (supposedly) random string as randomness

for the function. Unfortunately, this will not work since these random strings depend

on the sources, and for the function f to be hiding the random string should be

independent of the sources. We overcome this obstacle as follows.

Recall that in every round (in particular the “good” round), a set of strings

are announced, and each player uses the announced strings to try to extract a random

(uniformly distributed) string from her private source. Each player first saves a chunk

of her (supposedly) random string as private randomness, where at the end of the

protocol all these d chunks (one chunk per each round) will be xored and will consist

the player’s output. Then, all the players use a small fresh chunk of these (supposedly)

random strings to generate for each player Pi a private random string independent of

the source xi. This is done as follows: First, each player stretches her small chunk of

randomness using a pseudo-random generator (which is known to exist assuming the

existence of one-way functions). Then, for each player Pi, all players use a portion of

the chunk to run a coin flipping protocol, in which only player Pi receives a random

string ri. Now each player Pi has a (supposedly) private random string ri, which is
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independent of her source xi, and will continue to the next round of the protocol,

while using f(xi, ri) as her private source.

However, this is still not good enough, since for the proof to work we need to

ensure that each random string ri is independent of all the sources simultaneously.

To this end, we instruct all the players to use a small fresh chunk of their random

strings to elect a small set of leaders. Each of these leaders will no longer use their

private source, and will use the all-zero string instead. Now, if there is at least one

honest leader, then each ri is independent of all the remaining sources simultaneously.

Finally, in order to ensure that with high probability, at least one of the leaders is

indeed honest, we need to assume that the number of players is large enough (this

is where we use the assumption that the number of players is polynomially related

to n).

This is the high-level idea of the proof of Theorem ??. Note that in the above

protocol (which we will refer to as the initial protocol) several players don’t end

up with private randomness. In particular, the players that announced their source

before the “good” round may not get private randomness since, at the point of an-

nouncement, the (randomized) function of their source may actually reveal significant

information about their source. This is the case since the string used as randomness

in the function may actually not be random at all (as randomness is not available

yet). Similarly, the leaders who were elected before the “good” round may not get

private randomness. However, the number of rounds d is small (in particular, is o(p)),

the number of players who reveal their source in each round is small (in particular,

is o(p)), and the number of leaders elected in each round is very small. Thus, we
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conclude that the number of honest player that do not end up with private random-

ness is small, and is o(p) according to our setting of parameters (which is significantly

smaller than the number of dishonest players t, which is assumed to be a constant

fraction of the total number of players).

There is another technicality that we overlooked. The initial protocol as de-

scribed above, needs a broadcast channel (or alternatively, a public-key infrastructure)

to execute the coin-flipping and leader election protocols. Intuitively, a broadcast

channel is needed to agree on the output.

Looking closely at the protocol, we notice that we do not actually need a

broadcast channel for our coin flipping protocols, since in each of these protocols only

a single player receives an output. So, to run these coin-flipping protocols all we need

is to instruct all the players to send this player a non-malleable commitment to a

random string, and then reveal the random string. This player will then use the xor

all these random strings as her private output.

On the other hand, the leader election protocol seems to really need a broadcast

channel. To eliminate this need, we change the protocol yet again. Instead of running

a single leader election protocol per round, in which all players need to agree on who

the leaders are, we run p protocols in each round (one protocol per player), where in

the i’th protocol only player Pi receives an output. If the output is 1 then player Pi

thinks of herself as elected as leader, and if the output is 0 then she thinks of herself

as a non-leader. Each of these protocols will output 1 only with small probability –

if we want to elect ` leaders per round, then each of these protocols will output 1

with probability `/p. The players will use a fresh chunk of their (supposedly) random
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string for each of these protocols.

5.1.1.2 The Protocol

Now we give the protocol for the computational network extractor.
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Protocol 5.1.1. For a synchronous computational network

Player Inputs: Each player Pi has an (n, k) source xi ∈ {0, 1}n, with k = nε.
Player Outputs: Each player Pi outputs a (private random) string si ∈ {0, 1}n

τ
,

where τ , ε/4.

Sub-Routines and Parameters:

1. IExt as in Theorem 3.5.9, and BasicExt as in Theorem 3.5.11.

2. Function F : {0, 1}n × {0, 1}n → {0, 1}n such that for every r ∈ {0, 1}n the
function F (·, r) is injective, and for every x, y ∈ {0, 1}n, F (x, U) ≈ F (y, U),
where U ∈R {0, 1}n. For example, take F (x, u) = x⊕ u.

Let d , p1/3 and δ , p2/3.a

The protocol consists of d rounds. Round j ∈ [d] proceeds as follows:

1. Players P(j−1)δ+1, . . . , Pjδ broadcast their j’th round sources (where the 1’st
round sources are the input sources). Denote these δ strings by y1, . . . , yδ.
We think of these strings as (n, k0) sources, where k0 = nε/2.b

2. Let IExt : ({0, 1}n)u → {0, 1}k0 be an extractor as in Theorem 3.5.9.

For each i1, . . . , iu ∈ [δ] compute mi1,...,iu , IExt(yi1 , . . . , yiu), and let M be
the matrix whose (i1, . . . , iu)-row is mi1,...,iu . Note that M is a (δu, k0)-matrix.

3. Let BasicExt : {0, 1}n × {0, 1}δu·k0 → {0, 1}m be an extractor as in Theo-

rem 3.5.11,c where m = k0 − kΩ(1)
0 . Each player Pi does the following:

(a) Compute zji = BasicExt(xji ,M) where xji is the j’th round source of
player Pi.

(b) Parse zji = (sji , w
j
i , v

j
i , ·), where sji , w

j
i , v

j
i ∈ {0, 1}n

τ
.

(c) Save sji as private randomness.

4. Each player Pi partitions her string wji into p disjoint parts,d and uses the k’th
part to run a secure multi-party coin-tossing protocol in which only player
Pk gets a (private) n-bit output. For each player Pi, we denote its output by
rji ∈ {0, 1}n.

5. Run a secure multi-party protocol for electing ` , p1/6 random leaders in
{jδ + 1, . . . , p}, where the randomness of player Pi is vji . Denote this set of
leaders by Lj.e

6. Start round j + 1, where each player Pi /∈ Lj uses xj+1
i , F (xji , r

j
i ) as his

input source, and each player Pi ∈ Lj uses the zero string as his input source.

Once the d rounds terminate, each player Pi outputs si =
⊕d

j=1 s
j
i .

aWe assume for the sake of simplicity that p1/3 and p2/3 are integers.
bWe fix the parameters so that, with high probability, the j’th round source has min-entropy

k0 (given the transcript in all previous rounds).
cWe fix the parameters so that δu ≤ kγ0 for some γ ∈ (0, 1/2), as required in Theorem 3.5.11.
dNote that wji can indeed be partitioned to p disjoint parts, each of size nO(1), since p ≤

nε/4u << nτ .
eIf in any of these protocols there was an abort, restart without the aborting (malicious)

player.
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5.1.1.3 The Analysis

Here we presenet the proof of Theorem 5.0.14. We show that Protocol 5.1.1 is

a computational network extractor with the desired parameters.

Throughout the proof we use the following notation. For any j ∈ [d], let

• Bj = {Bj
i }i∈[p], where Bj

i is the concatenation of all the strings broadcasted by

player Pi in all rounds ≤ j. Thus, Bj consists of all the strings broadcasted by

all the players in all rounds ≤ j.

• Sj = {Sti}i∈[p],t≤j,W
j = {W t

i }i∈[p],t≤j, and V j = {V t
i }i∈[p],t≤j, where Sti ,W

t
i , V

t
i

were computed by player Pi in Step 3(b) of round t.

Fix a parameter

h , δ3/4 = p1/2.

Let j ∈ [d] be the first round such that the set of players {P(j−1)δ+1, . . . , Pjδ}

(who reveal their j’th round source in the beginning of round j) contains at least h

honest players. The existence of such j follows from the fact that there are d rounds,

a total of p − t honest players, and h ≤ p−t
d

(for large enough n). Moreover, by

definition of j,

h(j − 1) + (d− (j − 1))δ ≥ p− t = (1− β)p.

Applying basic algebraic manipulations, we conclude that for every constant

γ > β (and for every large enough n),

j − 1 ≤ βp

δ − h
≤ γd. (5.1)
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Throughout the proof, we think of j as fixed. By definition of j, there are at

least u honest players in

{P(j−1)δ+1, . . . , Pjδ} \ (L1 ∪ . . . ∪ Lj−1)

(where u = O( logn
log k0

) is defined as in Theorem 3.5.9). This follows from the fact that

for every constant γ ∈ (β, 1) (and for every large enough n),

|L1 ∪ . . . ∪ Lj−1| ≤ (j − 1)` ≤ γd` = γp1/3p1/6 = γp1/2 ≤ h− u,

where the first inequality follows from the union bound, and the second inequality

follows from Equation (5.1).

Let

G , {i > jδ : Pi is honest ∧ Pi /∈ L1 ∪ . . . ∪ Lj−1}.

Note that

|G| ≥ p−t−(j−1)h−δ−(j−1)` ≥ (1−β)p−(j−1)(h+`)−δ ≥ (1−β)p−γd(h+`)−δ.

By our choice of parameters, for every constant γ > β (and for every large

enough n),

|G| ≥ (1− γ)p.

Therefore, what remains to show is that

(
B, (Si)i∈G

)
≈
(
B, (Ui)i∈G

)
, (5.2)
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where (Ui)i∈G are independent random variables uniformly distributed in {0, 1}nτ .

Assume for the sake of contradiction that there exists a non-uniform PPT

adversary A1 and a polynomial q such that for infinitely many n’s,∣∣Pr[A1

(
B, (Si)i∈G

)
= 1]− Pr[A1

(
B, (Ui)i∈G

)
= 1]

∣∣ ≥ 1

q(n)
.

Recall that for every honest player Pi ∈ Lj, the source Xj+1
i is the all zero

string. Therefore, there exists a non-uniform PPT adversary A2, that has all the

sources of the dishonest players hardwired into it, such that for infinitely many n’s,∣∣Pr
[
A2

(
Bj,

(
⊕jt=1 S

t
i

)
i∈G, {F (Xj

i , R
j
i )}i∈G\Lj

)
= 1
]
−

Pr
[
A2

(
Bj,

(
Ui
)
i∈G, {F (Xj

i , R
j
i )}i∈G\Lj

)
= 1
] ∣∣ ≥ 1

q(n)
.

Denote by T ⊆ [p] the set of corrupted players. We say that a tuple

(bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T )← (Bj−1, Sj−1,W j−1, V j, Y1, . . . , Yδ, {Rj
i}i∈T )

is GOOD if the following three properties are satisfied (where y1, . . . , yδ are the strings

broadcasted in the beginning of the j’th round, and rji is the string that player Pi

gets from the coin-tossing protocol in step 4 of round j).

1. There are infinitely many n’s for which,∣∣Pr
[
A2

(
Bj,

(
⊕jt=1 S

t
i

)
i∈G, {F (Xj

i , R
j
i )}i∈G\Lj

)
= 1
]
−

Pr
[
A2

(
Bj, (Ui)i∈G, {F (Xj

i , R
j
i )}i∈G\Lj

)
= 1
] ∣∣ ≥ 1

2q(n)
,

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T ).
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2.

|((Sji )i∈G, (W̃
j
i )i∈G)− ((U1

i )i∈G, (U
2
i )i∈G)| = negl(n) (5.3)

where each W̃ j
i is a truncated form of W j

i , while omitting the parts that are

used to generate {rji }i∈T . The random variables
(
Sji , W̃

j
i

)
i∈G are conditioned on

(bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ, {rji }i∈T ),

and the random variables (U1
i )i∈G, (U

2
i )i∈G are independent; each U1

i is uniformly

distributed in {0, 1}nτ , and each U2
i is uniformly distributed in {0, 1}n

τ
(

1− |T |
p

)
.

3. There is at least one (honest) player in G ∩ Lj.

Claim 5.1.2. There exists a GOOD tuple.

Proof. A standard probabilistic argument shows that the probability that a random

tuple

(bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T )← (Bj−1, Sj−1,W j−1, V j, Y1, . . . , Yδ, {Rj
i}i∈T )

satisfies the first property with probability at least 1
2p(n)

. We next show that the

second and third properties each hold with probability 1−negl(n). The fact that the

third property holds with probability 1−negl(n) follows from the fact that |Lj| = p1/6,

the number of honest players in {jδ+ 1, . . . , p} is O(p), the total number of players p

is polynomially related to n, and from the fact that for a random vj ← V j, the set Lj

is random in {jδ+ 1, . . . , p}. It remains to prove that the second property also holds

with probability 1− negl(n). This part is quite involved. We start with introducing

the following notation.
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For a tuple (bj−1, sj−1, wj−1, vj−1) ← (Bj−1, Sj−1,W j−1, V j−1) and for each

i ∈ G, let

X ′i , Xj
i |bj−1,sj−1,wj−1,vj−1 .

Similarly, for each i ∈ [δ] let

Y ′i , Yi|bj−1,sj−1,wj−1,vj−1 .

We first prove the following claim.

Claim 5.1.3. With probability 1− negl(n) (over (bj−1, sj−1, wj−1, vj−1)) it holds that

every random variable in (X ′i)i∈G and every at least u random variables in {Y ′1 , . . . , Y ′δ}

have min-entropy k0 = nε/2.

Proof. Recall that (before fixing (bj−1, sj−1, wj−1, vj−1)), all the random variable in

(Xj
i )i∈G and at least u random variables in {Y1, . . . , Yδ} have min-entropy k = nε.

Thus (using the union bound) it suffices to prove the following:

1. For every i ∈ G, with probability 1 − negl(n) (over (bj−1, sj−1, wj−1, vj−1)) it

holds that X ′i has min-entropy k0 = nε/2.

2. For every i ∈ {1, . . . , δ} such that Yi has min-entropy k, with probability 1 −

negl(n) (over (bj−1, sj−1, wj−1, vj−1)) it holds that Y ′i has min-entropy k0 = nε/2.

We prove the first item (the second item follows exactly in the same manner).

Fix any i ∈ G. Denote by BAD the set of all the tuples (bj−1, sj−1, wj−1, vj−1) such

that the min-entropy of X ′i (conditioned on (bj−1, sj−1, wj−1, vj−1)) is smaller than k0.
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Assume for the sake of contradiction that there exists a polynomial q and infinitely

many n’s such that

Pr[(Bj−1, Sj−1,W j−1, V j−1) ∈ BAD] >
1

q(n)
.

This implies that for infinitely many n’s there exists a fixing of the sources of

all the other players, (X`)` 6=i = (x`)`6=i, such that

Pr[(Bj−1, Sj−1,W j−1, V j−1) ∈ BAD] >
1

q(n)
,

where the above probability is conditioned on (x`)`6=i.

Recall that for every t ∈ [d] it holds that |sti| = |wti| = |vti | = nτ . Therefore,

after fixing (x`) 6̀=i, the support of (Bj−1, Sj−1,W j−1, V j−1) is of size at most 23dnτ .

Thus, by applying the union bound, this implies that for infinitely many n’s there

exists (bj−1, sj−1, wj−1, vj−1) ∈ BAD such that

Pr[(Bj−1, Sj−1,W j−1, V j−1) = (bj−1, sj−1, wj−1, vj−1)] ≥ 2−3dnτ

q(n)
.

For each of the above n’s, fix (bj−1, sj−1, wj−1, vj−1) ∈ BAD as above. By

definition of BAD, there exists x such that

Pr[X ′i = x] ≥ 2−k0 ,

where the probability is conditioned on (bj−1, sj−1, wj−1, vj−1) and on (x`)`6=i, as above.
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Thus,

Pr[Xj
i = x] ≥Pr[X ′i = x|(Bj−1, Sj−1,W j−1, V j−1) = (bj−1, sj−1, wj−1, vj−1)]· (5.4)

Pr[(Bj−1, Sj−1,W j−1, V j−1) = (bj−1, sj−1, wj−1, vj−1)] ≥ (5.5)

2−k0 · 2−3dnτ

q(n)
> 2−k, (5.6)

where the latter inequality follows from our parameter settings τ = ε/4 and p ≤ n
ε

4u .

This contradicts the fact that the min-entropy of Xj
i is k, which in turn follows from

the fact that for every r ∈ {0, 1}nτ the function F (·, r) is injective.

Next, we claim that the random variables (X ′i)i∈G are all independent, and

are independent of (Y ′i )
δ
i=1. This can be seen by induction on j. In particular, this

implies that the random variables (X ′i)i∈G are independent of the matrix

M ′ ,M |Bj−1=bj−1,Sj−1=sj−1,W j−1=wj−1,V j−1=vj−1 ,

computed in Step 2 of round j. Thus, using Theorem 3.5.9 we conclude that with

probability 1− negl(n) (over (bj−1, sj−1, wj−1, vj−1)) it holds that M ′ is 2−n
Ω(1)

-close

to a SR-matrix. Let

Z ′i , BasicExt(X ′i,M
′),

as computed by Pi in Step 3(a) of round j. Then, with probability 1 − negl(n), for

every i ∈ G, the random variable Z ′i is 2−n
Ω(1)

-close to a uniform string. Moreover,

the fact that BasicExt is a strong extractor implies that, with probability 1− negl(n),

for every i ∈ G,

|(Y ′1 , . . . , Y ′δ , Z ′i)− ((Y ′1 , . . . , Y
′
δ , Ui)| < 2−n

Ω(1)

.
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This, together with the fact that the random variables (Z ′i)i∈G are all indepen-

dent conditioned on (Y ′1 , . . . , Y
′
δ ), implies that with probability 1− negl(n),

|(Y ′1 , . . . , Y ′δ , (Z ′i)i∈G)− (Y ′1 , . . . , Y
′
δ , (Ui)i∈G)| < |G|2−n

Ω(1)

< p2−n
Ω(1)

= 2−n
Ω(1)

.

where the first inequality follows from a standard hybrid argument. Therefore, with

probability 1− negl(n) over

(bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ)← (Bj−1, Sj−1,W j−1, V j−1, Y1, . . . , Yδ),

it holds that

|(Zj
i |bj−1,sj−1,wj−1,vj−1,y1,...,yδ)i∈G − (Ui)i∈G| = 2−n

Ω(1)

. (5.7)

Recall that

Zj
i = (Sji ,W

j
i , V

j
i , ·).

Therefore, Equation (5.7) implies in particular that, with probability 1 −

negl(n) over

(bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ)← (Bj−1, Sj−1,W j−1, V j−1, Y1, . . . , Yδ),

it holds that

|((Sji )i∈G, (W
j
i )i∈G, (V

j
i )i∈G)− ((U1

i )i∈G, (U
2
i )i∈G, (U

3
i )i∈G)| = 2−n

Ω(1)

.

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ).

This implies that, with probability 1− negl(n) over

(bj−1, sj−1, wj−1, vj, y1, . . . , yδ)← (Bj−1, Sj−1,W j−1, V j, Y1, . . . , Yδ),
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it holds that

|((Sji )i∈G, (W
j
i )i∈G)− ((U1

i )i∈G, (U
2
i )i∈G)| = 2−n

Ω(1)

,

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj, y1, . . . , yδ). Fi-

nally, this in turn implies that, with probability 1− negl(n) over

(bj−1, sj−1, wj−1, vj−1, y1, . . . , yδ, {rji }i∈T )← (Bj−1, Sj−1,W j−1, V j−1, Y1, . . . , Yδ, {Rj
i}i∈T ),

it holds that

|((Sji )i∈G, (W̃
j
i )i∈G)− ((U1

i )i∈G, (U
2
i )i∈G)| = 2−n

Ω(1)

,

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T ),

as desired.

Fix a GOOD tuple (bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T ). Parse

Bj = (Bj−1, Y1, . . . , Yδ, V IEW1, V IEW2),

where V IEW1 consists of the transcripts of all the secure coin-flipping protocols, and

V IEW2 is the transcript of the leader electing protocol.

The first property of a GOOD tuple implies that there exists a non-uniform

PPT adversary A3 (that has the values (bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T ) hard-

wired into it) such that for infinitely many n’s,

∣∣Pr
[
A3

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW1, V IEW2,

(
⊕jt=1 S

t
i

)
i∈G

)
= 1
]
−

Pr
[
A3

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW1, V IEW2, (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
,
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where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T ).

The fact that sj−1 is fixed implies that there exists a non-uniform PPT adver-

sary A4 such that for infinitely many n’s,

∣∣Pr
[
A4

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW1, V IEW2,

(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A4

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW1, V IEW2, (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
,

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T ).

The fact that the coin tossing protocols are secure implies that V IEW1 can

be simulated. Namely, there exists a non-uniform PPT adversary A5 such that for

infinitely many n’s,

∣∣Pr
[
A5

(
{F (Xj

i , R
j
i )}i∈G\Lj ,

(
Rj
i

)
i∈T , V IEW2,

(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A5

(
{F (Xj

i , R
j
i )}i∈G\Lj ,

(
Rj
i

)
i∈T , V IEW2, (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
− negl(n),

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T ).

The fact that the random variables
(
Rj
i

)
i∈T are fixed to

(
rji
)
i∈T implies that

there exists a non-uniform PPT adversary A6 such that for infinitely many n’s,

∣∣Pr
[
A6

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW2,

(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A6

(
{F (Xj

i , R
j
i )}i∈G\Lj , V IEW2, (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
− negl(n),

where all the random variables are conditioned on (bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }i∈T ).
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The fact that the leader election protocol is secure implies that there exists a

non-uniform PPT adversary A7 such that for infinitely many n’s,

∣∣Pr
[
A7

(
{F (Xj

i , R
j
i )}i∈G\Lj , Lj,

(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A7

(
{F (Xj

i , R
j
i )}i∈G\Lj , Lj, (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
− negl(n).

This, together with the fact that the random variable V j is fixed to vj implies

that there exists a non-uniform PPT adversary A8 such that for infinitely many n’s,

∣∣Pr
[
A8

(
{F (Xj

i , R
j
i )}i∈G\Lj ,

(
Sji
)
i∈G

)
= 1
]
−

Pr
[
A8

(
{F (Xj

i , R
j
i )}i∈G\Lj , (Ui)i∈G

)
= 1
] ∣∣ ≥ 1

2q(n)
− negl(n).

Fix any α ∈ G∩Lj (the existence of such α follows from the fourth property of

GOOD). In the remaining of the proof we contradict the above equation by proving

that

{(Sji )i∈G, (F (Xj
i , R

j
i ))i∈G\{α}}n∈N ≈ {(Ui)i∈G, (F (Xj

i , R
j
i ))i∈G\{α}}n∈N.

To this end we prove the following three equations (and use a hybrid argument):

{(Sji )i∈G, (F (Xj
i , R

j
i ))i∈G\{α}}n∈N ≈ {(S

j
i )i∈G, (F (0n, U2

i )i∈G\{α}}n∈N, (5.8)

{(Sji )i∈G, (F (0n, U2
i )i∈G\{α}}n∈N ≈ {(U1

i )i∈G, (F (0n, U2
i )i∈G\{α}}n∈N, (5.9)

and

{(U1
i )i∈G, (F (0n, U2

i )i∈G\{α}}n∈N ≈ {(Ui)i∈G, (F (Xj
i , R

j
i ))i∈G\{α}}n∈N. (5.10)
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Equation (5.9) follows immediately from the second property of GOOD. As-

sume for the sake of contradiction that Equation (5.8) does not hold. This (contra-

diction) assumption, together with the second property of GOOD, implies that there

exists (sji )i∈G such that

|(W̃ j
i )i∈G − (Ui)i∈G| = negl(n), (5.11)

and

{(F (Xj
i , R

j
i ))i∈G\{α}}n∈N 6≈ {(Ui)i∈G\{α}}n∈N, (5.12)

where all the random variables are conditioned on (Sji )i∈G = (sji )i∈G (and on the

GOOD tuple (bj−1, sj−1, wj−1, vj, y1, . . . , yδ, {rji }iıT )). Assume for the sake of simplic-

ity of the analysis that after the above fixing of (Sji )i∈G = (sji )i∈G, all the random

variables (W̃ j
i )iıG are independent and uniformly distributed (rather than being sta-

tistically close to such, as implied by Equation (5.11)). In particular, the part of

W j
α that is used to generate (Rj

i )i∈G is uniformly distributed and is independent of

(Xj
i )i∈G\{α}. Thus (Rj

i )i∈G is uniformly distributed conditioned on (Xj
i )i∈G\{α}.

1 This,

together with the semantic security of F (i.e., the property that for every x, y ∈ {0, 1}n

it holds that F (x, U) ≈ F (y, U)), implies that

{(F (Xj
i , R

j
i ))i∈G\{α}}n∈N ≈ {(F (0n, Ui)i∈G\{α}}n∈N,

contradicting Equation (5.12). The proof that Equation (5.10) holds is very similar,

and is therefore omitted.

1Note that the strings (Rji )i∈G are uniformly distributed, even though the dishonest players may
have tried to skew the output by aborting. This is the case since for any i ∈ G, in the i’th coin
flipping protocol only player Pi gets an output Rji , and thus an abort occurs independently of the

value of Rji .
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5.1.2 Computational Network Extractors under Stronger Assumptions

In this section we show that we can construct better computational network

extractors under the assumption that there exist one-way permutations for weak ran-

dom sources. Indeed, we will show that in this case we can guarantee that all honest

processors end up with private random bits. We construct two network extractor

protocols. One for the case where each player has an independent source with linear

entropy δn, and one for the case where each player has an independent source with

polynomially-small entropy nδ.

5.1.2.1 Computational Network Extractors for Linear Min-Entropy

The construction of such a computational network extractor relies on a two-

source extractor constructed based on the assumption that there exist one-way per-

mutations for weak random sources. The construction and the analysis of the two

source extractor will be presented in the next chapter, while here we focus on the con-

struction of the computational network extractor. To this end, we state the theorem

of the two source extractor as below.

Theorem 5.1.4. Fix a constant α > 0 and parameters t = 4
α

and k ≥ nΩ(1). Assume

that there exists a polynomial time computable permutation f : {0, 1}n → {0, 1}n such

that for any (n, 0.3k)-source Y , any circuit of size poly(nlogn) can invert f(Y ) with

only negligible probability. Then there exists a polynomial time computable function

TExt : {0, 1}n × {0, 1}n → {0, 1}m such that for any (n, αn)-source X, any (n, k)-

source Y that is independent of X, and any deterministic function h (not necessarily

145



computable in polynomial time) on {0, 1}n

(TExt(X, Y ), X, h(X), f (t+1)(Y )) ≈ (Um, X, h(X), f (t+1)(Y )).

We first present a protocol where all the honest players except one end up with

private randomness. Note that if we knew of one player j that is honest, then the

protocol would be very simple: Player j will simply reveal his source, and all other

players would apply the 2-source extractor TExt (presented above) to this source and

to their own source. The fact TExt is a strong extractor immediately implies that

all the honest players, except for player j, would end up with private randomness.

However, since we don’t know of any player that is honest, it is tempting to try the

following approach.

Naive Network Extractor Protocol for Linear Min-Entropy

1. The protocol proceeds in p rounds, where p is the number of players. In round

i:

(a) Player i sends xi to all other players.

(b) Each player ` computes ri` = TExt(xi, x`).

2. Each player i outputs the bitwise xor r1
i ⊕ · · · ⊕ r

p
i .

Let j denote the first honest player. Then, for every player i different than j, rji

is uniform. Despite this, the output of player i may not be random, and may even

be a fixed constant. The problem is that the random variables r1
i , . . . , r

p
i are not
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independent, and a malicious adversary can actually cause the output to be a fixed

constant.

The idea is to get around this problem by using computational assumptions.

To this end, each player `, instead of using the same source X` in each round, will

use the source f i(X`) in round `. However, for this approach to work we need the

guarantee that

(TExt(Xi, X`), X`, f(Xi)) ≈ (Uniform, X`, f(Xi)).

Our extractor TExt does not satisfy this, but luckily our extractor does satisfty the

following (similar) guarantee:

(TExt(Xi, Xj), Xj, f
t+1(Xi)) ≈ (Uniform, Xj, f

t+1(Xi)),

where t is a constant that depends on δ.

So, instead we consider the following network extractor protocol, which has

the guarantee that all the honest players, except for the first one, end up with private

random-looking strings.

Lossy Network Extractor Protocol for Linear Min-Entropy

1. Let g = f t+1. The protocol proceeds in p rounds, where p is the number of

players. In round i:

(a) Player i sends gi(xi) to all other players.
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(b) Each player ` computes ri` = TExt(gi(xi), g
i(x`)).

2. Each player i outputs the bitwise xor r1
i ⊕ · · · ⊕ r

p
i .

Now we can prove that all the honest players, except player j (who is the first honest

player), end up with private random-looking strings. The analysis proceeds in three

steps.

1. We first fix all sources sent before round j, and we fix {ri`}`∈[p],i<j, which were

all computed before round j. We claim that even conditioned on all these

fixings, the sources are still independent, and with high probability they all

have “enough” entropy left.

2. Next, we claim that the strings {rj`} of all the honest players ` 6= j, are inde-

pendent and uniformly distributed.

3. Finally, we claim that the rest of the ri` for i > j are (computationally) inde-

pendent of {rj`}, which implies that the output of all the honest players, except

player j, are computationally indistinguishable from random. For this we use

the fact that for any two independent variables Yi and Yj with “sufficient” en-

tropy

(TExt(Yi, Yj), Yj, g(Yi)) ≈ (Uniform, Yj, g(Yi)). (5.13)

Note that in the protocol above, player j, who is the first honest player, does

not necessarily end with private randomness. To fix this, we add another phase to

the protocol. So, the protocol consists of two phases. In the first phase, the players
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run the (lossy) protocol presented above. In the second phase, the idea is that all

the honest players use their (supposedly) random string, generated in the first phase,

to run a coin flipping protocol and generate a public random-looking seed V . Recall

that we assumed that there are at least two honest players, therefore there is at least

one honest player besides player j. Thus, V is indeed random-looking. Finally, each

player i will extract randomness from his own source Xi using the seed V .

This approach would indeed work if there were at least three honest players,

since in that case we could argue that V is random-looking and is independent of each

of the sources Xi. Thus, we could use it to extract (private) randomness from each

source.

However, if there are only two honest players then this approach does not seem

to work, since in this case we cannot argue that V is independent of all the sources.

Indeed if there is a single honest player ` besides player j (who is the first honest

player) then it may be the case that V depends on the source of player `. This is the

case since player ` maybe the only player who used “good” randomness for the coin-

flipping protocol. As before, we get around this dependence by using reconstructive

properties of extractors.

Our Final Network Extractor Protocol for Linear Min-Entropy. We first

note that Theorem 3.1.12 immediately implies the following corollary:

Corollary 5.1.5. If f is a one way function for 0.3αn-sources, then there is an effi-

ciently computable function LExt as in Theorem 3.1.12, with parameters ε = 1
poly(nlogn)
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and d = O(log(n/ε)) = polylog(n), such that for any (n, 0.9αn) source X,

(LExt(X,Ud), f(X), Ud) ≈ (Um, f(X), Ud).

• Parameters.

– Constant α > 0, where αn is the min-entropy of each of the input sources

Xi.

– Parameters d, ε as in Corollary 5.1.5 and m = polylog(n). Note d =

polylog(n) and ε = negl(n).

– t = d 4
0.9α
e.

• Ingredients.

– The 2-source extractor TExt : {0, 1}n × {0, 1}n → {0, 1}m from Theo-

rem 6.1.2.

– LExt : {0, 1}n × {0, 1}d → {0, 1}m a (0.9αn, ε)-extractor as in Theo-

rem 3.1.12.

– f : {0, 1}n → {0, 1}n a one way permutation for 0.3αn-sources. Let g =

f (t+1).

• The protocol. The protocol proceeds in two phases.

– Phase 1. The first phase of the protocol proceeds in p rounds (where p is

the number of players). In round j ∈ [p] the players do the following.
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1. The j’th player sends g(2j)(Xj) to all other players, where g = f (t+1)

is described above.

2. Each player i computes Rj
i = TExt(g(2j)(Xj), g

(2j)(Xi)). Note |Rj
i | =

m = polylog(n).

At the end of the p’th round each player i computes Ri = ⊕pj=1R
j
i .

We show that at the end of this phase all the honest players, except for the

first one, end up with private randomness. In order to ensure that all the

honest players, including the first one, end up with private randomness,

we proceed to the second phase.

– Phase 2. Each player i partitions Ri into two equal parts Ri = (Vi,Wi).

All players engage in a secure multiparty computation to compute V =

⊕pi=1Vi
2, where each player i uses Wi as its internal randomness.

Finally, each player i outputs Zi = LExt(g(2i−1)(Xi), V ).

We have the following theorem.

Theorem 5.1.6. For any p ≥ 2, any t ≤ p−2, and any n ≥ p1+γ (for some constant

γ > 0), the protocol described above is a (t, p − t)-computational network extractor

protocol.

Proof. Fix any p and any t such that p − t ≥ 2. Let G ⊆ [p] denote the set of all

honest players. Let j denote the GOOD round, where the first honest player sends

2Here, if the adversary aborts the protocol, we simply discard the aborting party and restart the
secure computation with fresh Vi’s
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its source; i.e., G ⊆ {j, . . . , p}. We assume without loss of generality that the PPT

adversary (who controls all the malicious players) is deterministic. Thus, it suffices

to prove that

{B, (Zi)i∈G} ≈ {B,Ugm}.

The proof proceeds in two parts. In the first part we prove that all the Ri’s

of all the honest players, except player j, appear to be independent and uniformly

distributed, even conditioned on the entire transcript of phase 1. Actually ,we prove

the following stronger statement:

{Xj, (g
(2j+1)(Xi))i∈G\{j}, (Ri)i∈G\{j}} ≈ {Xj, (g

(2j+1)(Xi))i∈G\{j}, U(g−1)m} (5.14)

Note that this statement is indeed stronger since for every i ∈ G \ {j} it holds that

i > j, which implies that 2i > 2j + 1, and therefore it is easy to compute g(2i)(Xi)

from g(2j+1)(Xi).

In the second part we use Equation (5.14) to prove that indeed

{(B, (Zi)i∈G} ≈ {(B,Ugm}.

Part 1. Assume for the sake of contradiction that there exists a non-uniform PPT

adversary A and a polynomial q such that for infinitely many n’s

∣∣Pr[A(Xj, (g
(2j+1)(Xi))i∈G\{j}, (Ri)i∈G\{j}) = 1]−

Pr[A(Xj, (g
(2j+1)(Xi))i∈G\{j}, U(g−1)m) = 1]

∣∣ ≥ 1

q(n)
.
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Let Bj−1 denote the transcript until round j − 1. Fix any tuple

{bj−1, (r
1
i , . . . , r

j−1
i )i∈G} ← {Bj−1, (R

1
i , . . . , R

j−1
i )i∈G}.

Denote any random variable Y , conditioned on the above tuple, by Y ′. We say that

the tuple above is BAD if the following properties are satisfied.

1. There are infinitely many n’s for which

∣∣Pr[A(X ′j, (g
(2j+1)(X ′i))i∈G\{j}, (R

′
i)i∈G\{j}) = 1]−

Pr[A(X ′j, (g
(2j+1)(X ′i))i∈G\{j}, U(g−1)m) = 1]

∣∣ ≥ 1

2q(n)
.

2. For every i ∈ G, the random variable X ′i has min-entropy 0.9αn and {X ′i}i ∈ G

are independent random variables.

Claim 5.1.7.

Pr[{bj−1, (r
1
i , . . . , r

j−1
i )i∈G} is BAD] ≥ 1

3q(n)
.

Proof of Claim 5.1.7. A standard argument shows that a random tuple

{bj−1, (r
1
i , . . . , r

j−1
i )i∈G} ← {Bj−1, (R

1
i , . . . , R

j−1
i )i∈G}

satisfies the first property with probability at least 1
2q(n)

.

The fact that the random variables {X ′i}i∈G remain independent can be seen by induc-

tion on the number of rounds. Moreover, since all the Rj
i ’s are of size only polylog(n)

and n ≥ p1+γ, by Lemma 3.5.14 with probability 1 − negl(n) over the fixings, every

X ′i has min-entropy at least 0.9αn (take ε = 2− log2 n in that lemma).
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Thus the probability that a random tuple is BAD is at least 1
2q(n)
− negl(n) ≥

1
3q(n)

Fix any BAD tuple

{bj−1, (r
1
i , . . . , r

j−1
i )i∈G} ← {Bj−1, (R

1
i , . . . , R

j−1
i )i∈G}.

Note thatRi = ⊕pj=1R
j
i . Since (R1

i , . . . , R
j−1
i )i∈G are fixed, and (Rj+1

i , . . . , Rp
i )i∈G

can be computed in polynomial time from (g(2j+1)(X ′i))i∈G\{j}, there exists another

non-uniform PPT adversary A1 such that

∣∣Pr[A1(X ′j, (g
(2j+1)(X ′i))i∈G\{j}, (R

′j
i )i∈G\{j}) = 1]−

Pr[A1(X ′j, (g
(2j+1)(X ′i))i∈G\{j}, U(g−1)m) = 1]

∣∣ ≥ 1

2q(n)
.

A standard hybrid argument shows that there exists ` ∈ G \ {j} (note there

are at least 2 honest players) s.t.

∣∣Pr[A1(X ′j, (g
(2j+1)(X ′i))i∈G\{j}, (R

′j
i )i∈G\{j,`}, R

′j
` ) = 1]−

Pr[A1(X ′j, (g
(2j+1)(X ′i))i∈G\{j}, (R

′j
i )i∈G\{j,`}, Um) = 1]

∣∣ ≥ 1

2p · q(n)
.

Since the random variables {X ′i}i∈G remain independent, there is a fixing

of (X ′i)i∈G\{j,`} that preserves the distinguishing probability. Note after this fixing,

(R′ji )i∈G\{j,`} is a deterministic function of X ′j. Thus, there exists another non-uniform

PPT adversary B, that has all the fixings hardwired into it, s.t.
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∣∣Pr[B(X ′j, g
(2j+1)(X ′`), R

′j
` ) = 1]−Pr[B(X ′j, g

(2j+1)(X ′`), Um) = 1]
∣∣ ≥ 1

2p · q(n)
. (5.15)

Note X ′j and X ′` are independent, both have min-entropy at least 0.9αn and

X ′j is a deterministic function of g(2j)(X ′j). Moreover, recall that

R′j` = TExt(g(2j)(X ′j), g
(2j)(X ′`)).

Thus, according to Theorem 6.1.2 (more precisely, Equation (6.1), where h = g(−2j)),

(R′j` , X
′
j, f

(t+1)(g(2j)(X ′`))) ≈ (Um, X
′
j, f

(t+1)(g(2j)(X ′`))).

Note f (t+1)(g(2j)(X ′`)) = g(2j+1)(X ′`)), thus

(R′j` , X
′
j, g

(2j+1)(X ′`)) ≈ (Um, X
′
j, g

(2j+1)(X ′`)),

which contradicts Equation (5.15). Therefore, Equation (5.14) holds. Namely,

{Xj, (g
(2j+1)(Xi))i∈G\{j}, (Ri)i∈G\{j}} ≈ {Xj, (g

(2j+1)(Xi))i∈G\{j}, U(g−1)m}

Part 2. We now use Equation (5.14) to prove our final statement

{B, (Zi)i∈G} ≈ {B,Ugm}.

We parse B = (B1, B2) where B1 denotes the transcript of Phase 1, and B2 denotes

the transcript of Phase 2. Thus, we need to prove that

{B1, B2, (Zi)i∈G} ≈ {B1, B2, Ugm}.
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Recall that Phase 2 consists only of a secure multiparty computation of V = ⊕Vi. By

the definition of secure multiparty computation, all the transcript of the second phase

can be simulated given V , given all the sources of the malicious players (Xi)i 6∈G, and

given Rj. The reason we need to give also Rj is that during this secure computation

player Pj (who is the first honest player), may not have private randomness, and

therefore we think of this player as being malicious. Thus, it suffices to prove that

{B1, Rj, V, (Zi)i∈G} ≈ {B1, Rj, V, Ugm}. (5.16)

We first notice that for every i ∈ G − {j},

2i− 1 ≥ 2j + 1.

This follows from our assumption that j is the first honest player, and thus for every

i ∈ G \ {j} it holds that i ≥ j + 1.

This, together with Equation (5.14), implies that

{Xj, (g
(2i−1)(Xi))i∈G\{j}, (Ri)i∈G\{j}} ≈ {Xj, (g

(2i−1)(Xi))i∈G\{j}, U(g−1)m},

which in turn implies that

{Rj, (g
(2i−1)(Xi))i∈G, V } ≈ {Rj, (g

(2i−1)(Xi))i∈G, U}. (5.17)

Remark 5.1.8. Here we would like U to be uniform, but the complete proof for

this is somewhat involved: the adversary can choose to abort the protocol in the

secure computation. What is true is that the indistinguishability holds with U being

chosen adversarially from a set of t uniformly sampled strings. Since the number of
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aborts is at most the number of dishonest players (which is bounded by poly(n)), any

adversary that can distinguish the two sides with a truly uniform U can also succeed

in the case that U is distributed as we described.

Next, notice that it is easy to simulate the transcript B1 given

(
(Xi)i/∈G, (g

(2i)(Xi))i∈G
)
.

Therefore, to prove Equation (5.16) it suffices to prove that

{Rj, (g
(2i)(Xi))i∈G, V, (LExt(g(2i−1)(Xi), V ))i∈G} ≈ {Rj, (g

(2i)(Xi))i∈G, V, Ugm}.

This is immediately implied from Equation (5.17), from Corollary 5.1.5, and from the

fact that all the sources {Xi}i∈G are independent.

5.1.2.2 Network Extractor for Polynomially Small Min-Entropy

In this section we give a computational network extractor protocol where each

player has an independent (n, k) source with k = nα for any constant 0 < α < 1. Our

protocol works as long as there are a constant number of honest players. We assume

the existence of one way permutations for 0.3nα-sources.

Corollary 5.1.9. If f is a one way permutation for 0.3nα-sources, then there is

an efficiently computable function LExt as in Theorem 3.1.12, with parameters ε =

1
poly(nlogn)

and d = O(log(n/ε)) = polylog(n), such that for any (n, 0.9nα) source X,

(LExt(X,Ud), f(X), Ud) ≈ (Um, f(X), Ud).
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Protocol 5.1.10. For a synchronous computational network

Player Inputs: Each player Pi has a string xi sampled from an independent
(n, nα) source Xi.
Player Outputs: Each player Pi outputs a (private random) string wi.

Sub-Routines and Parameters:

1. IExt as in Theorem 3.5.9, and BasicExt as in Theorem 3.5.11.

2. f : {0, 1}n → {0, 1}n a one way permutation for 0.3nα-sources.

3. The seeded extractor LExt as in Corollary 5.1.9.

The protocol proceeds in two phases.

• Phase 1. The first phase of the protocol proceeds in p rounds (where p is
the number of players). In round j ∈ [p] the players do the following.

1. Player Pj sends f (j+1)(xj) to all other players. Denote all the j strings
broadcasteda so far by y1, . . . , yj. The following steps apply to the re-
maining players (players Pi with i > j).

2. Let u be the number of independent sources IExt takes. For each
i1, . . . , iu ∈ [j], each player Pi computes mi1,...,iu , IExt(yi1 , . . . , yiu).
Let Mj be the matrix whose (i1, . . . , iu)-row is mi1,...,iu . Note that Mj is
a (ju, k)-matrix.

3. Each player Pi computes eji = BasicExt(f (j)(xi),Mj) and truncates the
output so that |eji | = log3 n. Parse eji = (sji , r

j
i ).

4. All players Pi, i > j engage in a secure multi-party computation to com-
pute rj = ⊕rji , where each player Pi uses sji as its internal randomness.

5. Each player Pi computes zji = LExt(f (j)(xi), r
j) and truncates the output

so that |zji | = O(log2 n).

At the end of the p’th round, each player Pi, i ∈ [p] computes zi =
⊕pj=1z

j
i .

• Phase 2.

1. Each player Pi parses zi = (si, ri). All the players {Pi}i∈[p] engage in a
secure multi-party computation to compute r = ⊕ri, where each player
Pi uses si as its internal randomness.

2. Each player Pi computes wi = LExt(f (i)(xi), r), and outputs wi as its
final output.

aFor the sake of simplicity, think of the network as having broadcast channels, although our
protocol also works in the case of point to point channels.
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Theorem 5.1.11. Let k = nα for some constant 0 < α < 1. Let u = O( 1
α

) be the

number of independent (n, k) sources IExt needs. There exists a constant 0 < γ < 1

such that for any p s.t. u+ 2 ≤ p ≤ kγ/u and any t ≤ p− u− 2, Protocol 5.1.10 is a

(t, p− t) computational network extractor.

To prove the theorem, we first prove the following lemma (in the lemma and

the analysis we use capital letters to denote the corresponding strings viewed as

random variables):

Lemma 5.1.12. Let ` ∈ [p] be the smallest element such that the set {P1, . . . , P`}

contains at least u honest players: Ph1 , · · · , Phu. Denote the remaining honest players

by Pg1 , · · · , Pgv . Let e denote the concatenation of all eji ’s, and b denote the concate-

nation of the broadcasted sources of all faulty players. Then

({Zgi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E,B) ≈ ({Ugi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E,B).

In other words, at the end of phase 1, the outputs of all the honest players,

except the fist u honest players, are indistinguishable from being independent and

uniform, even given Xh1 , · · · , Xhu , f (`+1)(Xg1), · · · , f (`+1)(Xgv), all the Ej
i ’s, and all

the sources broadcasted by the faulty players.

Remark 5.1.13. This statement is stronger than the statement that Zg1 , · · · , Zgv

are indistinguishable from being independent and uniform given all the transcript of

Phase 1, because the transcript can be computed in polynomial time from (Xh1 , · · · , Xhu , f
(`+1)(Xg1), · · · , f (`+1)(Xgv), E,B)

(Note that the players Pg1 , · · · , Pgv broadcast their sources after round `, thus gi > `.

So the broadcasted sources {f (gi+1)(Xgi)} can be computed efficiently from {f (`+1)(Xgi)}).
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Outline of the Proof. We first give an informal outline of the proof, since the

proof involves a lot of notations.

We are going to fix the “good” round ` = hu, where u honest players have

broadcasted their sources. We then argue that in this round, the output E`
i of all

honest players that haven’t broadcasted their sources are statistically close to uniform,

independent of the transcript so far and independent of each other. To do this, note

the sources broadcasted by honest players are independent, and each has min-entropy

nα. Thus when we apply IExt to the sources from u honest players, the output will

be close to uniform, and therefore, the matrix M` in round ` is close to a somewhere

random source. The hope is that when we apply BasicExt to M` and a remaining

honest player’s source, the output will be close to uniform and independent of the

transcript so far by Theorem 3.5.11.

However, the transcript contains information(specifically, eji ’s) about the re-

maining honest players’ sources. Thus we’ll have to first fix the transcript, and argue

that conditioned on a TYPICAL fixing, a remaining honest player’s source and M`

still satisfy the conditions in Theorem 3.5.11. To do this, we first fix (Xh1 , . . . , Xhu−1).

Note that conditioned on this fixing, IExt(Xh1 , . . . , Xhu) is a deterministic function of

Xhu . We then show by induction on round j < ` that conditioned on any fixing of the

transcript, Xhu and the remaining honest players’ sources are still independent. More-

over, since the size of eji ’s are small, by Lemma 3.5.14 and Lemma 2.3.14 conditioned

a typical fixing of the transcript so far, IExt(Xh1 , . . . , Xhu) is close to a (k, k − kβ)

source, and any remaining honest player’s source is close to an (n, k − kβ) source,

where β is the constant in Theorem 3.5.11. Thus M` is close to a (`u × k)(k − kβ)-
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source and is independent of any remaining honest player’s source. Now note ` < p,

thus as long as p is small, by Theorem 3.5.11 the output E`
i of all honest players that

haven’t broadcasted their sources are statistically close to uniform, independent of

the transcript so far and independent of each other.

Next, we argue that Z`
gi

is indistinguishable from being uniform and indepen-

dent of the transcript so far, and the subsequent computations do not reveal any

information about it to a computationally bounded adversary. Thus the final output

of any Pgi is indistinguishable from being uniform and private.

To do this, consider a particular honest player Pg1 . The fact that there are

at least u+ 2 honest players implies there are at least 2 honest players in {gi}. Pick

another honest player Pg2 . Assume for the sake of contradiction that there exists

an adversary that distinguishes Z`
g1

from uniform, given the transcript and the sub-

sequent computations. Then there is a fixing of all the transcript so far(including

E`
g1

) and all the sources {Xgi}i 6={1,2} such that conditioned on the fixing, the adver-

sary still distinguishes Z`
g1

from uniform. Note that now all subsequent transcript

can be computed in polynomial time from Xg2 and f (`+1)(Xg1). Thus there exists

another adversary that distinguishes Z`
g1

from uniform given Xg2 and f (`+1)(Xg1).

Recall Z`
g1

= LExt(f (`)(Xg1), R`) and now R` is a deterministic function of Xg2 . Thus

Lemma 3.1.13 implies there is another adversary that distinguishes Z`
g1

from uniform

given R` and f (`+1)(Xg1). Since E`
g1

is statistically close to uniform, the property

of the secure multiparty computation guarantees that R` is indistinguishable from

being uniform and independent of Xg1 . Thus the existence of the above adversary

contradicts Theorem 3.1.12.
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Proof of Lemma 5.1.12. We assume without loss of generality that the PPT

adversary (who controls all the malicious players) is deterministic. Thus, it suffice to

prove

({Zgi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E) ≈ ({Ugi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E)

(5.18)

Note that after round `, there are u honest players who have already broadcasted

their sources. The fact that f is deterministic and injective implies that Yh1 , · · · , Yhu

are all independent and each has min-entropy k = nα. Thus by Theorem 3.5.9,

Mh1,··· ,hu = IExt(Yh1 , · · · , Yhu) is 2−k
Ω(1)

-close to being uniform. We now introduce

some notations:

• Ej = {Eq
i }i∈[p],q≤j, Z

j = {Zq
i }i∈[p],q≤j, where Eq

i is computed by player Pi in

step 3 of round q in phase 1, and Zq
i is computed by player Pi in step 5 of round

q in phase 1. Thus, Ej consists of all Eq
i ’s computed by all players in all rounds

≤ j, Zj consists of all Zq
i ’s of all players in all rounds ≤ j.

Now fix

(xh1 , . . . , xhu−1)← (Xh1 , . . . , Xhu−1)

(e`−1, z`−1)← (E`−1, Z`−1)

For any random variable Z, we denote by Z ′ the random variable Z conditioned

on these fixings. Let TYPICAL denote the event that conditioned on these fixings,
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the following properties are satisfied:

• X ′hu , X
′
g1
, · · · , X ′gv are independent random variables.

• M ′
h1,··· ,hu is 2−k

Ω(1)
-close to having min-entropy k − kβ.

• ∀i ∈ [v], X ′gi has min-entropy k − kβ.

Here β is the parameter in Theorem 3.5.11. We have

Claim 5.1.14.

Pr[TYPICAL] = 1− negl(n).

The proof of this claim is by induction on j < ` and is very similar to the proofs

of Claim 6.1.4 and Claim 6.1.5, therefore we omit the details here. The only difference

is that initially Mh1,··· ,hu is only 2−k
Ω(1)

-close to being uniform(having min-entropy k).

Thus when dealing with it we need to use Lemma 2.3.14 instead of Lemma 3.5.14.

Now, further fix

(x′hu ← X ′hu)

For any random variable Z ′, we let Z ′′ = Z ′|(X ′hu = x′hu). Let TYPICAL2

denote the event that conditioned on all the above fixings, the following properties

are satisfied:

• ∀i ∈ [v], (E`
gi

)′′ is 2−k
Ω(1)

-close to being uniform, and is a deterministic function

of X ′′gi .
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• X ′′g1
, · · · , X ′′gv are independent random variables.

Claim 5.1.15. If TYPICAL holds, then

Pr[TYPICAL2] = 1− negl(n).

As before, the proof of this claim is very similar to the proofs of Claims 6.1.4

and 6.1.5, and therefore we omit the details here. One thing that needs to be noted

is that M` is a `u × k matrix. Thus as long as p < kγ/u, where γ is the constant in

Theorem 3.5.11, the claim follows from Theorem 3.5.11.

Now, assume for the sake of contradiction that Equation (5.18) does not hold.

Namely, assume that there exists a polynomial time non-uniform adversary A1 and

there exists a polynomial q such that for infinitely many n’s,

|Pr[A1({Zgj}j∈[v], {Xhj}j∈[u], {f (`+1)(Xgj)}j∈[v], E) = 1]−

Pr[A1({Ugj}j∈[v], {Xhj}j∈[u], {f (`+1)(Xgj)}j∈[v], E) = 1]| > 1

q(n)

A standard hybrid argument implies that there exists i ∈ [v] such that for infinitely

many n’s,

|Pr[A1(Zgi , {Zgj}j 6=i,j∈[v], {Xhj}j∈[u], {f (`+1)(Xgj)}j∈[v], E) = 1]−

Pr[A1(U, {Zgj}j 6=i,j∈[v], {Xhj}j∈[u], {f (`+1)(Xgj)}j∈[v], E) = 1]| > 1

p · q(n)

We assume without loss of generality that i = 1. Recall that there are at

least u+ 2 honest players. Thus, there are at least 2 honest players in {gj}j∈[v]. Pick

another honest player Pg2 . We say that a tuple
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(e`−1, z`−1, e`g1
, {xhj}j∈[u], {xgj}j∈[v],j 6={1,2})← (E`−1, Z`−1, E`

g1
, {Xhj}j∈[u], {Xgj}j∈[v],j 6={1,2})

is BAD if conditioned on the fixing of this tuple, the following properties are

satisfied:

1. There exists a non-uniform polynomial time adversaryA2 such that for infinitely

many n’s,

∣∣Pr[A2(Z`
g1
, R`, Xg2 , f

(`+1)(Xg1)) = 1]− Pr[A2(U,R`, Xg2 , f
(`+1)(Xg1)) = 1]

∣∣ ≥ 1

2p · q(n)
,

2. Xg1 and Xg2 are independent. E`
g2

is a deterministic function of Xg2 and is

2−k
Ω(1)

-close to being uniform. Xg1 has min-entropy k − o(k).

Claim 5.1.16. There exists a BAD tuple.

Again, the proof of this claim is rather standard and is very similar to the

proof of Claim 5.1.7, we thus omit the details here.

Now fix a BAD tuple (e`−1, z`−1, e`g1
, {xhj}j∈[u], {xgj}j∈[v],j 6={1,2}). Then all R`

j’s

from honest players except Pg2 are fixed. The R`
j’s from faulty players are a determin-

istic function of the transcript so far, thus are also fixed. Note R` =
⊕

R`
j and R`

g2
is

a deterministic function of Xg2 . Thus R` is now a deterministic function of Xg2 . Note

Xg1 and Xg2 are independent conditioned on the fixing, thus Rl is independent of

Xg1 . Moreover, since E`
g2

is 2−k
Ω(1)

-close to being uniform, the property of the secure
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multiparty computation protocol guarantees that the R`
j’s from faulty players are in-

distinguishable from being independent of R`
g2

. Thus R` =
⊕

R`
i is indistinguishable

from being uniform. Note Z`
g1

= LExt(f (`)(Xg1), R`), thus

(Z`
g1
, R`, f (`+1)(Xg1)) ≈ (LExt(f (`)(Xg1), Ud), Ud, f

(`+1)(Xg1)), (5.19)

On the other hand, note that when we fix the BAD tuple, Xg1 and Xg2 are

independent, and R` is a deterministic function of Xg2 . Thus by the first property

of the BAD tuple and Lemma 3.1.13, there exists another non-uniform adversary A3

that runs in time 2|R
`|nTime(A2) = poly(n, 1

ε
)Time(A2) = poly(nlogn) such that

∣∣Pr[A3(Z`
g1
, R`, f (`+1)(Xg1)) = 1]− Pr[A3(U,R`, f (`+1)(Xg1)) = 1]

∣∣ ≥ 1

2p · q(n)
.

Note Rl ≈ Ud, combined with Equation 5.19 we get

∣∣Pr[A3(LExt(f (`)(Xg1), Ud), Ud, f
(`+1)(Xg1)) = 1]− Pr[A3(U,Ud, f

(`+1)(Xg1)) = 1]
∣∣ > 1

3p · q(n)
.

Note f (`)(Xg1) has min-entropy k−o(k) > 0.9k = 0.9nα conditioned on all the

fixings and f is a one way permutation for 0.3nα-sources. Note A3 that runs in time

poly(nlogn). Thus this contradicts Theorem 3.1.12.

Once we have the lemma, it’s fairly easy to prove the main theorem. We first

prove that if {Zgi}’s are really {Ugi}’s, then all Wi’s of honest players are indistin-

guishable from being uniform and private. Then since {Zgi}’s are indistinguishable

from {Ugi}’s, the theorem follows.
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To prove the statement above, consider any particular honest player Pj. As-

sume there exists a PPT adversary that distinguishes Wj and uniform given the

transcript in Phase 1 and Phase 2. We first fix all honest players’ sources except

Pj. There is a fixing of the sources such that the adversary still distinguishes Wj

and uniform given the transcript. Note after this fixing all transcript in Phase 1 and

Phase 2 except {Ugi}’s are a deterministic function of Xj. Now we further fix all the

transcript and {Ugi}’s except f (j+1)(Xj) and Ug1 . Again there is a fixing such that

the adversary still distinguishes Wj and uniform. Now the adversary is only given

f (j+1)(Xj) and Ug1 . Recall Wj = LExt(f (j)(Xj), R) and note now R is a determinis-

tic function of Ug1 . Thus Lemma 3.1.13 implies there exists another adversary that

distinguishes Wj and uniform given R and f (j+1)(Xj). The property of the secure

multiparty computation guarantees that R is indistinguishable from being uniform

and independent of Xj. Note all Ej
i ’s and Zj

i ’s are small thus conditioned on all the

fixings mentioned above f (j)(Xj) still has min-entropy > 0.9k. Thus the existence of

the above adversary contradicts Theorem 3.1.12.

Proof of Theorem 5.1.11. Again, we assume without loss of generality that the

PPT adversary (who controls all the malicious players) is deterministic. At the end

of Phase 1, we have

({Zgi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E) ≈ ({Ugi}i∈[v], {Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E)

Let the set of all honest players be G, i.e., G = {hi} ∪ {gi}. Note that

({Zhi}i∈[u], {f (hi)(Xhi)}i∈[u],
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{f (gi)(Xgi)}i∈[v]) can be computed in polynomial time from ({Xhi}i∈[u], {f (`+1)(Xgi)}i∈[v], E)

(keep in mind that gi ≥ l + 1). Thus we have

({Zgi}i∈[v], {Zhi}i∈[u], {f (i)(Xi)}i∈G, E) ≈ ({Ugi}i∈[v], {Zhi}i∈[u], {f (i)(Xi)}i∈G, E)

(5.20)

Note that the transcript in Phase 1 can be computed in polynomial time from

(E, {f (i+1)(Xi)}i∈G), and the transcript in Phase 2 can be computed in polynomial

time from ({Zi}i∈[p]). Moreover, ({Zi}i/∈G) can be computed in polynomial time from

the transcript in Phase 1. Thus to prove the theorem it suffices to prove

({Wi}i∈G, {Zi}i∈G, {f (i+1)(Xi)}i∈G, E) ≈

({Ui}i∈G, {Zi}i∈G, {f (i+1)(Xi)}i∈G, E).

Now if we run Phase 2 with the two distributions on both sides of Equa-

tion 5.20, and let w̄i denote the output of player Pi when we run the protocol with

the right hand side distribution, we get

({Wi}i∈G, {Zhi}i∈[u], {Zgi}i∈[v], {f (i+1)(Xi)}i∈G, E) ≈

({W̄i}i∈G, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E). (5.21)

We’ll first prove
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({W̄i}i∈G, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) ≈

({Ui}i∈G, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E).

Assume for the sake of contradiction that there exists a non-uniform polynomial time

adversary A1 and a polynomial q such that for infinitely many n’s,

|Pr[A1({W̄i}i∈G, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) = 1]−

Pr[A1(Ui}i∈G, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) = 1]| > 1

q(n)

A standard hybrid argument implies that there exists j ∈ G such that

|Pr[A1(W̄j, {W̄i}i∈G,i 6=j, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) = 1]−

Pr[A1(U, {W̄i}i∈G,i 6=j, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) = 1]| > 1

p · q(n)

for infinitely many n’s.

We say that a tuple

(e, {zhi}i∈[u], {xi}i 6=j,i∈G)← (E, {Zhi}i∈[u], {Xi}i 6=j,i∈G)

is BAD if conditioned on the fixing of this tuple, the following properties are

satisfied:
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1. There exits a non-uniform polynomial time adversary A2 such that for infinitely

many n’s

∣∣Pr[A2(W̄j, {Ugi}i∈[v], f
(j+1)(Xj)) = 1]− Pr[A2(U, {Ugi}i∈[v], f

(j+1)(Xj)) = 1]
∣∣ ≥ 1

2p · q(n)
,

2. Xj has min-entropy k − o(k).

Claim 5.1.17. There exists a BAD tuple.

Proof of Claim 5.1.17. A standard probabilistic argument shows that a random

tuple

(e, {zhi}i∈[u], {xi}i 6=j,i∈G)← (E, {Zhi}i∈[u], {Xi}i 6=j,i∈G)

satisfies

|Pr[A1(W̄j, {W̄i}i∈G,i 6=j, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) = 1]−

Pr[A1(U, {W̄i}i∈G,i 6=j, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) = 1]| ≥ 1

2p · q(n)

with probability at least 1
2p·q(n)

.

Note that once (E, {Zhi}i∈[u], {Xi}i 6=j,i∈G) are fixed, ({W̄i}i∈G,i 6=j, {f (i+1)(Xi)}i∈G,i 6=j)

can be computed in polynomial time from {Ugi}i∈[v]. Thus there exists a non-uniform

adversary PPT A2 that has the fixings hardwired into it such that
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∣∣Pr[A2(W̄j, {Ugi}i∈[v], f
(j+1)(Xj)) = 1]− Pr[A2(U, {Ugi}i∈[v], f

(j+1)(Xj)) = 1]
∣∣ ≥ 1

2p · q(n)

Furthermore, since {Xi}i∈G are independent, it’s easy to show by induction

on round j′ ∈ [p] that the only fixings that can cause Xj to lose entropy are Ej′

j ’s

and Zj, and these are a deterministic function of Xj(conditioned on the fixings).

The total length of these strings is at most O(p log3 n) = o(k) since k = nα and

p ≤ kγ/u. Thus by Lemma 3.5.14 with probability 1 − negl(n) over the fixings of

(E, {Zhi}i∈[u], {Xi}i 6=j,i∈G), Xj has min-entropy k − o(k). The claim thus follows.

Now we further fix {Ugi}i∈[v] except Ug1 . There is a fixing of {Ugi}i∈[v],i 6=1 that

preserves this probability. Thus there exists a non-uniform PPT adversary A3 that

has the fixings hardwired into it such that conditioned on the fixings,

∣∣Pr[A3(W̄j, Ug1 , f
(j+1)(Xj)) = 1]− Pr[A3(U,Ug1 , f

(j+1)(Xj)) = 1]
∣∣ ≥ 1

2p · q(n)

for infinitely many n’s.

Moreover, after all these fixings R is a deterministic function of Ug1 . Note that

W̄j = LExt(f (j)(Xj), R) and Ug1 is independent ofXj. Thus by Lemma 3.1.13 there ex-

ists a non-uniform adversaryA4 that runs in time 2|R|nTime(A3) = poly(n, 1
ε
)Time(A3) =

poly(nlogn) such that

∣∣Pr[A4(W̄j, R, f
(j+1)(Xj)) = 1]− Pr[A4(U,R, f (j+1)(Xj)) = 1]

∣∣ ≥ 1

2p · q(n)
.
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Note Ug1 is uniform and independent of all the other random variables, thus

the property of the secure multiparty computation protocol guarantees that R =⊕
Ri is indistinguishable from being uniform and independent of Xj. Further note

conditioned on all the fixings above, f (j)(Xj) has min-entropy k − o(k) > 0.9k. Note

f is a one way permutation for 0.3k-sources and A4 runs in time poly(nlogn). Thus

this contradicts Theorem 3.1.12.

Therefore, we must have

({W̄i}i∈G, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) ≈

({Ui}i∈G, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E).

From Equation 5.20 we get

({Ui}i∈G, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) ≈

({Ui}i∈G, {Zhi}i∈[u], {Zgi}i∈[v], {f (i+1)(Xi)}i∈G, E).

Therefore

({W̄i}i∈G, {Zhi}i∈[u], {Ugi}i∈[v], {f (i+1)(Xi)}i∈G, E) ≈

({Ui}i∈G, {Zhi}i∈[u], {Zgi}i∈[v], {f (i+1)(Xi)}i∈G, E).

Together with Equation 5.21 this implies

({Wi}i∈G, {Zi}i∈G, {f (i+1)(Xi)}i∈G, E) ≈

({Ui}i∈G, {Zi}i∈G, {f (i+1)(Xi)}i∈G, E).

as desired.
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Chapter 6

Improved Constructions of Extractors

In this chapter we give results that improve previous constructions of extrac-

tors in various ways. As described in the introduction, extractors are algorithms that

take as input different kinds of weak random sources and output a distribution that

is close to uniform. As illustrated in the previous chapters, extractors play an im-

portant role in applications that involve weak random sources. Extractors are also

combinatorial objects that are interesting in their own rights.

6.1 A Two-Source Extractor under Computational Assump-
tions

In this section, we show that we can build a better two-source extractor if we

assume a computational assumption. The assumption is the one that has already

been used in Chapter 5–there exist one way permutations for weak random sources.

Informally, we have the following theorem.

Theorem 6.1.1 (2-Source Extractor). Suppose that for every δ > 0, there exists a

family of one-way permutations for (n, 0.3δn)-sources. Then there is a polynomial

time computable 2-source extractor for 2 independent (n, δn)-sources that extracts

nΩ(1) bits that are computationally indistinguishable from uniform.
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Note that the first O(log n) bits of the output of our extractor are actually

guaranteed to be statistically indistinguishable from uniform, since every statistical

test on such a small number of bits can be efficiently simulated. Thus, even though

we make a computational assumption, our conclusion is of an information theoretic

nature.

6.1.1 Overview of Our Construction

In this section we shall be slightly inaccurate, in order to easily convey what

we consider to be the key ideas in our work. We first note that it is well known

how to extract randomness from two independent sources, assuming one of them is

a block source. A block source X is a source that can be partitioned into two parts

X = (X1, X2) in such a way that X1 has entropy δn, and X2 has entropy δn even

conditioned on any fixing of X1 = x1. The entropy in such a source is spread out, and

it is well known how to take advantage of such structure. For example, it is known

how to extract randomness from a block source X = (X1, X2) using an independent

weak source Y , as long as the blocks X1, X2 and the weak source Y each have entropy

δn [BRSW06, RZ08, BKS+05].

Block sources are fairly general, in the sense that every weak source can be

shown to be a convex combination of block sources — for every source X with linear

entropy δn, if X is broken into a sufficiently large (t = 100/δ) number of blocks

X = (X1, X2, . . . , Xt), then X is a convex combination of sources, where each element

in the convex combination has the structure that there is some index j ∈ [t] for which

(Xj, X) is a block source where each block has linear entropy. Intuitively, each block
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in the source has at most δn/100 bits, and so cannot contain all δn bits of entropy.

This fact alone is not enough to apply extractors for block sources, since the

index j above is not known ahead of time. Still, we might be tempted to try the

following approach:

Naive 2-Source Extractor for (X,Y)

1. Let BExt be an extractor for a block source and an independent weak source

2. Partition x = (x1, . . . , xt).

3. For every i, compute ri = BExt(xi, x, y).

4. Output the bitwise xor r1 ⊕ · · · ⊕ rt.

Since it is no loss of generality to assume that there is some index j for which

(Xj, X) is a block source, Rj = BExt(Xj, X, Y ) must be uniform. Unfortunately, the

reason this algorithm does not work is that the rest of the candidate random strings

Ri are not independent of Rj, and so the output could be a fixed constant even though

Rj is uniform.

Our actual construction is a variation of the above construction, where we use

computational assumptions to enforce that Rj is independent (in some sense) from

the other Ri’s. More specifically, we use a one-way permutation for δn-sources to

generate independence. This idea was implicit in the work of Goldreich-Levin [GL89]

on finding hardcore predicates. There they showed that for any one-way function f ,

the triplet (〈X,R〉, R, f(X)) is computationally indistinguishable from (U,R, f(X)),
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where U is a random bit, and X,R are both uniformly distributed in {0, 1}n. In other

words, they showed that 〈X,R〉 looks random and independent of (R, f(X)), even

though it may be uniquely determined by (R, f(X)). Their construction was an early

example of a reconstructive extractor, a concept that was subsequently formalized

and refined in a sequence of works [NW94, Tre01, TZ04, TUZ01, SU05, Uma05]. We

now know of several different constructions of reconstructive extractors. We do not

define this concept here, but what is important to know in our application is that

every reconstructive extractor RExt must satisfy the property that if f is one-way

with respect to a weak source X, then

(RExt(X,R), R, f(X)) ≈ (Uniform, R, f(X)),

where ≈ denotes computational indistinguishability.

Given such an object, here is how we can use it to build a 2-Source extractor.

Our 2-Source Extractor

1. Let BExt be an extractor for a block source and an independent weak source and

RExt be a reconstructive (seeded) extractor. Let f be a one-way permutation

for weak sources.

2. Partition x = (x1, . . . , xt).

3. For every i, compute zi = BExt(xi, x, f
i(y)).

4. Set ri = RExt(f i(y), zi).
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5. Output the bitwise xor r1 ⊕ · · · ⊕ rt.

Here f i(y) = f(f(· · · f(y) · · · )), where f is applied i times. The goal here is

to break the dependence (at least in a computational sense) between the Ri’s.

Outline of the analysis. To analyze this construction, we need to exploit a strong

property of BExt(X1, X2, Y ). It turns out that one can show that there is a random

variable T on a few bits, such that for every fixing of (T,X1),

• BExt(X1, X2, Y ) is independent of Y .

• BExt(X1, X2, Y ) is uniform.

In particular, since the output of BExt is only a few bits, this means that after

fixing (X1, T ), we can fix the output of BExt(X1, X2, Y ) and still be left with two

independent sources X, Y with high entropy (here we assume the slightly inaccurate

fact that fixing a binary string of length l can only reduce the entropy of another

variable by l).

Recall that there is some index j for which (Xj, X) is a block source. In the first

step of the analysis, we use the properties of BExt described above to fix Z1, . . . , Zj−1

and R1, . . . , Rj−1. We claim that even after this fixing, (Xj, X) is a block source that

is independent of the source Y with linear entropy. We do this by fixing each of the

Z1, . . . , Zj−1’s one by one. Each such fixing maintains the independence we want, yet

does not reduce the entropy of the sources by much, since the Zi’s are short. Once all

the Zi’s are fixed, the corresponding Ri’s are deterministic functions of Y that output
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only a few bits, so we can fix them without reducing the entropy in Y by much. Care

must be taken that all of these fixings do not ruin the entropy in Xj (in particular,

fixing X1, . . . , Xj−1 should not ruin the entropy in Xj), but it turns out that this can

be done.

We get that after all these fixings, Zj must be uniform and independent of Y .

Thus, by the properties of reconstructive extractors, the following two distributions

are computationally indistinguishable:

(Rj, Zj, f
j+1(Y )) ≈ (Uniform, Zj, f

j+1(Y )).

In fact, we can actually prove the stronger statement that

(Rj, X, f
j+1(Y )) ≈ (Uniform, X, f j+1(Y )).

Observe that information theoretically this is very far from true. In fact,

Rj is a deterministic function of (X, f j+1(Y )). Finally, since (Rj+1, . . . , Rt) are all

efficiently computable from (X, f j+1(Y )), we obtain

(X, f j+1(Y ), Rj) ≈ (X, f j+1(Y ),Uniform),

which implies that the output of our extractor is computationally indistinguishable

from uniform.

In fact, our proof shows that the extractor is strong — the output looks uniform

even if one of the inputs is known.
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6.1.2 The Formal Analysis

We have the following theorem:

Theorem 6.1.2. Fix a constant α > 0 and parameters t = 4
α

and k ≥ nΩ(1). Assume

that there exists a permutation f : {0, 1}n → {0, 1}n such that for any (n, 0.3k)-

source Y , any non-uniform adversary that runs in time poly(nlogn) can invert f(Y )

with only negligible probability. Then TExt : {0, 1}n × {0, 1}n → {0, 1}m described

above is a computational 2-source extractor such that for any (n, αn)-source X, and

any (n, k)-source Y that is independent of X,

(TExt(X, Y ), X) ≈ (Um, X)

Remark.

• Rather than proving Theorem 6.1.2, we prove the following (stronger) state-

ment:

(TExt(X, Y ), X, h(X), f (t+1)(Y )) ≈ (Um, X, h(X), f (t+1)(Y )), (6.1)

where h is any deterministic function (not necessarily computable in polyno-

mial time) on {0, 1}n. The reason is that we need this stronger variant for our

network extractor protocol in Chapter 5.

• If we let m = O(log n), then the theorem implies that in particular,

|TExt(X, Y )− Um| = negl(n)

.
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To prove Equation (6.1) we first prove the following lemma(in the analysis we use

capital letters to denote the corresponding strings viewed as random variables).

Lemma 6.1.3. Divide X into X = (X1, . . . , Xt) as in the construction of TExt, and

let Z = TExt(X, Y ). Suppose there exists g ∈ [t] such that

• X1, . . . , Xg−1 are fixed.

• H∞(Xg) ≥ α2

6
.

• H∞(X|Xg) ≥ α2

6
.

Then

(Z,X, h(X), f (t+1)(Y )) ≈ (Um, X, h(X), f (t+1)(Y ))

Proof of Lemma 6.1.3. Let sri denote the string sr computed in BExt(xi, x, f
(i)(Y )).

Fix

(sr1, . . . , srg−1)← (SR1, . . . , SRg−1)

(r1, . . . , rg−1)← (R1, . . . , Rg−1)

and

(z1, . . . , zg−1)← (Z1, . . . , Zg−1).

For any random variable Z, we denote by Z ′ the random variable Z conditioned

on these fixings.
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Let TYPICAL denote the event that conditioned on these fixings, the following

conditions are satisfied:

• X ′ and Y ′ are independent

• H∞(Y ′) ≥ k − polylog(n)

• H∞(X ′g) ≥ α2

8
n

• With probability 1− negl(n) over (x′g ← X ′g), H∞(X ′|X ′g = x′g) ≥ α2

8
n

Claim 6.1.4.

Pr[TYPICAL] = 1− negl(n).

Proof of Claim 6.1.4. Since X1, . . . , Xg−1 are fixed, (SR1, . . . , SRg−1) is a deter-

ministic function of Y . Thus, conditioning on (sr1, . . . , srg−1) ← (SR1, . . . , SRg−1),

X and Y are still independent. Moreover, since each sri has size cs, the total size of

(sr1, . . . , srg−1) is bounded by tcs = polylog(n). Thus, by Lemma 3.5.14, with proba-

bility 1−negl(n) over these fixings, Y has min-entropy k−polylog(n) (let ε = 2− log2 n

in the lemma).

Next, we further condition on (r1, . . . , rg−1)← (R1, . . . , Rg−1). Note that now

(R1, . . . , Rg−1) is a deterministic function of X. Thus, conditioned on this fixing, X

and Y are still independent. Moreover, since each ri is of size polylog(n), the total

size of (r1, . . . , rg−1) is bounded by t|ri| = polylog(n). Thus, by Lemma 3.5.14, with

probability 1−negl(n) over these fixings, Xg has min-entropy H∞(Xg)−polylog(n) >

α2

8
n (let ε = 2− log2 n in the lemma). Next, note that conditioned on any fixing of
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xg ∈ Supp(Xg), we have H∞(X) ≥ α2

6
n, and with probability 1 − negl(n) over the

further fixings of (R1, . . . , Rg−1), H∞(X) > α2

8
n. Thus we have

Pr
Xg ,R1,...,Rg−1

[H∞(X ′|X ′g = x′g) >
α2

8
n] ≥ 1− ε1,

where ε1 = negl(n).

Now a standard averaging argument shows that, with probability at least

1−√ε1 over the fixings of (R1, . . . , Rg−1),

Pr
x′g←X′g

[H∞(X ′|X ′g = x′g) >
α2

8
n] ≥ 1−

√
ε1.

Note ε1 = negl(n), thus
√
ε1 = negl(n).

Finally, we further condition on (z1, . . . , zg−1) ← (Z1, . . . , Zg−1). Note that

now (Z1, . . . , Zg−1) is a deterministic function of Y . Thus, conditioned on this fixing,

X and Y are still independent. Moreover, since each zi is of size polylog(n), the

total size of (z1, . . . , zg−1) is bounded by t|zi| = polylog(n). Thus, by Lemma 3.5.14,

with probability 1 − negl(n) over these fixings, Y has min-entropy k − polylog(n) −

polylog(n) = k − polylog(n) (let ε = 2− log2 n in the lemma).

The probability that all of the above happen is at least 1−negl(n)−negl(n)−

negl(n) = 1− negl(n).

Now fix

(x′g, sr
′
g)← (X ′g, SR

′
g).
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For every random variable Z ′, denote by

Z ′′ = Z ′|(X ′g = x′g, SR
′
g = sr′g).

Let TYPICAL2 denote the event that conditioned on all the above fixings, the fol-

lowing holds:

• X ′′ and Y ′′ are independent, R′′g is a deterministic function of X ′′

• H∞(Y ′′) ≥ 0.9k

• (R′′g , Y
′′) ≡ (Ud, Y

′′)

Claim 6.1.5. If TYPICAL holds, then

Pr[TYPICAL2] = 1− negl(n)

Proof of Claim 6.1.5. First note that when TYPICAL holds, X ′ and Y ′ are inde-

pendent, and H∞(X ′g) ≥ α2

8
n. This means X ′g has min-entropy rate ≥ α

2
. Therefore

by Theorem 3.5.2 M ′
g is 2−Ω(n)-close to a (c×`)0.9`-somewhere random source. Theo-

rem 3.5.7 implies that there exists a somewhere-random source SR with c rows, each

row of length s, s.t.

|(M ′
g, SR

′
g)− (M ′

g, SR)| = negl(n).

A standard averaging argument shows that with probability 1− negl(n) over

the fixing of M ′
g (and thus X ′g), we still have
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|SR′g − SR| = negl(n).

Moreover, X ′g (and thus M ′
g) is a deterministic function of X ′, thus conditioned

on the fixing of X ′g (and thus M ′
g), X

′ and Y ′ are still independent. Note once

conditioned on M ′
g, SR

′
g is a deterministic function of Y ′, and is thus independent of

X ′. Also, with probability 1 − negl(n) over the fixing of X ′g, H∞(X ′) ≥ α2

8
n. The

probability that both these two events happen is 1−negl(n), and when this happens,

Theorem 3.5.11 implies that

|(SR′g, Rg)− (SR′g, Ud)| < 2−n
Ω(1)

+ negl(n) = negl(n).

Since this happens with probability 1− negl(n), we actually have that

|(SR′g, Rg)− (SR′g, Ud)| = negl(n).

Again, by a standard averaging argument, with probability 1 − negl(n) over

the fixing of SR′g, we still have

|Rg − Ud| = negl(n).

Note since SR′g is a deterministic function of Y ′, conditioning on it still leaves

X ′ and Y ′ independent. Moreover, since the size of srg is small, the same argument

in the proof of Claim 6.1.4 implies that with probability 1− negl(n) over the fixings

of SR′g, H∞(Y ′) ≥ k − polylog(n) − polylog(n) > 0.9k. Finally, conditioned on the
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fixing of SR′g, Rg is a deterministic function of X ′, and is thus independent of Y ′.

Note |Rg − Ud| = negl(n), therefore

(Rg, Y
′′) ≡ (Ud, Y

′′)

The probability that all of the above are satisfied is 1− negl(n).

Next we prove the following claim.

Claim 6.1.6. If both TYPICAL and TYPICAL2 hold, then

(⊕ti=gZ ′′i , X ′′, h(X ′′), f t+1(Y ′′)) ≈ (Um, X
′′, h(X ′′), f t+1(Y ′′))

Proof of Claim 6.1.6. Assume for the sake of contradiction that there exists a

non-uniform PPT adversary A1 and a polynomial q such that for infinitely many n’s

∣∣Pr[A1(⊕ti=gZ ′′i , X ′′, h(X ′′), f t+1(Y ′′)) = 1]− Pr[A1(Um, X
′′, h(X ′′), f t+1(Y ′′)) = 1

∣∣ ≥ 1

q(n)
.

Since Z ′′g+1, · · · , Z ′′t and f t+1(Y ′′) can be computed from (X ′′, f g+1(Y ′′)) in polynomial

time, there exists another non-uniform PPT adversary A2 such that

∣∣Pr[A2(Z ′′g , R
′′
g , X

′′, h(X ′′), f g+1(Y ′′)) = 1]− Pr[A2(Um, R
′′
g , X

′′, h(X ′′), f g+1(Y ′′)) = 1
∣∣ ≥ 1

q(n)
.

Recall that

Z ′′g = RExt(f (g)(Y ′′), R′′g)

and f (g)(Y ′′) is a deterministic function of f (g+1)(Y ′′)(though not computable

in polynomial time). Thus Z ′′g is a deterministic function of f (g+1)(Y ′′) and R′′g . Next

185



note that R′′g is a deterministic function of X ′′, and X ′′, Y ′′, Um are independent. Thus

Lemma 3.1.13 implies that there exists another non-uniform adversary A3 that runs

in time 2d · n · poly(n) = poly(n, 1
ε
) · poly(n) = poly(n, 1

ε
) such that

∣∣Pr[A3(Z ′′g , R
′′
g , f

g+1(Y ′′)) = 1]− Pr[A3(Um, R
′′
g , f

g+1(Y ′′)) = 1]
∣∣ ≥ 1

q(n)
.

Note that the fact that TYPICAL2 holds implies that (R′′g , Y
′′) ≡ (Ud, Y

′′).

This, together with Proposition 2.1.2 implies that

∣∣Pr[A3(RExt(f (g)(Y ′′), Ud), Ud, f
g+1(Y ′′)) = 1]− Pr[A3(Um, Ud, f

g+1(Y ′′)) = 1]
∣∣

≥ 1

q(n)
− negl(n) >

1

2q(n)
,

Note Y ′′ has min-entropy 0.9k thus f (g)(Y ′′) also has min-entropy 0.9k. Note

f is one way for 0.3k-sources and A3 runs in time poly(n, 1
ε
) = poly(nlogn), thus this

contradicts Theorem 3.1.12.

Now, since the event that both TYPICAL and TYPICAL2 hold happens with

probability 1− negl(n), by Lemma 2.4.4 we have

(⊕ti=gZi, {Zi}i∈[g−1], X, h(X), f t+1(Y )) ≈ (Um, {Zi}i∈[g−1], X, h(X), f t+1(Y )).

Note that Z = ⊕ti=1Zi, thus

(Z,X, h(X), f t+1(Y )) ≈ (Um, X, h(X), f t+1(Y )).

This proves the lemma.
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proof of Theorem 6.1.2. Since we divide X into t = 4
α

blocks, Lemma 2.3.6 says that

X is 2−n
Ω(1)

-close to being a convex combination of {Xj}j∈J such that for every j ∈ J ,

Xj satisfies the conditions in Lemma 6.1.3. For every j ∈ J , let Zj = TExt(Xj, Y ),

then

(Zj, Xj, h(Xj), f (t+1)(Y )) ≈ (Um, X
j, h(Xj), f (t+1)(Y )).

Thus, by Lemma 2.4.5, the theorem holds.

The computational two source extractor described above outputs random bits

that are computationally indistinguishable from being uniform, while assuming the

existence of a one-way permutation f s.t. for any (n, 0.3k) source X, any non-uniform

adversary that runs in time poly(nlogn) can only invert f(X) with negligible prob-

ability. Note that the running time of the adversary is slightly super-polynomial.

However, even if we only assume that any polynomial time adversary can only invert

f(X) with negligible error, we can still get a two-source extractor, but the error will

only be polynomially small.

Theorem 6.1.7. Let ε = 1
poly(n)

and m = O(log n) in the construction of TExt.

Keep all the other parameters the same. Assume that there exists a permutation

f : {0, 1}n → {0, 1}n such that for any (n, 0.3k)-source Y , any non-uniform adversary

that runs in time poly(n) can invert f(Y ) with only negligible probability. Then TExt

is a 2-source extractor such that for any (n, αn)-source X, and any (n, k)-source Y

that is independent of X,

|TExt(X, Y )− Um| < 3ε.
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Proof Sketch. The proof basically follows the same steps in the proof of Theorem 6.1.2.

We first prove that for a source X that satisfies the conditions of Lemma 6.1.3, and

Z = TExt(X, Y ), we have

|Z − Um| < 2.9ε. (6.2)

To this end, we prove that when both TYPICAL and TYPICAL2 hold, we

have

|Z ′′ − Um| < 2.5ε. (6.3)

Assume for the sake of contradiction that |Z ′′ − Um| ≥ 2.5ε. Since m =

O(log n), there exists a non-uniform PPT adversaryA(simply check all the 2m strings)

s.t.

|Pr[A(Z ′′) = 1]− Pr[A(Um) = 1]| ≥ 2.5ε

Note Z ′′ = ⊕ti=1Z
′′
i . Since Z1, . . . , Zg−1 are fixed, and Z ′′g+1, · · · , Z ′′t can be

computed from (X ′′, f g+1(Y ′′)) in polynomial time, there exists another non-uniform

PPT adversary A1 such that

∣∣Pr[A1(Z ′′g , R
′′
g , X

′′, f g+1(Y ′′)) = 1]− Pr[A1(Um, R
′′
g , X

′′, f g+1(Y ′′)) = 1]
∣∣ ≥ 2.5ε
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Recall that Z ′′g = RExt(f (g)(Y ′′), R′′g), thus Lemma 3.1.13 implies that there

exists another non-uniform adversary A2 that runs in time 2d ·n·poly(n) = poly(n, 1
ε
)·

poly(n) = poly(n) such that

∣∣Pr[A2(Z ′′g , R
′′
g , f

g+1(Y ′′)) = 1]− Pr[A2(Um, R
′′
g , f

g+1(Y ′′)) = 1
∣∣ ≥ 2.5ε.

Note that the fact that TYPICAL2 holds implies that (R′′g , Y
′′) ≡ (Ud, Y

′′).

This, together with Proposition 2.1.2 implies that

∣∣Pr[A2(RExt(f (g)(Y ′′), Ud), Ud, f
g+1(Y ′′)) = 1]− Pr[A2(Um, Ud, f

g+1(Y ′′)) = 1
∣∣

≥ 2.5ε− negl(n) > 2ε,

Note f (g)(Y ′′) has min-entropy 0.9k since f is a permutation. Now a similar

argument as in the proof of Theorem 3.1.12 implies that there exists another non-

uniform adversaryA3 that runs in time poly(n, 1
ε
)·poly(n) = poly(n) and an (n, 0.3k)-

source Ȳ such that A3 inverts f(Ȳ ) with probability at least ε/4. This contradicts

our assumption on f .

Thus Equation 6.3 does hold. Since the event that both TYPICAL and

TYPICAL2 hold happens with probability 1 − negl(n), Equation 6.2 holds. Now

by Lemma 2.3.6, X is 2−n
Ω(1)

-close to being a convex combination of {Xj}j∈J such

that for every j ∈ J , Xj satisfies the conditions in Lemma 6.1.3. Thus the theorem

holds.

189



6.2 Three Source Extractors

In this section we give our improved constructions of three source extractors.

The problem of constructing extractors for independent sources has a long history

that dates back to more than twenty years ago [SV86, Vaz85, CG88], where it was

shown that the inner product function is a two source extractor for two independent

weak random sources with min-entropy rate > 1/2. After that there was no progress

on this problem until recently, with the help of powerful theorems from additive

combinatorics, a series of results appeared [BIW04, BKS+05, Raz05, Bou05, Rao06,

BRSW06]. Perviously, the best explicit extractor for two independent (n, k) sources

only achieves min-entropy k = 0.499n [Bou05], the best known extractor for three

independent sources achieves min-entropy k = n0.9 [Rao06], and the best explicit

extractor for independent (n, nα) sources requires O(1/α) sources [Rao06, BRSW06].

Here we give the following theorem that improves previous three source extractors.

Theorem 6.2.1. For every constant 0 < δ < 1/2, there exists a polynomial time

computable function THExt : ({0, 1}n)3 → {0, 1}m such that if X, Y, Z are three inde-

pendent (n, k) sources with k = n1/2+δ, then

|THExt(X, Y, Z)− Um| < n−Ω(δ)

with m = Ω(k).

The following table summarizes recent results on extractors for independent

sources.
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Number of Sources Min-Entropy Output Error Ref

O(poly(1/δ)) δn Θ(n) 2−Ω(n) [BIW04]
3 δn, any constant δ Θ(1) O(1) [BKS+05]

3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(1) O(1) [Raz05]

2
One source: (1/2 + δ)n, any constant δ.
Other source may have k ≥ polylog(n)

Θ(k) 2−Ω(k) [Raz05]

2
(1/2− α0)n for some small universal
constant α0 > 0

Θ(n) 2−Ω(n) [Bou05]

O(1/δ) k = nδ Θ(k) k−Ω(1) [Rao06]

O(1/δ) k = nδ Θ(k) 2−k
Ω(1)

[BRSW06]

3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(k) 2−k
Ω(1)

[Rao06]

3
k = n1−α0 for some small universal
constant α0 > 0

Θ(k) 2−k
Ω(1)

[Rao06]

3 k = n1/2+δ, any constant δ Θ(k) k−Ω(1) This work

Table 6.1: Summary of Results on Extractors for Independent Sources.

6.2.1 Overview of the Construction

Here we give a brief description of our constructions and the techniques used.

For clarity and simplicity we shall be imprecise sometimes.

Our construction of the three source extractor mainly uses somewhere random

sources and the extractor for such sources in [Rao06]. Informally, a somewhere random

source is a matrix of random variables such that at least one of the rows is uniform.

If we have two independent somewhere random sources X = X1 ◦ · · · ◦Xt and Y =

Y1 ◦ · · · ◦ Yt with the same number of rows t, and there exists an i such that both Xi

and Yi are uniform, then we call X and Y independent aligned somewhere random

sources. In [Rao06] it is shown that if we have two independent aligned somewhere

random sources X, Y with t rows and each row has n bits, such that t < nγ for some
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arbitrary constant 0 < γ < 1, then we can efficiently extract random bits from X and

Y .

Now given three independent (n, k) sources X, Y, Z with k = n1/2+δ, our con-

struction uses X to convert Y and Z into two somewhere random sources, such that

with high probability over the fixing of X (and some additional random variables),

they are independent aligned somewhere random sources, and the number of rows is

significantly smaller than the length of each row. Then we will be done by using the

extractor in [Rao06] described above.

To illustrate how we do this, first assume that we have a strong seeded ex-

tractor that only uses log n additional random bits and can extract almost all the

entropy from an (n, k)-source with error 1/100. A strong seeded extractor is a seeded

extractor such that with high probability over the fixing of the seed, the output is

still close to uniform. We now try this extractor on X, Y and Z with all 2logn = n

possibilities of the seed and output nδ/2 bits. Thus we obtain three n×nδ/2 matrices.

Now we divide each matrix into
√
n blocks with each block consisting of

√
n rows.

Therefore we get X1 ◦ · · · ◦ X t, Y 1 ◦ · · · ◦ Y t and Z1 ◦ · · · ◦ Zt, where t =
√
n and

each X i, Y i, Zi is a block. By a standard property of strong seeded extractors, with

probability 1 − 1/10 = 9/10 over the fixing of the seed, the output is 1/10-close to

uniform. Therefore in each matrix, at least 9/10 fraction of the rows are close to

uniform. We say a block is “good” if it contains at least one such row. Thus in each

matrix at least 9/10 fraction of the blocks are good.

Now it’s easy to see that there exists an i such that all X i, Y i and Zi are good.

In other words, in some sense the matrices are already “aligned”. Next, for each i
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we compute an output Ri from (X i, Y i, X, Y ) and an output R′i from (X i, Zi, X, Z),

with the property that if X i, Y i are good, then Ri is (close to) uniform, and if X i, Zi

are good, then R′i is (close to) uniform. We then concatenate {Ri} to form a matrix

SRy and concatenate {R′i} to form a matrix SRz. Since there exists an i such that

all X i, Y i and Zi are good, SRy and SRz are (close to) aligned somewhere random

sources.

In the analysis below we consider a particular i such that all X i, Y i and Zi

are good (though we may not know what i is).

Now let’s consider computing Ri from (X i, Y i, X, Y ) (R′i is computed the same

way from (X i, Zi, X, Z)). Here we use a two-source extractor Raz in [Raz05]. This

extractor is strong and it works as long as one of the source has min-entropy rate

(the ratio between min-entropy and the length of the source) > 1/2, and even if the

two sources have different lengths. We first apply Raz to Y i and each row of X i (note

Y i is treated as a whole) to obtain a matrix M . Note that if X i, Y i are good then

they are both somewhere random, and thus Y i has min-entropy at least nδ/2. Thus

M is also a somewhere random source. Since Raz is a strong two-source extractor,

we can fix X i, and conditioned on this fixing M is still a somewhere random source.

Moreover now M is a deterministic function of Y i and is thus independent of X.

Next note that the size of X i is
√
n · nδ/2 = n1/2+δ/2 while the min-entropy of X is

n1/2+δ. Thus with high probability over the fixings of X i, X still has min-entropy at

least 0.9n1/2+δ. Therefore now we can apply a strong seeded extractor to X and each

row of M and output 0.8n1/2+δ bits. Thus we obtain a (
√
n× 0.8n1/2+δ) somewhere

random source X̄ i. Furthermore, since we applied a strong seeded extractor and now
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M is a deterministic function of Y i, we can further fix Y i and X̄ i is still somewhere

random, meanwhile it is now a deterministic function of X.

Similarly, we can compute a somewhere random source Ȳ i. Specifically, Since

Raz is a strong two-source extractor, we can fix Y i, and conditioned on this fixing M

is still a somewhere random source. Moreover now M is a deterministic function of

X i and is thus independent of Y . Next note that the size of Y i is
√
n ·nδ/2 = n1/2+δ/2

while the min-entropy of Y is n1/2+δ. Thus with high probability over the fixings of

Y i, Y still has min-entropy at least 0.9n1/2+δ. Therefore now we can apply a strong

seeded extractor to Y and each row of M and output 0.8n1/2+δ bits. Thus we obtain

a (
√
n × 0.8n1/2+δ) somewhere random source Ȳ i. Furthermore, since we applied a

strong seeded extractor and now M is a deterministic function of X i, we can further

fix X i and Ȳ i is still somewhere random, meanwhile it is now a deterministic function

of X.

Therefore now after the fixings of (X i, Y i), we get two independent (
√
n ×

0.8n1/2+δ) somewhere random sources (X̄ i, Ȳ i). It is easy to check that they are

aligned. Note that the number of rows is significantly less than the length of each

row, thus we can apply the extractor in [Rao06] to get a random string Ri with say

0.7n1/2+δ bits. Further notice that the extractor in [Rao06] is strong, thus we can fix

X and Ri is still (close to) uniform. This means that we can fix X and SRy is still

somewhere random (recall that SRy is the concatenation of {Ri}), moreover it is now

a deterministic function of Y .

Similarly we can compute SRz, and by the same argument we can fix X

and SRz is still somewhere random, moreover it is now a deterministic function of
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Z. Therefore now after we fix (X, Y i, Zi), we get two independent aligned (
√
n ×

0.7n1/2+δ) somewhere random sources, and again the extractor in [Rao06] can be

used to obtain an output that is (close to) uniform.

The above argument works even if the seed length of the strong seeded extrac-

tor that we use on X, Y, Z (try all possibilities of the seed) is (1 + α) log n instead of

log n, as long as α can be an arbitrarily small constant. However, currently we don’t

have such extractors for min-entropy k = n1/2+δ. Fortunately, we have condensers

with such short seed length. A (seeded) condenser is a generalization of a seeded

extractor, such that the output is close to having high min-entropy instead of being

uniform. In this paper we use the condenser built in [GUV09]. For any constant α > 0

and any (n, k′) source, this condenser uses d = (1+1/α)·(log n+log k′+log(1/ε))+O(1)

additional random bits to convert the source roughly into a ((1+α)k′, k′) source with

error ε. Now we can take α to be a sufficiently large constant, say 10/δ, take k′

to be small, say nδ/10 (note that an (n, n1/2+δ) source is also an (n, nδ/10) source),

and take ε to be something like n−δ/10. This gives us a small seed length, such that

2d = O(n1+δ/3). Therefore the number of blocks is O(n1/2+δ/3), which is significantly

less than n1/2+δ.

Now we can repeat the argument before. The condenser can also be shown

to be strong, in the sense that with probability 1 − 2
√
ε over the fixing of the seed,

the output is
√
ε-close to having min-entropy k′ − d (intuitively, this is because the

seed length is d, thus conditioned on the seed the output can lose at most d bits of

entropy). Now define a block to be “good” if it contains at least one “good” row that

is
√
ε-close to having min-entropy k′ − d. Again we can show there is an i such that
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all X i, Y i and Zi are good.

To finish the argument, we need to apply Raz to Y i and each row of X i.

However now the good row in X i is not uniform, in fact it may not even have min-

entropy rate > 1/2. On the other hand, it does have a constant min-entropy rate.

Therefore we now first apply the somewhere condenser from [BKS+05, Zuc07] to each

row of X i to boost the min-entropy rate to 0.9. The somewhere condenser outputs

another constant number of rows for each row of X i, and if the row of X i is good,

then one of the outputs is close to having min-entropy rate 0.9. Now we can apply Raz

to Y i and each output of the somewhere condenser, and proceed as before. Since this

only increases the number of rows in (X̄ i, Ȳ i) by a constant factor, it does not affect

our analysis. Thus we obtain a three source extractor for min-entropy k = n1/2+δ.

6.2.2 The Construction

In this section we present our three source extractor. We have the following

algorithm.
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Algorithm 6.2.2 (THExt(x, y, z)).

Input: x, y, z — a sample from three independent (n, k)-sources with k = n1/2+δ,
for some arbitrary constant 0 < δ < 1/2.
Output: w — an m bit string.

Sub-Routines and Parameters:
Let Cond be a (k1 → k1+d, ε1) condenser from Theorem 3.5.12, such that k1 = nδ/10,
ε1 = n−δ/10 and α = 10/δ where α is the parameter α in Theorem 3.5.12.
Let Zuc be a rate-(0.09δ → 0.9, 2−Ω(n))-somewhere-condenser form Theorem 3.5.3.
Let Raz be the strong 2-source extractor from Theorem 3.5.7.
Let Ext be the strong extractor from Theorem 3.5.13.
Let 2SRExt be the extractor for two independent aligned SR-source from Theo-
rem 3.5.8.

1. For every s ∈ {0, 1}d compute xs = Cond(x, s). Concatenate {xs} in the
binary order of s to form a matrix of 2d rows. Divide the rows of the matrix
sequentially into blocks x1, · · · xt with each block consisting of

√
n rows. Do

the same things to y and z and obtain blocks y1, · · · , yt and z1, · · · , zt.

2. (Compute an SR-source from x and y). For i = 1 to t do the following.

• For each row xij in block xi (there are
√
n rows), apply Zuc to get a

constant number of outputs {xij`}.
• For each xij` compute vij` = Raz(xij`, yi) and output m2 = Ω(k1) bits.

• For each vij` compute Ext(x, vij`), output 0.9n1/2+δ bits and concate-
nate these strings to form a matrix x̄i. Similarly for each vij` compute

Ext(y, vij`), output 0.9n1/2+δ bits and concatenate these strings to form
a matrix ȳi.

• Compute ri = 2SRExt(x̄i, ȳi) and output m3 = 0.8n1/2+δ bits.

3. Concatenate {ri, i = 1, · · · , t} to form a matrix sry.

4. Repeat step 2 and step 3 above for x and z to obtain a matrix srz.

5. Output w = 2SRExt(sry, srz).
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6.2.3 Analysis of the Extractor

In this section we analyze the three source extractor. Specifically, we prove

the following theorem.

Theorem 6.2.3. For any constant 0 < δ < 1/2, let X, Y, Z be three independent

(n, k) sources with k = n1/2+δ. Then

|THExt(X, Y, Z)− Um| < n−Ω(δ)

with m = Ω(k).

Proof. Our goal is to show that SRy and SRz is (close to) a convex combination of

independent aligned SR-sources with few rows. Then we’ll be done by Theorem 3.5.8.

First note that k > k1, thus an (n, k)-source is also an (n, k1) source. Let S

be the uniform distribution over d bits independent of (X, Y, Z). By Theorem 3.5.12

we have that XS = Cond(X,S) is ε1-close to being an (m1, k1 + d) source with m1 ≤

2d + (1 + α)k1 < (2 + α)k1, since d = (1 + 1/α) · (log n + log k + log(1/ε)) + O(1) =

O(log n) = O(log k1).

Now by Lemma 3.5.15, with probability 1 − 2
√
ε1 over the fixings of S = s,

Xs is
√
ε1-close to being an (m1, k1 − d) source. We say that a row Xs is good if it

is
√
ε1-close to being an (m1, k1 − d) source, and we say that a block X i is good if it

contains at least one good row. It’s easy to see that the fraction of “bad” blocks in

{X i} is at most 2
√
ε1. Similarly this is also true for the blocks {Y i} and {Zi}.
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Now since 2
√
ε1 < 1/3, by the union bound there exists an i s.t. X i, Y i and

Zi are all good blocks. Without loss of generality assume that X1, Y 1 and Z1 are all

good blocks. We are going to show that the first rows of SRy and SRz are close to

uniform, thus SRy and SRz are aligned somewhere random sources.

We first show this for SRy. Note that X1 is a good block and Y 1 is also a

good block. Therefore at least one row in X1 is good. Without loss of generality

assume that X1
1 is a good row. Thus X1

1 is
√
ε1-close to being an (m1, k1− d) source.

Note that k1 − d > 0.99k1 since d = O(log k1) and m1 < (2 + α)k1. Thus X1
1 is close

to having min-entropy rate 0.99/(2 +α) = 0.99/(2 + 10/δ) = 0.99δ/(10 + 2δ) > 0.09δ

since δ < 1/2.

Therefore by Theorem 3.5.3, Zuc(X1
1 ) is

√
ε1 + 2−Ω(m1) = n−Ω(δ)-close to being

a somewhere rate 0.9 source with O(1) rows, and the length of each row is Ω(m1) =

Ω(k1).

We now have the following claim.

Claim 6.2.4. With probability 1 − n−Ω(δ) over the fixings of X1 and Y 1, X̄1 is a

deterministic function of X, Ȳ 1 is a deterministic function of Y , and they are 2−n
Ω(1)

-

close to being two aligned (O(
√
n)× 0.9n1/2+δ) SR-sources.

proof of the claim. Note that Zuc(X1
1 ) is n−Ω(δ)-close to being a somewhere rate 0.9

source with O(1) rows, and each row has length Ω(k1). For simplicity, consider

the case where Zuc(X1
1 ) is close to an elementary somewhere rate 0.9 source (since

Zuc(X1
1 ) is n−Ω(δ)-close to being a convex combination of such sources, this increases

the error by at most n−Ω(δ)). Without loss of generality assume that the first row X1
11
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is n−Ω(δ)-close to having rate 0.9. Since Y 1 is a good block Y 1 is
√
ε1-close to having

min-entropy at least k1−d > 0.99k1, and Y 1 has length m1

√
n = poly(k1). Therefore

by Theorem 3.5.7 we have

|(V 1
11, X

1
11)− (Um2 , X

1
11)| < n−Ω(δ) + 2−Ω(k1) = n−Ω(δ)

and

|(V 1
11, Y

1)− (Um2 , Y
1)| < n−Ω(δ) + 2−Ω(k1) = n−Ω(δ).

Therefore with probability 1−n−Ω(δ) over the fixing of X1
11, V 1

11 is n−Ω(δ)-close

to uniform. Since X1
11 is a deterministic function of X1, this also implies that with

probability 1− n−Ω(δ) over the fixing of X1, V 1
11 is n−Ω(δ)-close to uniform. Note that

after this fixing, V 1
11 is a deterministic function of Y 1, and is thus independent of X.

Moreover, note that the length of X1 is m1

√
n = O(k1

√
n) = O(n1/2+δ/10). Thus by

Lemma 3.5.14, with probability 1− 2−n
δ/10

over the fixing of X1, X has min-entropy

at least n1/2+δ −O(n1/2+δ/10)− nδ/10 > 0.99n1/2+δ.

Therefore, now by the strong extractor property of Ext from Theorem 3.5.13,

with probability 1−n−Ω(δ) over the fixing of V 1
11, Ext(X, V 1

11) is 2−n
Ω(1)

-close to uniform.

Since now V 1
11 is a deterministic function of Y 1, this also implies that with probability

1−n−Ω(δ) over the fixing of Y 1, Ext(X, V 1
11) is 2−n

Ω(1)
-close to uniform. Note also that

after this fixing Ext(X, V 1
11) is a deterministic function of X. Therefore we have shown

that with probability 1 − n−Ω(δ) over the fixing of X1 and Y 1, X̄1 is a deterministic

function of X and is 2−n
Ω(1)

-close to an SR-source.
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By symmetry we can also show that with probability 1−n−Ω(δ) over the fixing

of X1 and Y 1, Ȳ 1 is a deterministic function of Y and is 2−n
Ω(1)

-close to an SR-source.

Since both in X̄1 and Ȳ 1, the first row is close to uniform, they are close to

being aligned SR-sources.

Now we have the following claim.

Claim 6.2.5. With probability 1− n−Ω(δ) over the fixing of X, Y 1, Z1, SRy and SRz

are two independent aligned somewhere random sources.

proof of the claim. Note that X̄1 and Ȳ 1 each has
√
n rows, and each row has 0.9n1/2+δ

bits. Thus by Claim 6.3.18 and Theorem 3.5.8, we have

|(R1, X̄
1)− (Um3 , X̄

1)| < n−Ω(δ).

This means that with probability 1−n−Ω(δ) over the fixing of X̄1, R1 is n−Ω(δ)-

close to uniform. Since we have fixed X1 and Y 1 before, now X̄1 is a deterministic

function of X. Thus this also implies that with probability 1− n−Ω(δ) over the fixing

of X, R1 is n−Ω(δ)-close to uniform. Moreover, now R1 (and all the other Ri’s) is a

deterministic function of Y . Therefore with probability 1−n−Ω(δ) over the fixing of X,

SRy is n−Ω(δ)-close to an SR-source. Moreover, after this fixing SRy is a deterministic

function of Y .

By the same argument, it follows that with probability 1 − n−Ω(δ) over the

fixings of X and Z1, SRz is n−Ω(δ)-close to an SR-source, and SRz is a deterministic

function of Z. Thus SRy and SRz are independent.
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Since both in SRy and SRz, the first row is close to uniform, they are close to

being aligned independent SR-sources.

Now note that

2d = O((nk1/ε1)1+1/α) = O(n(1+δ/5)(1+δ/10)) = O(n1+δ/3).

Thus SRy and SRz each has 2d/
√
n = O(n1/2+δ/3) rows, and each row has

0.8n1/2+δ bits. Therefore again by Theorem 3.5.8 we have

|THExt(X, Y, Z)− Um| < n−Ω(δ) + 2−n
Ω(1)

= n−Ω(δ),

and m = Ω(k).

6.3 Affine Extractors and Dispersers

In this section we present our constructions of affine extractors and dispersers.

In the case where the underlying field is F = GF(2), it is well known how to con-

struct extractors for affine sources with entropy rate greater than 1/2. However the

problem becomes much harder as the entropy rate drops to 1/2 and below 1/2. The

best construction of affine extractors in this case is due to Bourgain [Bou07], who

gave an extractor for affine sources with arbitrarily linear entropy that can output a

constant fraction of the entropy with exponentially small error. Based on Bourgain’s

techniques, Yehudayoff [Yeh10] gave another construction in the same spirit that is

slightly simpler to analyze. The construction of [Yeh10] also slightly improves Bour-
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gain’s result. Rao [Rao09] constructed extractors for affine sources with entropy as

small as polylog(n), as long as the subspace of X has a basis of low-weight vectors.

The construction of [Bou07], and the slight modification of [Yeh10], are thus

previously the only known constructions for general affine sources over GF(2) with

arbitrarily linear entropy. However, both of these constructions make extensive use

of inequality manipulations, and are quite complicated to analyze. Also, both of

these constructions need to choose a polynomial very carefully, so that eventually

the inequality manipulations would result in an estimate of exponential sums in finite

fields. The polynomial chosen thus determines the performance of the extractor. From

our point of view the choice of the polynomial is somewhat subtle and a bit unnatural.

Thus one may ask the natural question of whether there exist other constructions of

affine extractors for arbitrarily linear entropy sources.

Here we give a new construction of affine extractors that matches the results

of [Bou07] and [Yeh10]. Our construction is conceptually much cleaner than those of

[Bou07] and [Yeh10]. It mainly uses tools from previous constructions of extractors

and produces the desired polynomial in a very natural way. Our construction gives

new insights into the nature of affine extractors, and we believe that having two

different constructions with the best known parameters more than double the chances

of achieving even better constructions.

In the case of constructing dispersers for affine sources over GF(2), Barak et

al. [BKS+05] gave an affine disperser for sources with arbitrarily linear entropy that

outputs a constant number of bits. Ben-Sasson and Kopparty [BSK09] constructed

dispersers for affine sources with entropy Ω(n4/5). However, their construction only
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outputs 1 bit. In this paper, we construct dispersers for slightly sub-linear entropy

affine sources that output nΩ(1) bits.

We have the following theorems.

Theorem 6.3.1. For every δ > 0 there exists an efficient family of functions AExt :

{0, 1}n → {0, 1}m such that m = Ω(n) and for every affine source X with entropy

δn, |AExt(X)− Um| = 2−Ω(n).

Theorem 6.3.2. There exists a constant c > 1 and an efficient family of functions

AExt : {0, 1}n → {0, 1}m such that m = nΩ(1) and for every affine source X with

entropy cn/
√

log log n, |AExt(X)− Um| = 2−n
Ω(1)

.

Theorem 6.3.3. There exists a constant c > 1 and an efficient family of functions

ADisp : {0, 1}n → {0, 1}m such that m = nΩ(1) and for every affine source X with

entropy cn/
√

log n, |Supp(ADisp(X))| = 2m.

6.3.1 Overview of Our Constructions

In some sense, our construction of affine extractors is similar in the spirit to

our construction of 2-source extractors above. There we constructed an extractor for

two independent weak random sources with linear entropy. The basic idea is that,

when a source with linear entropy is divided into some constant number of blocks, it

becomes (up to a convex combination and a small error) a somewhere block source.

If we know the location of a good block (a block that contains high entropy but not

all the entropy of the source), then it is fairly easy to extract random bits with the

help of the other source. The problem is that we don’t know where the good block
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is, thus we have to try all the possibilities and end up with a constant number of

outputs such that one of them is close to uniform. These outputs can be correlated.

The authors then modified this procedure by using computational assumptions to

make the outputs “independent” of each other in some sense, and thus the xor of the

outputs is close to uniform.

Here, we would like to do something similar. It is still true that when we

divide an affine source with linear entropy into some constant number of blocks, it

becomes an affine somewhere block source. However, unlike the two-source extractor,

we now have two problems. First, we have only one affine source. Second, we do not

rely on any computational assumptions. Thus we need some new techniques to deal

with these problems.

6.3.1.1 Extractors for one affine block source

An affine block source is an affine source that consists of two blocks, such that

the first block has some entropy, and the second block also has some entropy, even

if conditioned on the fixing of the first block. We first construct an extractor for an

affine block source.

To do this, we use special kinds of two-source extractors and seeded extractors:

strong linear two-source (or seeded) extractors. A two-source (or seeded) extractor is

strong if for most choices of one source (or the seed), the output is close to uniform.

It is linear if for any fixing of one source (or the seed), the output is a linear function

of the other source. There are known strong linear seeded and two-source extractors.

For example, Trevisan’s extractor [Tre01] is a strong linear seeded extractor, while
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the inner product function is a strong linear two-source extractor when the sum of

the entropy rates of the two sources is greater than 1.

Given these extractors, our extractor for an affine block source is simple. As-

sume (X1, X2) is an affine block source with each block having entropy rate δ. We first

use the condenser based on sum-product theorems [BKS+05, Zuc07] to convert X1

into a somewhere rate-(1−δ/2) source, which is a matrix that has a constant number

of rows such that one of the rows has entropy rate 1− δ/2. Next we apply the inner

product function to each row and X2. Although X1 and X2 are correlated, note that

X1 is a linear function of the source (X1, X2). Thus the structure of affine sources

(Lemma 2.3.22) and the properties of strong linear two-source extractors guarantee

that the output is close to a convex combination of affine somewhere random sources.

Note the affine somewhere random source has very few rows (a constant num-

ber), thus we can now use Rao’s extractor for such sources [Rao09]. Rao’s extractor

uses the strong linear seeded extractor, and reduces the number of rows in the some-

where random source by a half each time. Thus by repeating a constant number of

times we get an output R that is close to uniform.

In the real construction, we use R as a seed and apply the strong linear seeded

extractor again to the source to get another output U that is close to uniform. The

purpose is to make sure that the output is a linear function of the source (when

conditioned on the fixings of some random variables), thus we can use the structure

result in Lemma 2.3.22.

Again, the problem is that we don’t know where the good block is. Thus we
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try all the possibilities and get a constant number of outputs {Ri, Ui} such that one

of {Ui} is close to uniform.

6.3.1.2 Obtain one output

Similar to the two-source extractor construction, we need to find a way to

make the outputs somewhat “independent” of each other, so that we can take the

xor of them and get a string that is close to uniform. To do this, we use properties

of polynomials over GF(2).

First of all, in the analysis we can fix the first good block Xg (though we

don’t know which block it is) and fix all random variables produced before this block.

By restricting the size of the random variables produced (so that they don’t steal

much entropy), it is not hard to show that conditioned on all these fixings, with high

probability Ug (the output of the affine block source extractor applied to (Xg, X))

is uniform. Thus in particular this means that conditioned on (U1, · · · , Ug−1), Ug is

still uniform. The problem is that Ug+1, · · · , Ut (t is the number of blocks) could be

correlated with Ug.

Our key observation is that, when we fix all the random variables produced

before Xg and fix (Xg, Rg), Ug is a linear function L of the source X. Lemma 2.3.22

thus tells us that there exists an affine function Lg and an affine source Bg independent

of Ug such that X = Lg(Ug)+Bg. Therefore, now conditioned on any fixing of Bg = b

the source X is an affine function (degree 1 polynomial) of Ug!

Since the subsequent computations are all functions of X, the random variables

Ug+1, · · · , Ut are all functions of Ug. We note that any boolean function on {0, 1}n can
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be expressed as a polynomial over GF(2), though the degree of the polynomial can be

very high. On the other hand, if we can ensure that each bit of Ug+1, · · · , Ut is a low

degree (say degree d) polynomial of the bits of Ug, then there is something natural to

do–instead of just outputting Ui, we output a bit Zi, which is a degree di polynomial

of the bits of Ui. Now Zg+1, · · · , Zt are polynomials of degree d ·dg+1, · · · , d ·dt of the

bits of Ug. As long as dg > max{d · dg+1, · · · , d · dt}, the xor of the Zi’s cannot be a

constant. Thus we get a non-constant bit. In other words, we get a one-bit disperser.

In fact, in the construction we choose di > di+1 for all i. Thus as long as each bit of

Ug+1, · · · , Ut is a degree d polynomial of the bits of Ug, it suffices to have dg > d ·dg+1.

Since we don’t know the position of the good block, we take di > d · di+1 for all i.

In the construction for linear entropy affine sources, the degree d is a constant.

Thus we can take all the di’s to be constants. The polynomial Zi we take is simple

too: just take di bits of Ui and compute the product. We show that each Ui has

Ω(n) bits, thus we can take Ω(n) different blocks of di bits. Therefore instead of just

outputting one bit, we can output Ω(n) bits. The only thing left now is to make sure

each bit of Ug+1, · · · , Ut is a low degree polynomial of the bits of Ug.

6.3.1.3 Extractors that are low-degree polynomials

Let us examine how Ui is computed. First we convert a block Xi of X into

a somewhere rate-(1 − δ/2) source Yi, using the condenser based on sum-product

theorems. In this step we need to apply the condenser a constant number of times,

while each time the output is a degree 2 polynomial of the inputs. Next we apply the

inner product function to each row of Yi and X to obtain an affine somewhere random

208



source SRi. Again the output is a degree 2 polynomial of the inputs. We then use

the extractor for such a source from [Rao09] to get a random seed Ri. Finally we

use Ri and apply a strong linear seeded extractor to X to obtain Ui. In these two

steps, we need to use a strong linear seeded extractor, which may not be a low-degree

polynomial.

We note that in the above discussion some of the polynomials are over a finite

field Fq. However, in this paper all the finite fields Fq have size q = 2s for some integer

s. Thus by mapping a string in {0, 1}s to an element in Fq using the standard binary

expression, we see that whenever a function is a degree d polynomial over Fq, each bit

of the output is also a degree d polynomial (over GF(2)) of the input bits. Therefore

all we need now is to construct a strong linear seeded extractor such that each bit of

the output is a constant degree polynomial of the input bits.

The starting point is the well-known leftover hash lemma [ILL89], which

roughly says that if R is uniformly distributed over a finite field F and X is a weak

source over F, then the last several bits of R · X (the operation is in F) is a strong

extractor. Note this is also a linear seeded extractor and the output is a degree 2-

polynomial of the inputs. The only thing bad about this extractor is that it requires

the seed to have as many bits as the source, which we cannot afford. Nevertheless,

we use this extractor as an ingredient in our construction.

Our actual construction of the strong linear seeded extractor consists of three

steps. First, we take a short seed and divide the source into many blocks with each

block having the same number of bits as the seed. We apply the extractor from the

leftover hash lemma to the seed and every block of the source, and concatenate the
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outputs. Thus we get a somewhere random source. Next, we take another short seed

and apply the strong linear merger from [LRVW03] to the somewhere random source.

We then get a short source with linear entropy. Finally, we take a short seed and

apply the extractor from the leftover hash lemma to the short source, and we obtain

bits that are close to uniform. It is easy to check that the extractor is a linear seeded

extractor. It is also strong because in each step the extractor or merger is strong. It

can also be easily checked that the output is a degree 4 polynomial of the inputs.

Once we use this extractor, it is fairly straight forward to check that each bit

of Ui is a constant degree polynomial of the bits of X, and thus the bits of Ug.

6.3.1.4 Affine Extractors

Above we discussed the techniques in our construction of affine dispersers.

Next we discuss how to get an affine extractor from the disperser.

Recall that in the above we take Zg to be a degree dg > d · dg+1 polynomial

of the bits of Ug (the product of some dg bits) and we argue that Zg xored with

Zg+1, · · · , Zt cannot be a constant. The key observation here is that this is not only

true for Zg+1, · · · , Zt, but also true for any polynomial of degree at most dg − 1. In

other words, let d′ = dg − 1 and let Pd′ stand for the class of all polynomials of

degree at most d′ of the bits of Ug, then the correlation between Zg and Pd′ is at most

1− 1/2d
′
. Therefore if we take several independent blocks of Ug, each having dg bits,

and take the xor of the products of the bits in each block, the correlation with Pd′

will decrease exponentially by the xor lemma from [VW08, BKS+10]. Since Ug has

Ω(n) bits we can take Ω(n) blocks and the correlation will decrease to 2−Ω(n). Thus

210



we get an extractor that outputs one bit with exponentially small error.

To output more bits, we divide the bits of Ug into Ω(n) blocks, each having

dg bits. We next take the generating matrix of a binary linear asymptotically good

code, with the codeword length equaling the number of blocks. For each row of the

generating matrix we associate one bit. The bit is computed by taking the xor of the

products of the bits in the blocks that are indexed by the 1’s in this row. By the

properties of the asymptotically good linear code, the xor of any non-empty subset

of these bits, will be the xor of the products of the bits from Ω(n) blocks. Thus it

will be 2−Ω(n)-close to uniform. In other words, these bits form a 2−Ω(n)-biased space.

Therefore we can take Ω(n) bits that are 2−Ω(n)-close to uniform.

6.3.1.5 A word about the affine extractor for entropy rate 1/2

Our construction uses an affine extractor for entropy rate 1/2 as a black box

when we use Rao’s extractor [Rao09]. For our application we need this extractor to

be a constant degree polynomial and output a linear fraction of the entropy. In this

paper we use a result in [Bou07]. A potential alternative is a result in [BSK09]. There

the authors showed that given any non-trivial linear map π : F2n → F2, π(X7) is an

extractor for any affine source X with entropy 2n/5 + 10 + d, when X is viewed as

an element in F2n . A recent work of Haramaty and Shpilka [HS10] shows that the

error of this extractor is 2−d
Ω(1)

. Combined with our techniques, this result already

gives an extractor for affine sources with entropy rate 1/2 that can output nΩ(1) bits

with error 2−n
Ω(1)

. Specifically, we interpret X7 as a string in {0, 1}n, and we take the

generating matrix of a binary linear asymptotically good code with codeword length
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n. For each codeword in the generating matrix we compute a bit Zi which is the

xor of the bits of X7 that are indexed by 1’s in this codeword. Thus the xor of any

subset of {Zi} is a non-trivial linear map from F2n to F2, and thus is 2−n
Ω(1)

-close to

uniform if X has entropy n/2. Therefore we can take nΩ(1) bits from {Zi} with error

2−n
Ω(1)

. It is conjectured in [BSK09] that the error of the extractor should be 2−Ω(n).

If this is true then we can output Ω(n) bits with error 2−Ω(n), and this can replace

the extractor in [Bou07] completely.

6.3.2 The Constructions

Before we present the construction, we first give the constructions of several

ingredients.

6.3.2.1 Low Degree Strong Linear Seeded Extractors

In this section we describe our construction of a strong linear seeded extractor.

The extractor has the property that each bit of the output is a degree 4 polynomial

of the bits of the input.

Theorem 6.3.4. There exists a constant 0 < β < 1 such that for every 0 < δ < 1

and any 1/
√
n < α < 1 there exists a polynomial time computable function LSExt :

{0, 1}n × {0, 1}d → {0, 1}m s.t.

• d ≤ αn,m ≥ βδαn.

• For any (n, δn)-affine source 1X, let R be the uniform distribution on {0, 1}d

1Generally we don’t need the source to be affine. However the analysis is simpler if the source is
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independent of X. Then (LSExt(X,R), R) is 2−Ω(δα2n)-close to uniform.

• Each bit of the output is a degree 4 polynomial of the bits of the two inputs, and

for any fixing of r the output is a linear function of x.

Proof. The construction of the extractor consists of 3 steps:

Step 1: We take d1 = αn/3 random bits R1 and divide X into 3/α blocks of equal

length2 X = X1 ◦ · · · ◦ Xt, where each Xi has αn/3 bits. We now apply the

function Hash as in Lemma 3.5.18 to every Xi and R1 and concatenate the

output to be Y = Y1 ◦ · · · ◦ Yt, where Yi = Hash(Xi, R1). We let each Yi output

l1 = 0.9δαn/3 = 0.3δαn bits.

Claim 6.3.5. With probability 1−2−Ω(δαn) over R1, Y is 2−Ω(δαn)-close to being

a (l1, 3/α)-somewhere random source.

Proof of the claim. By Lemma 2.3.23 there exist integers k1, · · · , kt such that

for any fixing of the previous blocks, Xi has entropy ki. Note
∑t

i=1 ki = δn.

Thus there exists 1 ≤ i ≤ t such that ki ≥ δαn/3. Now by Lemma 3.5.18

we know that (Yi, R1) is 2−Ω(δαn)-close to (U,R1). Therefore with probability

1− 2−Ω(δαn) over R1, Yi is 2−Ω(δαn)-close to uniform. Thus Y is 2−Ω(δαn)-close to

being a (l1, 3/α)-somewhere random source.

an affine source (mainly because in this case we don’t need to go into convex combinations as in the
case where the source is a general weak source).

2For simplicity, we assume that 3/α is an integer, this does’t affect the analysis.
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Step 2: Let ε = 2−cδα
2n for a constant 0 < c < 1 to be chosen later. We take d2

random bits R2 and apply the merger as in Theorem 3.5.20 with parameter ε.

Let W = Merg(Y,R2).

Claim 6.3.6. d2 ≤ αn/3 and with probability 1 − 2−Ω(δα2n) over R2, W is

2−Ω(δα2n)-close to having min-entropy 0.4l1.

Proof of the claim. By Theorem 3.5.20 the seed length d2 = O(cδα2n/α) =

O(cδαn). Note that l1 = 0.3δαn. Thus we can choose c s.t. d2 ≤ αn/3

and the output of the merger has length m = l1/2 − O(d2) ≥ 0.4l1. Now by

Theorem 3.5.20 we know that with probability 1 − 2−Ω(δα2n) over R2, W is

2−Ω(δα2n)-close to having min-entropy 0.4l1.

Step 3: Now W is a random variable over l1 < αn/3 bits. Take d3 = l1 random bits

R3 and apply the function Hash as in Lemma 3.5.18 to W and R3 and output

m = 0.3l1 bits. The final output is Z = Hash(W,R3).

The number of random bits used is d = d1 +d2 +d3 ≤ αn. The number of bits

of the output is m = 0.3l1 ≥ βδαn for some constant 0 < β < 1. By Lemma 3.5.18

with probability 1 − 2−Ω(δαn) over R3, Z is 2−Ω(δαn)-close to uniform. Thus with

probability 1 − 2−Ω(δα2n) over R, Z is 2−Ω(δα2n)-close to uniform, which implies that

(LSExt(X,R), R) is 2−Ω(δα2n)-close to uniform.

In each of the 3 steps the degree of the polynomial goes up by 1. Thus each

bit of the output is a degree 4 polynomial of the bits of the two inputs. Now observe
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in each step for any fixing of Ri = r the output is a linear function, thus for any fixing

of R = r the output is a linear function of x.

In the special case where α and δ are constants, we get the following corollary:

Corollary 6.3.7. For all constants 0 < δ, α < 1 there exists a polynomial time

computable function LSExt : {0, 1}n × {0, 1}d → {0, 1}m and a constant 0 < β < 1

such that

• d ≤ αn,m ≥ βn.

• For any (n, δn)-affine source X, let R be the uniform distribution on {0, 1}d

independent of X. Then (LSExt(X,R), R) is 2−Ω(n)-close to uniform.

• Each bit of the output is a degree 4 polynomial of the bits of the two inputs, and

for any fixing of r the output is a linear function of x.

6.3.2.2 Extractors for Affine Somewhere Random Sources with Few Rows

In this section we describe our extractor for an affine somewhere random source

with few rows. The construction is essentially the same as that in [Rao09], except

that we use our low degree strong linear seeded extractor in the construction.

We need the following definition about the slice of a concatenation of strings.

Definition 6.3.8. [Rao09] Given ` strings of length n, x = x1, · · · , x`, define Slice(x,w)

to be the string x′ = x′1, · · · , x′` such that for each i x′i is the prefix of xi of length w.
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Algorithm 6.3.9 (AffineCondense(x)).

Input: x — a t× r matrix with t < 4
√
r.

Output: y — a dt/2e ×m matrix with m = Ω(r/t2).

Sub-Routines and Parameters:
Let w = r/(10t).
Let BAExt : {0, 1}n → {0, 1}d be the affine extractor from Theorem 3.5.21.
Let LSExt : {0, 1}n × {0, 1}d → {0, 1}m be the strong linear seeded extractor from
Theorem 6.3.4.

1. Let z be the dt/2e × 2w matrix obtained by concatenating pairs of rows in
Slice(x,w), i.e., the i’th row zi is Slice(x,w)2i−1 ◦ Slice(x,w)min{2i,t}.

2. Let s be the dt/2e × d matrix whose i’th row is BAExt(zi).

3. Let y be the dt/2e ×m matrix whose i’th row is LSExt(x, si).

Algorithm 6.3.10 (AffineSRExt(x)).

Input: x — a t× r matrix.
Output: z — an m bit string with m = r/tO(log t).

Sub-Routines and Parameters:

1. If x has one row, output x.

2. Else, set y to be the output of AffineCondense(x).

3. Set x = y and go to the first step.

Lemma 6.3.11. For any t × r affine somewhere random source X with t < 4
√
r,

AffineCondense(X) is 2−Ω(r/t4)-close to a convex combination of dt/2e × m affine
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somewhere random sources, where m = Ω(r/t2). Moreover, each bit of the output

is a constant degree polynomial of the input bits.

Proof. We essentially follow the proof in [Rao09], except that we use the specific

strong linear seeded extractor LSExt.

Let Z = Slice(X,w) as in the algorithm. Note that Slice(X,w) is a linear

function of X. Thus by Lemma 2.3.22, there exist independent affine sources A and

B s.t. X = A + B, H(A) = H(Slice(A,w)) and for every b ∈ Supp(B), Slice(b, w) =

0. This implies that Z = Slice(X,w) = Slice(A,w) + Slice(B,w) = Slice(A,w) is

independent of B and H(B) = H(X)−H(A) = H(X)−H(Slice(X,w)) ≥ r − wt.

Note that Z is a linear function of X, thus conditioned on any fixing Z = z,

X|Z = z is an affine source. Moreover, conditioned on any fixing Z = z, Y is a linear

function of X|Z = z (because LSExt is a linear seeded extractor). Thus conditioned

on any fixing Z = z, Y |Z = z is affine. We next show that with high probability over

z ←R Z, Y |Z = z is somewhere random.

Since X is somewhere random, there exists an index h s.t. Zh is an affine

source with entropy rate 1/2. Therefore by Theorem 3.5.21, sh has Ω(w) bits and

|Sh − Ud| ≤ 2−Ω(w). (6.4)

Note that Sh is a deterministic function of Z and is thus independent of B.

Also sh has d = Ω(w) = Ω(r/t) = Ω(1/t2 · tr) bits. Note that B has tr bits and

H(B) ≥ r−wt ≥ 0.9r. Let Ud be the uniform distribution over d bits independent of
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B. Then by Theorem 6.3.4 we have that LSExt(B, Sh) has m = Ω(1/t3 · tr) = Ω(r/t2)

bits and

Pr
u←RUd

[|LSExt(B, u)− Um| > ε] < ε

where ε = 2−Ω(r/t4).

By Proposition 3.1.9 and equation 1 we thus have

Pr
s←RSh

[|LSExt(B, s)− Um| > 0] < ε+ 2−Ω(w) = 2−Ω(r/t4).

For any s ∈ {0, 1}d, we have LSExt(X, s) = LSExt(A + B, s) = LSExt(A, s) +

LSExt(B, s). Note that Sh is a deterministic function of Z, Z is a deterministic

function of A and H(A) = H(Z). Thus A is also completely determined by Z.

Therefore whenever LSExt(B, s)|Z = z is uniform, LSExt(X, s)|Z = z is also uniform.

Thus we get

Pr
z←RZ

[|LSExt(X|Z = z, sh)− Um| > 0] ≤ 2−Ω(r/t4).

This shows that Y is 2−Ω(r/t4)-close to being a convex combination of affine

somewhere random sources. Now note that both BAExt and LSExt are constant degree

polynomials, thus each bit of the output is a constant degree polynomial of the input

bits.

Repeating the condenser for log t times, we get the following theorem:
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Theorem 6.3.12. For every affine t×r somewhere random source X, AffineSRExt(X)

outputs m = r/tO(log t) bits that are 2−Ω(r/tO(log t))-close to uniform. Moreover, each bit

of the output is a degree tO(1) polynomial of the bits of the input.

In the special case where t is a constant, we get the following corollary.

Corollary 6.3.13. For every affine t×r somewhere random source X with t = O(1),

AffineSRExt(X) outputs m = Ω(r) bits that are 2−Ω(r)-close to uniform. Moreover,

each bit of the output is a constant degree polynomial of the bits of the input.
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6.3.2.3 Affine Dispersers for Linear Entropy Sources

Algorithm 6.3.14 (ADisp(x)).

Input: x — an n bit string.
Output: z — an m bit string with m = Ω(n).

Sub-Routines and Parameters:
Let Zuc : {0, 1}n → ({0, 1}Ω(n))O(1) be a rate-(δ/4 → 1 − δ/4, 2−Ω(n))-somewhere-
condenser form Theorem 3.5.3.
Let Had : ({0, 1}n)2 → {0, 1}Ω(n) be the two-source extractor from Theorem 3.5.22,
set up to extract from two independent sources whose entropy rates sum up to
more than 1 + δ/4.
Let LSExt : {0, 1}n × {0, 1}d → {0, 1}m′ be the strong linear seeded extractor from
Theorem 6.3.4.
Let AffineSRExt be the extractor for affine somewhere random sources from Theo-
rem 6.3.12.

Divide x into 10/δ blocks x = x1 ◦ · · · ◦xt where t = 10/δ and each block has δn/10
bits.
For every i, 1 ≤ i ≤ t do the following.

1. Let yi1 ◦ · · · ◦ yi`1 = Zuc(xi), where yij is the j’th row of the matrix obtained
by applying Zuc to xi. Note `1 = O(1) and each yij has Ω(n) bits.

2. Divide x into `2 blocks of equal size x = x′1 ◦ · · · ◦ x′`2 , with each block
having the same number of bits as yij. Note `2 = O(1). Apply Had to every
pair of x′j2 and yij1 , and output δ3n/(3000`1`2) bits. Let sri be the matrix
obtained by concatenating all the outputs Had(x′j2 , yij1), i.e., each row of sri
is Had(x′j2 , yij1) for a pair (x′j2 , yij1).

3. Let ri = AffineSRExt(sri).

4. Let ui = LSExt(x, ri), set up to output at most δ3n/(3000`1`2) bits.

5. Divide the bits of ui into si = Ω(n) blocks of equal size, with each block
having ci number of bits, for some constant ci to be chosen later. For every
j = 1, · · · , si, compute one bit vij by taking the product of all the bits in the
j’th block, i.e., vij = Πjci

`=(j−1)ci+1ui`.

Finally, output Ω(n) bits {zj =
⊕t

i=1 vij}.
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6.3.2.4 Affine Extractors for Linear Entropy Sources

Now we describe our construction of an affine extractor for linear entropy

sources. First we need the following definition.

Definition 6.3.15. A linear binary code of length n and rank k is a linear subspace

C with dimension k of the vector space Fn2 . Let d be the distance of the code. C is

asymptotically good if there exist constants 0 < δ1, δ2 < 1 s.t. k ≥ δ1n and d ≥ δ2n.

Note that every linear binary code has an associated generating matrix G ∈

Fk×n2 , and every codeword can be expressed as vG, for some vector v ∈ Fk2.

It is well known that we have explicit constructions of asymptotically good

binary linear code. For example, the Justensen codes constructed in [Jus72].

The affine extractor is now described as follows.
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Algorithm 6.3.16 (AExt(x)).

Input: x — an n bit string.
Output: z — an m bit string with m = Ω(n).

Sub-Routines and Parameters:
Let ADisp : {0, 1}n → {0, 1}m1 be the affine disperser in Algorithm 6.3.14, where
m1 = Ω(n).
Let G be the generating matrix of an asymptotically good linear binary code with
codeword length m1. Thus G is an αm1×m1 matrix for some constant α > 0. Let
Gi stand for the i’th row of the matrix.

1. Run Algorithm 6.3.14 and let the output be Z = (Z1, · · · , Zm1) where Zi is
the i’th bit.

2. For each codeword Gi, let Si = {j ∈ [m1] : Gij = 1} be the set of index s.t.
the bit of the codeword Gi at that index is 1. Define

Wi =
⊕

Zj,j∈Si

to be the bit associated with Gi, i.e., Wi is the XOR of the Zj’s whenever
the j’th index of the codeword Gi is 1.

3. Take a constant 0 < β ≤ α to be chosen later. Output W = (W1, · · · ,Wβm1).

6.3.3 Analysis of the Affine Disperser

We have the following theorem about the disperser.

Theorem 6.3.17. For every δ > 0 there exists an efficient family of functions ADisp :

{0, 1}n → {0, 1}m such that m = Ω(n) and for every affine source X with entropy

δn, |Supp(ADisp(X))| = 2m.

Proof. We show that Algorithm 6.3.14 is an efficient family of such functions. First,
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by Lemma 2.3.23, when we divide X into t = 10/δ blocks of equal size, there exist

positive integers k1, · · · , kt s.t. for any fixing of the previous blocks, H(Xi) = ki and∑t
i=1 ki = δn. Thus there must exist an i s.t. ki ≥ δn/3t. Let Xg be the first such

block, i.e., g is the smallest i s.t. ki ≥ δn/3t.

Lemma 6.3.18. Conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui =

ui)i∈{1,··· ,g−1}, X is an affine source with H(Xg) ≥ δn/4t and H(X) ≥ 3δn/5.

Proof of the lemma. We first fix (Xi = xi)i∈{1,··· ,g−1}. Note since Xi is a linear func-

tion of X, after this fixing X is still an affine source. Now by Lemma 2.3.23, after

this fixing H(Xg) ≥ kg ≥ δn/3t and H(X) ≥
∑t

i=g ki ≥ δn− t · δn/3t ≥ 2δn/3.

Note that conditioned on the fixing of (Xi = xi)i∈{1,··· ,g−1}, SRi is a linear

function of X. Thus we can further fix (SRi = sri)i∈{1,··· ,g−1} and X is still an affine

source. Note that SRi has `1`2 rows and each row has δ3n/(3000`1`2) bits, thus SRi

has a total number of δ3n/3000 bits. Let SR = SR1 ◦ · · · ◦SRg−1 and abuse notation

to let SR(X) stand for the linear function of X that computes SR. Note SR has at

most δ3n/3000 · t = δ2n/300 bits. By Lemma 2.3.22, there exist independent affine

sources A and B s.t. X = A + B, SR(X) = SR(A) and H(SR(A)) = H(A). Thus

conditioned on any fixing of SR,

H(X) ≥ H(B) ≥ 2δn/3−H(A)

= 2δn/3−H(SR(X)) ≥ 2δn/3− δ2n/300.
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Next note that Xg is a linear function of X. Thus Xg(X) = Xg(A) + Xg(B).

Therefore H(Xg(B)) = H(Xg) − H(Xg(A)) ≥ H(Xg) − H(A) ≥ δn/3t − δ2n/300.

Since SR(X) = SR(A) we have that conditioned on any fixing of SR(X), H(Xg) ≥

H(Xg(B)) ≥ δn/3t− δ2n/300.

Note that after the fixing of (SRi = sri)i∈{1,··· ,g−1} , (Ri)i∈{1,··· ,g−1} is also fixed,

and now (Ui)i∈{1,··· ,g−1} is a linear function of X. Thus by the same analysis we have

that conditioned on any fixing of (Ui)i∈{1,··· ,g−1}, X is still an affine source. Moreover,

H(X) ≥ 2δn/3 − δ2n/300 − δ2n/300 > 3δn/5 and H(Xg) ≥ δn/3t − δ2n/300 −

δ2n/300 > δn/4t.

Now consider X and Xg conditioned on any fixing of (Xi = xi, SRi = sri, Ri =

ri, Ui = ui)i∈{1,··· ,g−1}, we have the following lemma.

Lemma 6.3.19. With probability 1− 2−Ω(n) over the further fixings of Xg = xg, Rg

is 2−Ω(n)-close to uniform.

Proof of the lemma. First, note that H(Xg) ≥ δn/4t, thus Xg has entropy rate at

least δ/4. Therefore by Theorem 3.5.3 Zuc(Xg) is 2−Ω(n)-close to a somewhere-rate-

(1− δ/4) source. Without loss of generality assume that Yg1 has rate 1− δ/4. Since

Xg is a linear function of X, by Lemma 2.3.22 there exist independent affine sources

Ag and Bg such that X = Ag + Bg, Xg(X) = Xg(Ag) and H(Ag) = H(Xg). Thus

H(Bg) = H(X) − H(Ag) = H(X) − H(Xg) ≥ 3δn/5 − δn/10 = δn/2. Note that

when we divide X into `2 blocks X = X ′1 ◦ · · · ◦X ′`2 , each X ′j is a linear function of

X. Thus X ′j(X) = X ′j(Ag) +X ′j(Bg). Let Agj = X ′j(Ag) and Bgj = X ′j(Bg). Since Bg
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is an affine source, by Lemma 2.3.23 the sum of all H(Bgj) is at least H(Bg) ≥ δn/2.

Thus at least one block must have entropy rate at least δ/2. Let Bgj be such a block.

Note that Yg1 is a deterministic function of Xg, thus it is also a deterministic

function of Ag and is independent of Bgj. Note Yg1 has rate 1 − δ/4 and Bgj has

rate δ/2. Thus by Theorem 3.5.22 we have that with probability 1− 2−Ω(n) over the

fixings of Yg1 (and thus Ag and Xg), Had(Bgj, Yg1) is 2−Ω(n)-close to uniform. Now

note that for a fixed Yg1 = yg1, the function Had is a linear function. Therefore

Had(X ′j, yg1) = Had(Agj, yg1) + Had(Bgj, yg1).

Note that once Ag (equivalently, Xg) is fixed, Had(Agj, yg1) is a fixed constant.

Thus whenever a fixed Ag makes Had(Bgj, yg1) uniform, it also makes Had(X ′j, yg1)

uniform. Therefore we have that with probability 1 − 2−Ω(n) over the fixings of Ag

(and thus Xg), Had(X ′j, Yg1) is 2−Ω(n)-close to uniform. When this happens, we have

that SRg is 2−Ω(n)-close to an affine somewhere random source (it is affine since for

a fixed Xg = xg, SRg is a linear function of X). Thus by Theorem 6.3.12 Rg is

2−Ω(n)-close to uniform.

Now consider X conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui =

ui)i∈{1,··· ,g−1}, and the event that the property in Lemma 6.3.19 is satisfied. We have

the following lemma.

Lemma 6.3.20. With probability 1−2−Ω(n) over the further fixings of SRg (and thus

Rg), Ug is uniform.
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Proof of the lemma. First note that Xg is a linear function of X. Thus conditioned

on any fixing of Xg = xg, X is still an affine source. Now after this fixing, SRg is a

linear function of X. Thus by Lemma 2.3.22, there exist independent affine sources

A′g and B′g s.t. X = A′g + B′g, SRg(X) = SRg(A
′
g) and H(SRg) = H(A′g). Thus

H(B′g) = H(X)−H(A′g) = H(X)−H(SRg) ≥ 3δn/5− δn/10− δ3n/3000 > δn/3.

Next, note Rg is a deterministic function of SRg and is 2−Ω(n)-close to uniform

by Lemma 6.3.19. Thus Rg is independent of B′g. Note LSExt is a strong linear

seeded extractor with error 2−Ω(n) by Theorem 6.3.4. Thus by Proposition 3.1.9 with

probability 1−2−Ω(n) over the fixings of Rg (and thus SRg), LSExt(B′g, Rg) is uniform.

Finally note that for any fixing of SRg (and thus Rg), LSExt(X,Rg) is a linear

function of X. Thus by the same analysis as in Lemma 6.3.19 we have that with

probability 1− 2−Ω(n) over the fixings of SRg (and thus Rg), Ug is uniform.

Now consider X conditioned on any fixing of (Xi = xi, SRi = sri, Ri = ri, Ui =

ui)i∈{1,··· ,g−1}, and the event that both properties in Lemma 6.3.19 and Lemma 6.3.20

hold. Note that even further conditioned on the fixings of Xg = xg and SRg = srg,

X is still an affine source. Now after this fixing Ug is a linear function of X. Thus by

Lemma 2.3.22 there exist independent affine sources A′′g and B′′g s.t. X = A′′g + B′′g ,

Ug(X) = Ug(A
′′
g) and H(Ug) = H(A′′g). To prove the function ADisp is a disperser, it

suffices to prove that for some B′′g = b, it is a disperser. We actually can prove that

for any B′′g = b, ADisp is a disperser.

Lemma 6.3.21. For any integer m > 0, let Z ′ = (Z ′1, · · · , Z ′m) where Z ′j =
⊕t

i=g Vij.

Then conditioned on any fixing of B′′g = b, |Supp(Z ′)| = 2m.
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Proof of the lemma. We first show that Z ′1 can take both values in {0, 1}. To see

this, notice that Z ′1 =
⊕t

i=g Vi1 while Vg1 = Π
cg
`=1Ug` is a polynomial of degree cg over

the bits of the uniform string Ug. Next, since now (conditioned on all the fixings)

Ug is a linear function of X, by Lemma 2.3.22 there exists an affine function Lg s.t.

A′′g = Lg(Ug). Thus X = A′′g + B′′g = Lg(Ug) + B′′g . Note Ug = Ug(X) = Ug(A
′′
g) is

independent of B′′g . Now conditioned on any fixing of B′′g = b, X = Lg(Ug) + b is an

affine function (degree 1 polynomial) of Ug.

Given this observation, the following computations and the outputs V(g+1)1, · · · , Vt1

are all functions of Ug. If we can show that
⊕t

i=g+1 Vi1 is a polynomial of degree less

than cg over the bits of Ug, then we know that Z ′1 = Vg1 ⊕
⊕t

i=g+1 Vi1 cannot be a

constant. In fact, this is exactly how we choose the constants ci’s.

Let us see what conditions ci’s must satisfy. First, it’s easy to see that we

need to choose ci’s s.t. ci > ci+1 for every i. Next, we compute the degrees of each

Vi1 for i > g. First X is an affine function of Ug. Then by Theorem 3.5.3, each bit

of Zuc(Xi) is a constant degree polynomial of the input bits. It’s easy to see the

function Had is a degree 2 polynomial. Thus each bit of SRi is a degree 2 polynomial

of the input bits. By Theorem 6.3.12 each bit of Ri is a constant degree polynomial

of the input bits. By Theorem 6.3.4 each bit of Ui is a constant degree polynomial of

the input bits. Thus we conclude that for every i ≥ g+ 1, each bit of Ui is a constant

c(δ)-degree polynomial of the bits of Ug. Note each Vi1 is a degree ci polynomial of

the bits of Ui. Therefore in order to make
⊕t

i=g+1 Vi1 a polynomial of degree less than

cg, it suffices to take
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ci > c(δ)ci+1

for every i. This ensures that Z ′1 is not a constant.

Now we consider outputting m > 1 bits. By induction it suffices to prove that

for any fixing of (Z ′1 = z1, · · · , Z ′i = zi), Z
′
i+1 can take both values in {0, 1}. For the

sake of contradiction, suppose for some (Z ′1 = z1, · · · , Z ′i = zi), Z
′
i+1 can only take

the value zi+1. Then we have

Pg =(Z ′1 + z1 + 1)(Z ′2 + z2 + 1)

· · · (Z ′i + zi + 1)(Z ′i+1 + zi+1) ≡ 0.

However, note that Z ′j = Vgj ⊕
⊕t

i=g+1 Vij and Vgj is a monomial of degree cg

of the bits of Ug, while all the other Vij’s are monomials of degree less than cg of the

bits of Ug. Also note that Vgj’s are monomials of different bits for different j’s. Thus

Pg is a polynomial of the bits of Ug and has one monomial of degree (i + 1)cg (the

highest degree monomial) with coefficient 1. Therefore Pg cannot always be 0.

Note that once (Xi = xi, SRi = sri, Ri = ri, Ui = ui)i∈{1,··· ,g−1} are fixed,

(Vij)i∈{1,··· ,g−1} are also fixed. The theorem now follows immediately from Lemma 6.3.18,

Lemma 6.3.19, Lemma 6.3.20 and Lemma 6.3.21. Since t = O(1), all ci’s are con-

stants. Thus the disperser outputs Ω(n) bits.
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6.3.4 Analysis of the Affine Extractor

In this section we analyze our affine extractor. We first show how to extract

1 bit that is 2−Ω(n)-close to uniform. For this we need the following definition.

Definition 6.3.22. For two functions f, p : {0, 1}n → {0, 1}, their correlation is

defined as

Cor(f, p) =
∣∣∣Pr
x

[f(x) = p(x)]− Pr
x

[f(x) 6= p(x)]
∣∣∣ ,

where the probability is over the uniform distribution. For a class C of functions, we

denote by Cor(f, C) the maximum of Cor(f, p) over all functions p ∈ C.

Theorem 6.3.23. [VW08, BKS+10] Let Pd stand for the class of all polynomials

of degree at most d over GF(2). Let f : {0, 1}n → {0, 1} be a function such that

Cor(f, Pd) ≤ 1 − 1/2d and f×m be the XOR of the value of f on m independent

inputs. Then

Cor(f×m, Pd) ≤ exp(−Ω(m/(4d · d))).

Theorem 6.3.24. Let Z = (Z1, · · · , Zm) be the output of the affine disperser in

Algorithm 6.3.14, where m = Ω(n) and Zi is the i’th bit. Take any integer 0 < s < m

and take any subset S ⊆ [m] with |S| = s. Let W =
⊕

Zi,i∈S. Then

|W − U | = 2−Ω(s).
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Remark 6.3.25. Note that if we take s = Ω(n) then we get 1 bit that is 2−Ω(n)-close

to uniform.

Proof. Without loss of generality assume S = {1, · · · , s}. As in the proof of Theo-

rem 6.3.17, we have Lemma 6.3.18, Lemma 6.3.19 and Lemma 6.3.20. Now consider

(U, V )g, · · · , (U, V )t conditioned on the fixings of (Xi = xi, SRi = sri, Ri = ri, Ui =

ui)i∈{1,··· ,g−1} and Xg = xg, SRg = srg. Let Wg =
⊕s

i=1 Z
′
i, where Z ′i =

⊕t
j=g Vji.

Note that

Wg =
s⊕
i=1

Z ′i =
s⊕
i=1

(Vgi ⊕
t⊕

j=g+1

Vji)

=
s⊕
i=1

Vgi ⊕
s⊕
i=1

(
t⊕

j=g+1

Vji).

We know that Ug is uniform and each Vgi is a degree cg monomial on cg bits

of Ug. We also know that Pg =
⊕s

i=1(
⊕t

j=g+1 Vji) is a degree at most d = cg − 1

polynomial of the bits of Ug. Let Pd stand for the class of all polynomials of degree

at most d = cg − 1 over GF(2). Any polynomial in Pd can equal Vgi with probability

at most 1− 2−cg = 1− 2−(d+1), i.e.,

Cor(Vgi, Pd) ≤ 1− 1/2d.

Note that Vgi’s are the same functions (degree cg monomial) on different and

thus independent bits of Ug (since Ug is uniform). Thus by Theorem 6.3.23,
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Cor(
s⊕
i=1

Vgi, Pd) ≤ 2−Ω(s).

In particular, we have

Cor(
s⊕
i=1

Vgi,

s⊕
i=1

(
t⊕

j=g+1

Vji)) ≤ 2−Ω(s).

Thus Wg is 2−Ω(s)-close to uniform. Now by Lemma 6.3.18, Lemma 6.3.19 and

Lemma 6.3.20, the error of W =
⊕s

i=1 Zi can go up by at most 2−Ω(n). Thus

|W − U | = 2−Ω(n) + 2−Ω(s) = 2−Ω(s)

since s = O(n).

Now we can prove the main theorem about our affine extractor. We first

restate the theorem.

Theorem 6.3.26. For every δ > 0 there exists an efficient family of functions AExt :

{0, 1}n → {0, 1}m such that m = Ω(n) and for every affine source X with entropy

δn, |AExt(X)− Um| = 2−Ω(n).

Proof. We show that Algorithm 6.3.16 is such a family of functions. First note that

for any nonempty set T ⊆ [αm1], the sum of the codewords Gi,i∈T is also a codeword

CT . Let WT be the bit associated with CT , i.e., WT is the XOR of the Zj’s whenever

the j’th index of the codeword CT is 1. Observe that
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WT =
⊕

Wi,i∈T .

Since T is nonempty, the codeword CT must have distance at least γm1 from

the codeword 0, for some constant 0 < γ < 1. That is, CT must have at least γm1 1’s.

Thus by Theorem 6.3.24 |WT −U | = 2−Ω(γm1). This implies that for every nonempty

subset T ,

∣∣∣⊕Wi,i∈T − U
∣∣∣ ≤ 2−c0γm1

for some constant c0 > 0. In other words, the random variables {Wi} form an ε-biased

space for ε = 2−c0γm1 . Thus by Lemma 3.5.24

|W − U | ≤ 2βm1/2 · 2−c0γm1 .

Choose 0 < β ≤ α s.t. β ≤ c0γ. Then

|W − U | ≤ 2−c0γm1/2.

Thus we have that (W1, · · · ,Wβm1) are Ω(n) bits that are 2−Ω(n)-close to uni-

form.

6.3.5 Affine Extractors and Dispersers for Sub-Linear Entropy Sources

In this section we briefly show how we can modify the affine extractors and

dispersers above to handle sources with slightly sub-linear entropy. The main observa-

tion is that in the construction of affine extractors for linear entropy, the polynomials
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that we use only have constant degrees. For an argument like the analysis of the ex-

tractor to hold, the degree of the polynomial can be close to log n by Theorem 6.3.23.

For an argument like the analysis of the disperser to hold, the degree of the polyno-

mial can be close to n (the degree cannot be larger than n since we can get at most n

uniform random bits). We’ll show that this will lead to an affine extractor for entropy

n/
√

log log n and an affine disperser for entropy n/
√

log n.

Theorem 6.3.27. There exists a constant c > 1 and an efficient family of functions

ADisp : {0, 1}n → {0, 1}m such that m = nΩ(1) and for every affine source X with

entropy cn/
√

log n, |Supp(ADisp(X))| = 2m.

Proof Sketch. We essentially use the same algorithm as Algorithm 6.3.14, except the

entropy rate δ now is sub-constant. We examine the analysis to see how small δ can

be. We focus on the first good block Xg.

First we want to use the somewhere condenser from Theorem 3.5.3 to convert

a rate-δ/4 source into a somewhere rate-(1 − δ/4) source. Note that now δ is sub-

constant, so we do this in two steps. First, we repeatedly use Theorem 3.5.2 to convert

the source into a somewhere rate-0.6 source. This will take O(log 1
δ
) times. Next, we

repeatedly use Theorem 3.5.6 to convert the source into a somewhere rate-(1− δ/4)

source. This will take O(1
δ
) times. Thus in step 1 of Algorithm 6.3.14 we get that

`1 = 2O( 1
δ

), and each Ygj has n/(2O( 1
δ

)) bits. The error is 2−n/2
O( 1

δ
)

.

Now in step 2 of Algorithm 6.3.14, we get `2 = 2O( 1
δ

). Thus the total number

of rows in the matrix SRg is `1`2 = 2O( 1
δ

), with each row having δ3n/(3000`1`2) =

n/(2O( 1
δ

)) bits. By Theorem 3.5.22 the error is 2−n/2
O( 1

δ
)

.
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In step 3, we apply AffineSRExt. By Theorem 6.3.12 we get each Rg has

n/(2O( 1
δ2

)) bits, with error 2−n/2
O( 1

δ2
)

. By Theorem 6.3.4 after applying LSExt, Ug has

n/(2O( 1
δ2

)) bits with error 2−n/2
O( 1

δ2
)

.

The last thing to verify is that the degrees of the polynomials produced in step

5 satisfy the requirements as in the analysis of Theorem 6.3.17. The analysis says

that we need to have ci > c(δ)ci+1 for all i. To see how this can be satisfied, we first

estimate the quantity c(δ).

As in the analysis of Theorem 6.3.17, first X is an affine function of Ug. Now

by Theorem 3.5.2 and Theorem 3.5.6, each bit of Zuc(Xi) is a degree 2O( 1
δ

) polynomial

of the input bits (since we repeat the condenser O(1
δ
) times). The function Had is

a degree 2 polynomial. Thus each bit of SRi is a degree 2 polynomial of the input

bits. Now we apply AffineSRExt, and by Theorem 6.3.12 each bit of the output is

a degree 2O( 1
δ

) polynomial of the input bits. Therefore each bit of Ri is a degree

2O( 1
δ

) · 2O( 1
δ

) = 2O( 1
δ

) polynomial of the bits of Ug. By Theorem 6.3.4 in LSExt each

bit of Ui is a constant degree polynomial of the input bits. Thus we conclude that for

every i ≥ g + 1, each bit of Ui is a degree 2O( 1
δ

) polynomial of the bits of Ug.

Therefore we have

c(δ) = 2O( 1
δ

).

Note that we need ci > c(δ)ci+1 for every i, 1 ≤ i ≤ 10/δ. Thus the ci’s are

bounded by
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c(δ)10/δ = 2O( 1
δ2

).

Since each Ui has n/(2O( 1
δ2

)) bits, it suffices to have

n/(2O( 1
δ2

)) > 2O( 1
δ2

).

Thus by taking δ ≥ c/
√

log n for some constant c > 1 the disperser can output

nΩ(1) bits.

Similarly, we get an affine extractor for sub-linear entropy sources. However,

unlike in the analysis of the affine disperser, the degree of the polynomial cannot

be close to n, and can only be close to log n by Theorem 6.3.23. Thus we only get

δ = c/
√

log log n for some constant c > 1.

Theorem 6.3.28. There exists a constant c > 1 and an efficient family of functions

AExt : {0, 1}n → {0, 1}m such that m = nΩ(1) and for every affine source X with

entropy cn/
√

log log n, |AExt(X)− Um| = 2−n
Ω(1)

.

Proof Sketch. We essentially use the same algorithm as Algorithm 6.3.16, except the

entropy rate δ now is sub-constant. We examine the analysis to see how small δ can

be. We focus on the first good block Xg.

As in the analysis of the affine disperser above, we get that in step 4 of Algo-

rithm 6.3.14, Ug has n/(2O( 1
δ2

)) bits, and the error is 2−n/2
O( 1

δ2
)

. We also get that

c(δ) = 2O( 1
δ

)
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and thus the ci’s are bounded by

c(δ)10/δ = 2O( 1
δ2

).

For the xor lemma of Theorem 6.3.23 to give a non-trivial bound, it suffices

to have

2O( 1
δ2

) ≤ α log n

for some constant 0 < α < 1. This gives that δ ≥ c/
√

log log n for some constant

c > 1. Also, when this happens, the XOR lemma of Theorem 6.3.23 gives a correlation

upper bound of 2−n
Ω(1)

. The error of Ug is 2−Ω(n/ logn). Thus by taking the generating

matrix of a binary linear asymptotically good code and choosing nΩ(1) rows, we see

that the extractor outputs nΩ(1) bits that are 2−n
Ω(1)

-close to uniform.

6.4 Non-malleable Extractors

In this section we give the first explicit construction of non-malleable extrac-

tors. We begin with the formal definition.

Definition 6.4.1. A function nmExt : [N ] × [D] → [M ] is a (k, ε)-non-malleable

extractor if, for any source X with H∞(X) ≥ k and any function A : [D]→ [D] such

that A(y) 6= y for all y, the following holds. When Y is chosen uniformly from [D]

and independent of X,

(nmExt(X, Y ), nmExt(X,A(Y )), Y ) ≈ε (U[M ], nmExt(X,A(Y )), Y ).
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Note that this dramatically strengthens the definition of strong extractor. In

a strong extractor, the output must be indistinguishable from uniform, even given

the random seed. For a non-malleable extractor, a distinguisher is not only given

a random seed, but also the output of the extractor with the given input and an

arbitrarily correlated random seed. Note that nmExt(X,A(Y )) need not be close to

uniform.

This kind of extractors is first proposed by Dodis and Wichs [DW09] to con-

struct protocols for privacy amplification. They showed that non-malleable extractors

exist with k > 2m + 3 log(1/ε) + log d + 9 and d > log(n − k + 1) + 2 log(1/ε) + 7,

for N = 2n, M = 2m, and D = 2d. However, they were not able to construct such

non-malleable extractors.

Here we construct the first explicit non-malleable extractors.

6.4.1 The Construction of Non-malleable Extractors

We show that a specific near-Hadamard code that comes from the Paley graph

works as a non-malleable extractor for min-entropy k > n/2. The Paley graph func-

tion is nmExt(x, y) = χ(x−y), where x and y are viewed as elements in a finite field F

of odd order q and χ is the quadratic character χ(x) = x(q−1)/2. (The output of χ is in

{±1}, which we convert to an element of {0, 1}.) The function nmExt(x, y) = χ(x+y)

works equally well. The proof involves estimating a nontrivial character sum.

We can outputm bits by computing the discrete logarithm logg(x+y) mod M .

This extractor was originally introduced by Chor and Goldreich [CG88] in the context

of two-source extractors. To make this efficient, we need M to divide q−1. A widely-
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believed conjecture about primes in arithmetic progressions implies that such a q is

not too large (see Conjecture 3.2.2). Our result is stated as follows.

Theorem 6.4.2. For any constants α, β, γ > 0 with β+γ < α/2, there is an explicit

(k = (1/2 + α)n, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m for

ε = 2−γn and any m ≤ βn. It runs in polynomial time if Conjecture 3.2.2 holds or

m = O(log n).

Our basic extractor was introduced by Chor and Goldreich [CG88]. They

showed that it was a two-source extractor for entropy rates bigger than 1/2. Dodis

and Oliveira [DO03] showed that it was strong. Neither result implies anything about

non-malleability.

To output m bits, we set M = 2m and choose a prime power q > M . In our

basic extractor, we require that M |(q − 1). Later, we remove this assumption. Fix

a generator g of F×q . We define nmExt : F2
q → ZM by nmExt(x, y) = h(logg(x + y)).

Here logg z is the discrete logarithm of z with respect to g, and h : Zq−1 → ZM is

given by h(x) = x mod M .

In the special case m = 1, we only require that q is odd. In this case,

nmExt(x, y) corresponds to the quadratic character of x+ y, converted to {0, 1} out-

put. This is efficient to compute. Since there is no known efficient deterministic

algorithm to find an n-bit prime, we may take q = 3`, with 3`−1 < 2n < 3`.

For general M , we use the Pohlig-Hellman algorithm to compute the discrete

log mod M . This runs in polynomial time in the largest prime factor of M . Since in

our case M = 2m, this is polynomial time.
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We still need a prime or prime power q such thatM |(q−1). Unconditionally, we

get a polynomial-time algorithm to output m = c log n bits for any c > 0. To output

more bits efficiently, we rely on a widely believed conjecture. Under Conjecture 3.2.2,

such a prime can be found efficiently by testing M+1, 2M+1, 3M+1, . . . in succession.

Now we prove that nmExt is a non-malleable extractor.

Theorem 6.4.3. The above function nmExt : F2
q → ZM is a (k, ε)-non-malleable

extractor for ε = Mq1/421−k/2.

Proof. The heart of our proof is a new character sum estimate, given in Theorem 6.4.8.

We now show how to deduce Theorem 6.4.3 from the character sum estimate and

Lemma 3.4.1. Let X be a distribution with H∞(X) ≥ k, and let Y be uniform on Fq.

As is well-known, we may assume without loss of generality that X is uniform on a

set of size 2k. We set G = ZM , (W,W ′) = (nmExt(X, Y ), nmExt(X,A(Y ))), and we

condition on Y = y.

Note that for φ a character of G, the function χ(z) = φ(h(logg(z))) is a

multiplicative character of Fq. Therefore, Theorem 6.4.8 shows that ((W,W ′)|Y = y)

satisfies the hypotheses of Lemma 3.4.1 for some αy, where Ey←Y [αy] ≤ α for α <

q1/421−k/2. Thus, by Lemma ??, ((W,W ′)|Y = y) is O(Mαy)-close to ((U, h(W ′))|Y =

y) for every y. Since this expression is linear in αy, we conclude that (W,W ′, Y ) is

O(Mα)-close to (U, h(W ′), Y ), as required.

Note that this theorem assumes that the seed is chosen uniformly from Fq.

However, this may not be the case, as we are given the input length n and min-

entropy k, and we need to find a suitable m < k/2 − n/4 − 2 such that 2m|(q − 1).

240



Thus, it could be that q is not close to a power of 2. Instead, we may only assume

that the seed has min-entropy at least log q−1. We can handle this, and in fact much

lower min-entropy in the seed, as follows. First, we define a non-malleable extractor

with a weakly-random seed.

Definition 6.4.4. A function nmExt : [N ] × [D] → [M ] is a (k, k′, ε)-non-malleable

extractor if, for any source X with H∞(X) ≥ k, any seed Y with H∞(Y ) ≥ k′, and

any function A : [D]→ [D] such that A(y) 6= y for all y, the following holds:

(nmExt(X, Y ), nmExt(X,A(Y )), Y ) ≈ε (U[M ], nmExt(X,A(Y )), Y ).

The following lemma shows that a non-malleable extractor with small error

remains a non-malleable extractor even if the seed is weakly random.

Lemma 6.4.5. A (k, ε)-non-malleable extractor nmExt : [N ] × [D] → [M ] is also a

(k, k′, ε′)-non-malleable extractor with ε′ = (D/2k
′
)ε.

Proof. For y ∈ [D], let εy = ∆((nmExt(X, y), nmExt(X,A(y)), y), (U[M ], nmExt(X,A(y)), y)).

Then for Y chosen uniformly from [D],

ε ≥ ∆((nmExt(X, Y ), nmExt(X,A(Y )), Y ), (U[M ], nmExt(X,A(Y )), Y )) =
1

D

∑
y∈[D]

εy.

Thus, for Y ′ with H∞(Y ′) ≥ k′, we get

∆((nmExt(X, Y ′), nmExt(X,A(Y ′)),Y ′), (U[M ], nmExt(X,A(Y ′)), Y ′))

=
∑
y∈[D]

Pr[Y = y]εy ≤ 2−k
′ ∑
y∈[D]

εy ≤ (D/2k
′
)ε.
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It is now simple to analyze our non-malleable extractor as a function nmExt :

{0, 1}n × {0, 1}d → {0, 1}m. Here we work over Fq, where q is the smallest prime

(or prime power) congruent to 1 modulo M = 2m. We let d = blog2 qc, which is

n + c log n + O(1) under Conjecture 3.2.2. We could even let d = n and the error

would only grow by nc.

Theorem 6.4.6. Under Conjecture 3.2.2 with constant c, for any n, k > n/2 +

(c/2) log n, and m < k/2 − n/4 − (c/4) log n, the above function nmExt : {0, 1}n ×

{0, 1}d → {0, 1}m is a polynomial-time computable, (k, ε)-non-malleable extractor for

ε = O(nc/42m+n/4−k/2).

Proof. Suppose that Conjecture 3.2.2 holds for the constant c. Then q = O(nc2n),

and the seed has min-entropy k′ = d. Applying Lemma 6.4.5, we obtain error

ε = (q/2d)Mq1/421−k/2 = O(nc/42m+n/4−k/2).

6.4.2 A Character Sum Estimate

We now prove the necessary character sum estimate. We prove a somewhat

more general statement than is needed for the one-bit extractor, as the general state-

ment is needed to output many bits. Throughout this section, we take F = Fq to be a

finite field with q elements. In addition, we suppose that χ : F× → C× is a nontrivial

character of order d = q− 1, and we extend the domain of χ to F by taking χ(0) = 0.

Now we consider two arbitrary characters, where the first is nontrivial; without loss

of generality we may take these to be χa(x) = (χ(x))a and χb(x) = (χ(x))b, where
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0 < a < q − 1 and 0 ≤ b < q − 1. The following lemma is a consequence of Weil’s

resolution of the Riemann Hypothesis for curves over finite fields (see [Wei48]).

Lemma 6.4.7. Suppose that f ∈ F[x] is a polynomial having m distinct roots which

is not a dth power in F[x]. Then∣∣∣∑
x∈F

χ(f(x))
∣∣∣ 6 (m− 1)

√
q.

Proof. This is immediate from Theorem 2C′ of Schmidt [Sch76] (see page 43 of the

latter source).

Now we establish the main character sum estimate. Note that we need the

assumption that a 6= 0: if a = 0 and b = (q − 1)/2, we could take A(y) = 0 and let

S be the set of quadratic residues, and then one has no cancellation in the character

sum.

Theorem 6.4.8. Suppose that S is a non-empty subset of F, and that A : F→ F is

any function satisfying the property that A(y) 6= y for all y ∈ F. Then one has∑
y∈F

∣∣∣∑
s∈S

χa(s+ y)χb(s+A(y))
∣∣∣ 6 111/4q5/4|S|1/2.

Proof. Write Θ =
∑

y∈F

∣∣∣∑s∈S χa(s+y)χb(s+A(y))
∣∣∣. We begin by applying Cauchy’s

inequality to obtain

Θ2 6 q
∑
y∈F

∣∣∣∑
s∈S

χa(s+ y)χb(s+A(y))
∣∣∣2 = q

∑
s,t∈S

∑
y∈F

ψs,t(y),

in which we have written

ψs,t(y) = χa(s+ y)χb(s+A(y))χa(t+ y)χb(t+A(y)). (6.5)
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Applying Cauchy’s inequality a second time, we deduce that

Θ4 6 q2|S|2
∑
s,t∈S

∣∣∣∑
y∈F

ψs,t(y)
∣∣∣2.

By positivity, the sum over s and t may be extended from S to the entire set F, and

thus we deduce that

Θ4 6 q2|S|2
∑
s,t∈F

∑
y,z∈F

ψs,t(y)ψs,t(z). (6.6)

On recalling the definition (6.5), we may expand the right hand side of (6.6) to obtain

the bound

Θ4 6 q2|S|2
∑
y,z∈F

|ν(y, z)|2, (6.7)

where

ν(y, z) =
∑
s∈F

χa(s+ y)χb(s+A(y))χa(s+ z)χb(s+A(z)).

Recall now the hypothesis that y 6= A(y). It follows that, considered as an

element of F[x], the polynomial

hy,z(x) = (x+ y)a(x+A(y))b(x+ z)q−1−a(x+A(z))q−1−b

can be a dth power only when y = z, or when y = A(z), a = b and z = A(y). In

order to confirm this assertion, observe first that when y 6= z and y 6= A(z), then hy,z

has a zero of multiplicity a at −y. Next, when y = A(z), one has z 6= y, and so when

a 6= b the polynomial hy,z has a zero of multiplicity q− 1 +a− b at −y. Finally, when

y = A(z) and a = b, then provided that z 6= A(y) one finds that hy,z has a zero of

multiplicity q − 1− a at −z. In all of these situations it follows that hy,z has a zero

of multiplicity not divisible by d = q − 1. When y 6= z, and (y, z) 6= (A(z),A(y)),
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therefore, the polynomial hy,z(x) is not a dth power in F[x], and has at most 4 distinct

roots. In such a situation, it therefore follows from Lemma 6.4.7 that

ν(y, z) =
∑
s∈F

χ(hy,z(s))

is bounded in absolute value by 3
√
q. Meanwhile, irrespective of the values of y and z,

the expression ν(y, z) is trivially bounded in absolute value by q. Substituting these

estimates into (6.7), we arrive at the upper bound

Θ4 6 q2|S|2
∑
y∈F

(
|ν(y, y)|2 + |ν(y,A(y))|2 +

∑
z∈F\{y,A(y)}

|ν(y, z)|2
)

6 q2|S|2
∑
y∈F

(q2 + q2 + q(3
√
q)2) = 11q5|S|2.

We may thus conclude that Θ 6 111/4q5/4|S|1/2.

A direct computation yields the following corollary.

Corollary 6.4.9. Let α be a positive number with α 6 1. Then under the hypotheses

of the statement of Theorem 6.4.8, one has

∑
y∈F

∣∣∣∑
s∈S

χa(s+ y)χb(s+A(y))
∣∣∣ < αq|S|

whenever |S| >
√

11q/α2.
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Chapter 7

Privacy Amplification with an Active Adversary

In this chapter we present our results on privacy amplification with an active

adversary. As mentioned in the introduction, the basic setting of this problem is that

two parties, Alice and Bob, share a weak random source W and they want to obtain

private random bits through communications to each other. The communication is

over a public channel where an adversary Eve is present. In this thesis, we consider

the case where Eve is active and has unlimited computational resources. In other

words, Eve can see whatever messages sent in this channel and he can modify the

messages in an arbitrary way. The goal is to design a protocol such that despite the

presence of Eve, with high probability Alice and Bob still end up with private random

bits that are close to uniform.

Below we give the definition of a privacy amplification protocol (PA, PB), ex-

ecuted by two parties Alice and Bob sharing a secret X ∈ {0, 1}n, in the presence of

an active, computationally unbounded adversary Eve, who might have some partial

information E about X satisfying H∞(X|E) > k. Informally, this means that when-

ever a party (Alice or Bob) does not reject, the key R output by this party is random

and statistically independent of Eve’s view. Moreover, if both parties do not reject,

they must output the same keys RA = RB with overwhelming probability.
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More formally, we assume that Eve is in full control of the communication

channel between Alice and Bob, and can arbitrarily insert, delete, reorder or mod-

ify messages sent by Alice and Bob to each other. In particular, Eve’s strategy PE

actually defines two correlated executions (PA, PE) and (PE, PB) between Alice and

Eve, and Eve and Bob, called “left execution” and “right execution”, respectively.

We stress that the message scheduling for both of these executions is completely

under Eve’s control, and Eve might attempt to execute a run with one party for

several rounds before resuming the execution with another party. However, Alice

and Bob are assumed to have fresh, private and independent random tapes Y and

W , respectively, which are not known to Eve (who, by virtue of being unbounded,

can be assumed deterministic). At the end of the left execution (PA(X, Y ), PE(E)),

Alice outputs a key RA ∈ {0, 1}m ∪ {⊥}, where ⊥ is a special symbol indicating

rejection. Similarly, Bob outputs a key RB ∈ {0, 1}m ∪ {⊥} at the end of the right

execution (PE(E), PB(X,W )). We let E ′ denote the final view of Eve, which in-

cludes E and the communication transcripts of both executions (PA(X, Y ), PE(E))

and (PE(E), PB(X,W ). We can now define the security of (PA, PB).

Definition 7.0.10. [KR09b] An interactive protocol (PA, PB), executed by Alice and

Bob on a communication channel fully controlled by an active adversary Eve, is a

(k,m, ε)-privacy amplification protocol if it satisfies the following properties whenever

H∞(X|E) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB ∧RA 6=⊥ ∧RB 6=⊥] = 1.

2. Robustness. We start by defining the notion of pre-application robustness, which
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states that even if Eve is active, Pr[RA 6= RB ∧RA 6=⊥ ∧RB 6=⊥] 6 ε.

The stronger notion of post-application robustness is defined similarly, except

Eve is additionally given the key RA the moment she completed the left ex-

ecution (PA, PE), and the key RB the moment she completed the right exe-

cution (PE, PB). For example, if Eve completed the left execution before the

right execution, she may try to use RA to force Bob to output a different key

RB 6∈ {RA,⊥}, and vice versa.

3. Extraction. Given a string r ∈ {0, 1}m ∪ {⊥}, let purify(r) be ⊥ if r =⊥, and

otherwise replace r 6=⊥ by a fresh m-bit random string Um: purify(r) ← Um.

Letting E ′ denote Eve’s view of the protocol, we require that

∆((RA, E
′), (purify(RA), E ′)) ≤ ε and ∆((RB, E

′), (purify(RB), E ′)) ≤ ε

Namely, whenever a party does not reject, its key looks like a fresh random

string to Eve.

The quantity k −m is called the entropy loss and the quantity log(1/ε) is called the

security parameter of the protocol.

Previously, Maurer and Wolf [MW97b] gave a one-round protocol which works

when the entropy rate of the weakly-random secret X is bigger than 2/3. This was

later improved by Dodis, Katz, Reyzin, and Smith [DKRS06] to work for entropy rate

bigger than 1/2. However in both cases the resulting nearly-uniform secret key R is

significantly shorter than the min-entropy of X. Dodis and Wichs [DW09] showed

that there is no one-round protocol for entropy rate less than 1/2. Renner and Wolf
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[RW03] gave the first protocol which works for entropy rate below 1/2. Kanukurthi

and Reyzin [KR09b] simplified their protocol and showed that the protocol can run

in O(s) rounds and achieve entropy loss O(s2) to achieve security parameter s. Dodis

and Wichs [DW09] improved the number of rounds to 2 but did not improve the

entropy loss. Chandran, Kanukurthi, Ostrovsky, and Reyzin [CKOR10] improved

the entropy loss to O(s) but the number of rounds remained O(s). On the other

hand, it was shown in [DW09] that non-constructively there exists a 2-round protocol

with entropy loss O(s). We also note that all the results above assume that each

party has access to local uniform random bits.

Here we give two improvements over previous results. First, we show how to

construct a privacy amplification protocol even if Alice and Bob only have access to

local weak random sources, while all previous results assume that they have access to

local uniform random bits. Second, In the case where Alice and Bob have access to

local uniform random bits, we give protocols that improve various parameters, such

as round complexity and entropy loss.

7.1 Some Previous Results that We Need

For the results in this chapter, we need the following lemma.

Lemma 7.1.1. Assume we have 3 random variables X1, Y1, Y2 such that |Y1−Y2| ≤ ε.

Then there exists a random variable X2 with the same support of X1, such that

|(X1, Y1)− (X2, Y2)| ≤ ε.
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Proof. We construct the random variable X2 and the distribution (X2, Y2) as follows.

For any y, consider Pr[Y1 = y], Pr[Y2 = y] and the distribution (X1, Y1 = y). Let

δ = Pr[Y1 = y]− Pr[Y2 = y]. If δ ≥ 0, then we do the following:

1. Define an arbitrary order on the set of the support of X1.

2. While δ > 0, pick a new x from the support according to the above order and

let p = Pr[X1 = x, Y1 = y].

3. Let Pr[X2 = x, Y2 = y] = p−min(p, δ).

4. Let δ = δ −min(p, δ).

5. When δ = 0, for all the rest x, let Pr[X2 = x, Y2 = y] = Pr[X1 = x, Y1 = y].

If δ < 0, then we do the following:

1. Pick an arbitrary x from the support of X1 and let p = Pr[X1 = x, Y1 = y].

2. Let Pr[X2 = x, Y2 = y] = p− δ.

3. For all the other x in the support of X1, let Pr[X2 = x, Y2 = y] = Pr[X1 =

x, Y1 = y].

It is easy to see that the distribution (X2, Y2) has marginal distribution Y2 and

|(X1, Y1)− (X2, Y2)| = |Y1 − Y2| ≤ ε.
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We also need the definition of an interactive authentication protocol. In such

a protocol, Alice takes a message m as input and tries to authenticate the message

to Bob over the channel. Bob obtains message mB at the end of the protocol. We

now give the formal definition of such a protocol.

Definition 7.1.2. [KR09a, CKOR10] An interactive protocol (PA, PB) played by

Alice and Bob on a communication channel fully controlled by an active adversary

Eve, is a (k, `)-interactive authentication protocol if it satisfies the following properties

whenever H∞(W ) ≥ k:

1. Correctness. If Eve is passive, then Pr[mB = m] = 1.

2. Robustness. The probability that the following experiment outputs “Eve wins”

is at most 2−`: sample w from W ; let va, vb be the communication upon ex-

ecution of (PA, PB) with Eve actively controlling the channel, and let mB =

PB(w, vb, y). Output “Eve wins” if (mB 6= m ∧mB 6=⊥).

Again ` is called the security parameter of the protocol.

In [KR09a], it is shown an interactive authentication protocol can be used

to construct a privacy amplification protocol. Specifically, we have the following

theorem.

Theorem 7.1.3 ([KR09a]). Suppose there exists an efficient (k, `) interactive au-

thentication protocol for messages of length Θ(`+ log n), then there exits an efficient

(k, λk, 2
−`) privacy amplification protocol.
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7.2 Privacy Amplification with Local Weak Random Sources

In this section we construct protocols for privacy amplification where Alice

and Bob only have access to local weak random sources. We show that

1. Non constructively, we can do as good as if Alice and Bob have access to local

random bits. Specifically, if Alice and Bob have two independent (n, k) sources

and they share an independent (n, k) source, then there is a (possibly inefficient)

protocol that achieves privacy amplification up to security parameter Ω(k).

2. If Alice and Bob have two independent (n, (1
2

+ δ)n) sources and they share

an independent (n, k) source, then there is an explicit protocol that achieves

privacy amplification up to security parameter kΩ(1).

3. If Alice and Bob have two independent (n, δn) sources and they share an inde-

pendent (n, k) source, then there is an explicit protocol that achieves privacy

amplification up to security parameter Ω(log k).

Specifically, we have the following theorems.

Theorem 7.2.1. For all positive integers n, k where k > log(n), assume that Alice

and Bob have two independent local (n, k) sources, and they share an independent

(n, k) source W . Then non-constructively there exists a (k, k−O(log n+ log(1/ε)), ε)

privacy amplification protocol.

Theorem 7.2.2. For all positive integers n, k where k ≥ polylog(n) and any constant

0 < δ < 1, assume that Alice and Bob have two independent local (n, (1/2 + δ)n)
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sources, and they share an independent (n, k) source W . Then there exists an efficient

(k, k − kΩ(1), 2−k
Ω(1)

, 2−k
Ω(1)

) privacy amplification protocol.

Theorem 7.2.3. For all positive integers n, k where k ≥ polylog(n) and any constant

0 < δ < 1, assume that Alice and Bob have two independent local (n, δn) sources, and

they share an independent (n, k) source W . Then there exists an efficient (k, k −

kΩ(1), 1/poly(k), 1/poly(k)) privacy amplification protocol.

Our results are the first results to give protocols that achieve privacy amplifi-

cation when Alice and Bob only have access to local weak random sources.

7.2.1 Overview of the Constructions

Here what we do is to try to reduce the case to where Alice and Bob have access

to local private random bits. In other words, we want to design a protocol such that

at the end of the protocol, Alice and Bob end up with nearly private and random

bits, while their shared secret W still has a lot of entropy left. Non-constructively,

this is simple, because non-constructively there exists strong two-source extractors

for min-entropy as small as k > log n. If we have a strong two-source extractor, then

Alice and Bob just each applies this extractor to his or her own source and W . By the

property of the strong two-source extractor, even conditioned on W , their outputs

are close to uniform. Moreover, conditioned on W their outputs are deterministic

functions of their own sources, and are thus independent. Eve also knows nothing

about their outputs since all computations are private. Thus we are done. In another

case where Alice and Bob each has an independent source with entropy k = (1/2+δ)n,
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a construction of Raz [Raz05] serves as a strong two source extractor. Thus in this

case we have an explicit protocol.

The hard case is where Alice and Bob only have independent sources with

entropy k = δn. Our starting point here is how we can construct an extractor for these

three sources X, Y and W . In other words, let’s first forget about the communication

problem and see how we can get a 3-source extractor.

Since X has linear min-entropy, a standard approach would be to convert X

into a somewhere high entropy (say entropy rate 0.9) source X̄, using the condenser

based on the sum-product theorem [BKS+05, Zuc07]. X̄ is a matrix with a constant

number of rows such that at least one of the rows has entropy rate 0.9. Once we have

this, we can apply Raz’s extractor to each row of X̄ and W , and we get a somewhere

random source with a constant number of rows. Now we can extract from such a

source and an independent weak random source using the two-source extractor in

[BRSW06].

So now how do we use these ideas in the case where Alice and Bob are separated

by a channel controlled by an active adversary Eve? As a first step, we still convert

X and Y into somewhere high entropy (say entropy rate 0.9) sources X̄ and Ȳ with

D = O(1) rows. Next we apply Raz’s extractor to each row of X̄ and W , and each

row of Ȳ and W . Thus we get two somewhere random sources SRx and SRy. Note

that since Raz’s extractor is a strong two-source extractor, the random rows in SRx

and SRy are close to being independent of W . This is important for us.

Next, we have Alice authenticate a string to Bob. To do this, we want to use
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the authentication protocol we discussed in the previous section. However, now Alice

and Bob don’t have access to random bits. The important observation here is that

they have somewhere random sources. In particular, the random rows of SRx and

SRy can be used as seeds for a strong seeded extractor in the authentication protocol

(since they are independent of W ). Of course we don’t know which row is the random

row, thus we take a slice from the somewhere random sources with small width (so

that X and Y don’t lose much entropy) and use these slices in the authentication

protocol. We call these slicesX1 and Y1. How do we use them? We have Alice and Bob

announce their slices to each other and each time they communicate, they compute

prefixes of the outputs of an extractor. They then check if the prefixes they received

match the prefixes they compute locally. Only this time we apply the extractor to W

using each row of the slice as a seed. Thus the output of the extractor is also a matrix

of D rows. Since the random row of the slice is close to being independent of W , the

output of the extractor is also somewhere random. Next, we increase the length of the

prefix by a factor of 2D, because each time Alice or Bob reveals a matrix of D rows.

Now it can be shown that to answer a challenge, Eve has to come up with the random

row in the output of the extractor, whose length is larger than the total number of

bits revealed so far. Therefore Eve can only succeed with a small probability. Given

this protocol, Alice uses it to send another small slice of SRx to Bob, and Bob uses

this slice to extract random bits from his own source. We call this slice X2.

There are two problems with the above discussion. First, the small slice X2

sent by Alice may not be independent of W or the random row of the extractor

output. Second, since each time the length of the prefix increases by a factor of 2D
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and each time we want fresh entropy in the extractor output, Alice can only send

α log k bits with some α < 1, where k is the entropy of W . With this small number

of bits it’s not clear how Bob can extract random bits from his own source.

For the first problem, we show that although the small slice X2 sent by Alice

may not be independent of W or the random row of the extractor output, with high

probability over the fixings of X2, the random row of the extractor output has very

high min-entropy. This is mainly because the length of X2 is very small compared

to the extractor output. Thus a typical fixing of it doesn’t reduce the entropy of

the random row of the extractor output by much. Now we can show that with

correct parameters, the high min-entropy row of the extractor output still suffices for

authentication. Thus for a typical value of the small slice, the success probability of

Eve changing it is still small. Note now Eve may be able to actually change a small

probability mass of the slice sent by Alice, but that doesn’t hurt us much. This is

different from the case where Alice and Bob have local random bits. For the second

problem, luckily Bob also has a somewhere random source SRy. Thus we can take a

small slice Y2 of SRy so that the two-source extractor from [BRSW06] can be used

to extract random bits from these two sources.

Now suppose that Bob correctly received the small slice X2 sent by Alice, and

Bob takes a small slice Y2 of his somewhere random source. Let the output of the

[BRSW06] extractor be R. We first fix W and now X2 and Y2 are deterministic func-

tions of X and Y respectively, and are thus independent. Moreover X2 is somewhere

random. Thus R is close to uniform. Furthermore, since the two source extractor

from [BRSW06] is strong, we can now fix Y2 and conditioned on this fixing, R is still
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close to uniform. Now R is a deterministic function of X. Note that now all strings

revealed by Bob are functions of Y1 and X1 (since W is fixed), and Y1 is a determin-

istic function of Y and has small size. Thus we can further fix Y1 and conditioned on

this fixing, R is still close to uniform and is independent of Y . Moreover Y has a lot of

entropy left and all the strings revealed by Bob are now deterministic functions of X1.

Therefore now we can apply a strong seeded extractor to Y and R and Bob obtains

Sy. Note that we can condition on R and Sy is still close to uniform by the strong

extractor property. Now Sy is a deterministic function of Y and is thus independent

of all the transcripts revealed so far, and X. Thus Bob has obtained random bits

that are close to uniform and private.

We actually cheated a little bit above, because again the size of R is very

small compared to Y . Thus we won’t be able to apply a seeded extractor to Y and R.

However we can fix this problem by taking a slice Y3 of SRy. The size of Y3 is much

larger compared to the length of the transcript, but much smaller compared to Y . It

is actually a slice with width kΩ(1) (R will have size Ω(log k)). Since in the analysis

we fix W , Y3 is a deterministic function of Y , and the random row of Y3 still has a lot

of entropy left conditioned on the fixings of the transcript. Therefore we can apply

the strong seeded extractor to Y3 and R, and the above analysis about Bob obtaining

private random bits still holds.

By symmetry Alice can also take a slice X3 of SRx and apply a strong seeded

extractor to X3 and R, and the above argument would also work for Alice. Therefore

now Bob can use the authentication protocol to send R to Alice, and Alice applies

the extractor to X3 and R. By the same discussion above Eve may be able to change
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only a small probability mass of R, and this doesn’t hurt us much. Thus at the end

of the protocol Alice and Bob end up with nearly private and uniform random bits,

while their shared secret W still has a lot of entropy left. Thus we have reduced

the problem to the case where Alice and Bob have access to local uniform random

bits, and previous results can be used to construct a privacy amplification protocol.

However since we only manage to send Ω(log k) bits from Alice to Bob, the error of

the extractor and thus the security parameter of the protocol is Ω(log k).

7.2.2 The Constructions and the Analysis

In this section we present the protocols and the formal analysis.

7.2.2.1 Non Constructive Results

First we show that non-constructively, this can be done. In fact, we can

essentially reduce the problem to the case where Alice and Bob have local random bits.

First we have the following theorem, that can be easily proved by the probabilistic

method:

Theorem 7.2.4. (Two source extractor) For all positive integers n, k such that k >

log n, there exists a function TExt : {0, 1}n × {0, 1}n → {0, 1}m and 0 < ε < 1 such

that m = Ω(k), ε = 2−Ω(k) and if X, Y are two independent (n, k)-sources, then

|(X,TExt(X, Y ))− (X,Um)| ≤ ε

and

|(Y,TExt(X, Y ))− (Y, Um)| ≤ ε
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Now we have the following protocol.

Protocol NExtract(x, y, w):

• Alice has a weak random source X, Bob has an independent weak random

source Y , and they share an independent weak random source W . All these

sources have min-entropy k > polylog(n).

• Let TExt be the strong two source extractor from Theorem 7.2.4.

1. Alice and Bob each applies TExt to his or her own source and W .

2. Alice obtains Sx = TExt(X,W ) and Bob obtains Sy = TExt(Y,W ), each out-

putting Ω(k) bits.

Now we have the following theorem.

Theorem 7.2.5.

|(Sx, Sy,W )− (Ux, Uy,W )| ≤ 2−Ω(k),

where here (Ux, Uy) is the uniform distribution independent of W .

Proof. By Theorem 7.2.4 and a standard averaging argument, with probability 1−
√
ε

over the fixings of W , Sx is
√
ε-close to uniform, where ε = 2−Ω(k). Similarly, with

probability 1 −
√
ε over the fixings of W , Sy is

√
ε-close to uniform. Thus with

probability 1 − 2
√
ε over the fixings of W , both Sx and Sy are

√
ε-close to uniform.

Note that after fixing W , Sx is a function of X and Sy is a function of Y . Thus they
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are independent. Therefore with probability 1 − 2
√
ε over the fixings of W , (Sx, Sy)

is 2
√
ε-close to uniform. Thus we have

|(Sx, Sy,W )− (Ux, Uy,W )| ≤ 2−Ω(k).

Now all we need to do is to plug in the non-explicit optimal privacy amplifi-

cation in [DW09] to obtain Theorem 7.2.1.

7.2.2.2 Weak random sources with entropy rate > 1/2

Now we study a simple case where Alice and Bob’s weak random sources have

entropy rate > 1/2. In this case, we show that we can also reduce the problem to the

case where Alice and Bob have local random bits. The reason is that we have strong

two-source extractors for such sources, namely Raz’s extractor from Theorem 3.5.7.

First we have the following protocol.

Protocol ExtractH(x, y, w):

• Alice has a weak random source X, Bob has an independent weak random

source Y , and they share an independent weak random source W . Both X and

Y have min-entropy (1/2 + δ)n and W has min-entropy k > polylog(n).

• Let Raz be the strong two source extractor from Theorem 3.5.7.

1. Alice and Bob each applies Raz to his or her own source and W .
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2. Alice obtains Sx = Raz(X,W ) and Bob obtains Sy = Raz(Y,W ), each out-

putting Ω(k) bits.

Now we have the following theorem.

Theorem 7.2.6.

|(Sx, Sy,W )− (Ux, Uy,W )| ≤ 2−Ω(k),

where here (Ux, Uy) is the uniform distribution independent of W .

Proof. Essentially repeat the proof in the previous section.

Again, all we need to do now is to plug in any privacy amplification protocol

in [RW03, KR09a, DW09, CKOR10] to obtain Theorem 7.2.2.

7.2.2.3 Weak random sources with linear min-entropy

In this section we relax the assumption and only require Alice and Bob have

weak random sources with arbitrarily linear min-entropy. More specifically, we assume

that Alice and Bob each has a local (n, δn) source for some constant 0 < δ < 1. We

assume the shared source is an (n, k) source with k ≥ polylog(n). Actually we can

also deal with the case where the shared source has linear min-entropy but the local

weak sources only have poly logarithmic entropy. This case is quite similar, and thus

omitted.

The protocol

Here we give a protocol for Alice and Bob to extract private local random

bits. That is, in the end of the protocol, both Alice and Bob obtain local random bits
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that are close to uniform and independent of the shared weak random source, even

in Eve’s view. Moreover the shared weak source still has most of its entropy left.

We need the following definition about the slice of a concatenation of strings.

Definition 7.2.7. [Rao09] Given ` strings of length n, x = x1, · · · , x`, define Slice(x, s)

to be the string x′ = x′1, · · · , x′` such that for each i x′i is the prefix of xi of length s.

Now we can describe our protocol. In this protocol when a party is authenti-

cating a message to the other party, we do not use the error correcting code. Instead,

we just convert the message to a string with a fixed number of 1’s. One simple way to

do this is map each bit 0 to 01 and map each bit 1 to 10. Thus the number of 1’s in

the authenticated message is known to both parties before they execute the protocol.

Protocol Extract(x, y, w):

• Alice has a weak random source X, Bob has an independent weak random

source Y , and they share an independent weak random source W . Both X and

Y have min-entropy δn and W has min-entropy k > polylog(n).

• Let Zuc be the somewhere condenser from Theorem 3.5.3.

• Let Raz be the strong two source extractor from Theorem 3.5.7.

• Let SRGExt be the two source extractor from Theorem 3.5.11.

• Let Ext be a strong extractor as in Theorem 3.5.13.

• Let 0 < γ < 1 be some constant.
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1. Alice uses Zuc to convert X into a somewhere rate-.9 source X̄, with D rows for

some constant D > 1. Similarly Bob also converts Y into a somewhere rate-.9

source Ȳ with D rows.

2. Alice applies Raz to each row of X̄ and W and obtains a somewhere random

source SRx, with each row outputting kγ bits. Similarly Bob also applies Raz

to each row of Ȳ and W and obtains a somewhere random source SRy, with

each row outputting kγ bits.

3. Alice produces 3 strings: X1 = Slice(SRx, c log n), X2 = Slice(SRx, µ log k) and

X3 = Slice(SRx, k
β) for some parameters c > 1, 0 < µ < 1 and 0 < β < 1

to be chosen later. Bob also produces 3 strings: Y1 = Slice(SRy, c log n), Y2 =

Slice(SRy, µ log k) and Y3 = Slice(SRy, k
β).

4. Alice announces x1 to Bob and Bob announces y1 to Alice. Alice then computes

ry = Ext(w, y1) and Bob computes rx = Ext(w, x1), where the function Ext is

applied to w and each row of x1, y1, and each output string has length kγ.

5. Alice converts x2 to a string mx with a fixed number of 1’s. Let the length

of the string be t (note t = O(log k)). Alice then authenticates mx to Bob by

doing the following:

6. Define three set of integers as C1i = (4D)3i−2c log n,C2i = (4D)3i−1c log n,C3i =

(4D)3ic log n, where i = 1, · · · , 2t.

7. For i = 1 to t do (authenticate x2 to Bob):
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• Ifmxi = 0, Alice sends (0, Slice(ry, C1i)). Otherwise she sends (1, Slice(ry, C2i)).

• Bob receives the message and verifies Slice(ry, C1i) = Slice(Ext(w, y1), C1i)

in the 0 case and Slice(ry, C2i) = Slice(Ext(w, y1), C2i) in the 1 case. If the

verification does not go through, abort. Bob then sends Slice(rx, C3i) to

Alice.

• Alice receives the message and verifies Slice(rx, C3i) = Slice(Ext(w, x1), C3i).

8. When received t bits, Bob verifies that the number of ones in the received string

is wt(mx); aborts otherwise. Bob recovers x2 from mx.

9. Bob computes r3 = SRGExt(y2, x2), outputting Ω(log k) bits. Bob then com-

putes sy = Ext(y3, r3), outputting kΩ(1) bits.

10. Bob converts r3 to a string my with a fixed number of 1’s. The length of the

string is t′. Bob then authenticates my to Alice by doing the following:

11. For i = t+ 1 to t+ t′ do (authenticate r3 to Alice):

• Ifmy(i−t) = 0, Bob sends (0, Slice(rx, C1i)). Otherwise he sends (1, Slice(rx, C2i)).

• Alice receives the message and verifies Slice(rx, C1i) = Slice(Ext(w, x1), C1i)

in the 0 case and Slice(rx, C2i) = Slice(Ext(w, x1), C2i) in the 1 case. If the

verification does not go through, abort. Alice then sends Slice(ry, C3i) to

Bob.

• Bob receives the message and verifies Slice(ry, C3i) = Slice(Ext(w, y1), C3i).
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12. When received t′ bits, Alice verifies that the number of ones in the received

string is wt(my); aborts otherwise. Alice recovers r3 from my.

13. Alice computes sx = Ext(x3, r3), outputting kΩ(1) bits.

Analysis of the protocol

We claim that Sx and Sy can now be treated as local private random bits

of Alice and Bob. That is , they are close to being independent and uniform and

independent of W , even in Eve’s view. Specifically, we have the following theorem.

Theorem 7.2.8. Let V denote the transcript of the whole protocol in Eve’s view.

Then if Sx 6=⊥ and Sy 6=⊥ (the protocol doesn’t abort), we have

|(Sx, Sy,W, V )− (Ux, Uy,W, V )| ≤ 1/poly(k),

where here (Ux, Uy) is the uniform distribution independent of (W,V ). Moreover, with

probability 1− 2−k
Ω(1)

over the fixings of V = v, W has min-entropy k − kΩ(1).

Proof. Without loss of generality assume that the first row of X̄ and the first row of

Ȳ have entropy rate 0.9. Let the two rows be X̄1 and Ȳ1. Thus by Theorem 3.5.7 we

have

|(SRx1,W )− (Ux,W )| = 2−Ω(k)

and

265



|(SRy1,W )− (Uy,W )| = 2−Ω(k),

where SRx1 and SRy1 stand for the first rows of SRx and SRy respectively. Since

conditioned on any fixing of W = w, SRx1 and SRy1 are functions of X and Y and

are thus independent, we have

|(SRx1, SRy1,W )− (Ux, Uy,W )| = 2−Ω(k). (7.1)

Note that the length of r3 is less than the length of x2. Thus t′ < t and therefore

the protocol runs for at most 2t = O(log k) rounds. Also in the protocol Ext(W,X11)

and Ext(W,Y11) output at most (4D)6tc log n = kΩ(1) log n bits. We choose µ s.t. this

number is at most kγ, thus we have enough entropy in W for the outputs. Therefore

by Equation 7.1,

|(Ext(W,X11),Ext(W,Y11))− (U ′x, U
′
y)| = 2−Ω(k) + 1/poly(n) = 1/poly(n).

Note that now the random variable that Alice is trying to send to Bob, X2, and

the random variables X1, Y1 that have already been revealed, may not be (close to)

independent of (Ext(W,X11),Ext(W,Y11)). We first show in this case the probability

that Eve can successfully change a string x2 to a different string is small. To show

this, we have the following lemma.

Lemma 7.2.9. Assume that (Ext(W,X11),Ext(W,Y11)) is ε0-close to uniform. Let

X1 and Y1 be as in the protocol. Let M be any random variable with at most D log n
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bits and Alice uses the protocol to authenticate M to Bob. Then the probability that

Eve can successfully change a string m to a different string is bounded above by

1/poly(n) + ε0, where the probability is over M and the random variables used to

transfer M .

Proof. Let R̄x = Ext(W,X1), R̄y = Ext(W,Y1) and R̄x1, R̄y1 be the first rows of R̄x,

R̄y respectively. Thus R̄x1 = Ext(W,X11) and R̄y1 = Ext(W,Y11). Let Rx and Ry

be the actual random variables computed by Bob and Alice respectively. We want

to deal with the ideal case where R̄x1, R̄y1 is uniform instead of ε0-close to uniform.

Note that (M,X1, Y1, R̄x, R̄y, Rx, Ry) are all the random variables used by Alice to

authenticate M to Bob. Thus by Lemma 7.1.1 we first construct another distribution

(M ′, X ′1, Y
′

1 , R̄
′
x, R̄

′
y, R

′
x, R

′
y, R̄

′
x1, R̄

′
y1) where (R̄′x1, R̄

′
y1) is uniform and

|(M,X1, Y1, R̄x, R̄y, Rx, Ry, R̄x1, R̄y1)− (M ′, X ′1, Y
′

1 , R̄
′
x, R̄

′
y, R

′
x, R

′
y, R̄

′
x1, R̄

′
y1)| ≤ ε0.

From now on we will continue the discussion as if (M,X1, Y1, R̄x, R̄y, Rx, Ry, R̄x1, R̄y1) =

(M ′, X ′1, Y
′

1 , R̄
′
x, R̄

′
y, R

′
x, R

′
y, R̄

′
x1, R̄

′
y1). We can do this because in the analysis all we

use are the sizes of M ′, X ′1, Y
′

1 , R̄
′
x, R̄

′
y, R

′
x, R

′
y, R̄

′
x1, R̄

′
y1, which are the same as those

of M,X1, Y1, R̄x, R̄y, Rx, Ry, R̄x1, R̄y1 by Lemma 7.1.1. Thus the success probability

of Eve can only differ by at most ε0.

Now note that the length of m is at most D log n. Thus by Lemma 3.5.14 we

have
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Pr
M

[H∞(Ext(W,X11)|M = m) ≥ (4D)6tc log n−D log n−D log n] ≥ 1− 2−D logn.

That is,

Pr
M

[H∞(Ext(W,X11)|M = m) ≥ (4D)6tc log n− 2D log n] ≥ 1− 1/poly(n).

Similarly

Pr
M

[H∞(Ext(W,Y11)|M = m) ≥ (4D)6tc log n− 2D log n] ≥ 1− 1/poly(n).

We show that when m is a string s.t. both (Ext(W,X11)|M = m) and

(Ext(W,Y11)|M = m) have min-entropy at least (4D)6tc log n − 2D log n, the suc-

cess probability that Eve can change m without being detected is 1/poly(n). By the

union bound this happens with probability 1− 1/poly(n).

To see this, we first prove the following lemma.

Lemma 7.2.10. In order to change m to a different string, Eve has to come up with

at least one challenge.

Proof. To change m to a different string, Eve must take a series of operations. We

consider two cases.
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• Case 1: The operations that Eve made include insertion or deletion. In this case

the first such operation must incur a challenge. To see this, let j be the round

right before the insertion or deletion. Thus at the end of round j, Alice has

announced at most a total of DC2j +cD log n = C3j/4+cD log n bits. Similarly

Bob has announced at most a total ofDC3j+cD log n = C1(j+1)/4+cD log n bits.

If it’s an insertion, Eve has to come up with at least C1(j+1) = (4D)3j+1c log n

random bits to avoid detection, and we see that

C1(j+1) − (C3j/4 + cD log n)− (C1(j+1)/4 + cD log n)−D log n > 4cD log n.

If it’s a deletion, then Alice has announced at most a total of DC2(j+1) +

cD log n = C3(j+1)/4 + cD log n bits and Bob has announced a total of DC3j +

cD log n = C1(j+1)/4+ cD log n bits. Eve has to come up with at least C3(j+1) =

(4D)3j+3c log n random bits to avoid detection, and we see that

C3(j+1) − (C3(j+1)/4 + cD log n)− (C1(j+1)/4 + cD log n)−D log n > 4cD log n.

• Case 2: The operations that Eve made do not include insertion or deletion. In

this case, since the number of 1’s in the message is known to Bob, Eve must

make at least one operation of changing 0 to 1 and at least one operation of

changing 1 to 0. Then the operation of changing 0 to 1 will incur a challenge.

To see this, let j be the current round(since Eve does not make operations of

insertion and deletion, the round number is the same for Alice, Bob and Eve).
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Thus now Alice has announced a total of DC1j + cD log n = C2j/4 + cD log n

bits while Bob has announced a total of DC3(j−1) + cD log n = C1j/4 + cD log n

bits. Eve has to come up with at least C2j = (4D)3j−1c log n random bits to

avoid detection, and we see that

C2j − (C2j/4 + cD log n)− (C1j/4 + cD log n)−D log n > 4cD log n.

Now let j be the round that Eve has to answer the first challenge. Let Bj

stand for the random variable of all the strings that have been revealed by Alice and

Bob till now, and let lb be the length of the string bj. Let Aj denote the random

variable that Eve is trying to come up with, and let la be the length of the string a.

Thus we have just shown that la ≥ lb + 4cD log n.

Since both Ext(W,X11)|M = m) and Ext(W,Y11)|M = m) have min-entropy at

least (4D)6tc log n−2D log n, A has min-entropy la−2D log n. Thus by Lemma 3.5.14,

Pr
B

[H∞(A|B = b) ≥ la − 2D log n− lb −D log n] ≥ 1− 2−D logn.

Thus

Pr
B

[H∞(A|B = b) ≥ D log n] ≥ 1− 1/poly(n).
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Therefore the probability that Eve can successfully change the string is bounded

from above by 1/poly(n) + 2−D logn = 1/poly(n).

Thus, going back to the case where (Ext(W,X11),Ext(W,Y11)) is ε0-close to

uniform, the success probability of Eve is bounded from above by 1/poly(n) + ε0.

Thus the success probability of Eve changing x2 to a different string is bounded

from above by 1/poly(n) + 1/poly(n) = 1/poly(n). Note this probability is also over

X2. By a standard averaging argument, with probability 1− 1/poly(n) over X2, the

success probability of Eve changing x2 to a different string is at most 1/poly(n).

Now Bob obtains a random variable X ′2. Note that X ′2 is not exactly X2 since

Eve may be able to change X2 for a probability mass of ε = 1/poly(n). Assume for

now that Bob obtains X2 instead of X ′2. Now we fix W = w. Note that after this

fixing, X1, X2 are functions of X and Y1, Y2 are functions of Y . By Theorem 3.5.7,

with probability 1 − 2−Ω(k) over the fixings of W = w, X2 is 2−Ω(k)-close to being a

somewhere random source, and so is Y2. Moreover X2 and Y2 are independent. Thus

by Theorem 3.5.11, we have that for a typical fixing of W = w,

|(X2, R3)− (X2, Um)| < ε1 (7.2)

and

|(Y2, R3)− (Y2, Um)| < ε1, (7.3)

where ε1 = 2−Ω(k) + 2−Ω(log k) = 1/poly(k).
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We then further fix Y2 = y2. By Equation 7.3 with probability 1 − √ε1 over

the fixings of Y2 = y2, R3 is
√
ε1-close to uniform. Further note that after this fixing

R3 is a deterministic function of X, and Y1 is a deterministic function of Y . Thus

we can further fix Y1 = y1 and R3 is still
√
ε1-close to uniform. Note that y1 has

length cD log n and Y3 has min-entropy kβ. Thus by Lemma 3.5.14 we have that with

probability 1− 1/poly(n) over the fixings of Y1 = y1, Y3 has min-entropy 0.9kβ. Thus

we have shown that

[Condition 1] With probability 1−2−Ω(k)−√ε1−1/poly(n) = 1−1/poly(k)

over the fixings of W = w, Y2 = y2, Y1 = y1, R3 is
√
ε1-close to uniform, Y3 has

min-entropy kβ and R3 and Y3 are independent.

Now let’s consider the case where Bob obtains X ′2 instead of X2 and Bob

computesR′3 instead ofR3. Note that Eve can only change a ε = 1/poly(n) probability

mass of X2. For a fixed W = w, Y1 = y1(note that y2 is a slice of y1), let Ew,y1 denote

the event that Eve changes a
√
ε probability mass of X2|(W = w, Y1 = y1). By a

standard averaging argument we have

Pr
W,Y1

[Ew,y1 ] ≤
√
ε.

Now consider a typical fixing of W = w, Y1 = y1 where the event Ew,y1 does

not happen and Condition 1 holds. This happens with probability 1− 1/poly(k)−
√
ε = 1 − 1/poly(k). Note since Condition 1 holds, after this fixing R3 and Y3 are

independent and R3 is a deterministic function of X2 (and X). Now Eve can change

a probability mass of
√
ε here, but all strings revealed by Bob are fixed and W
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are fixed. Thus whatever Eve does, the resulting R′3 is a function of X and is still

independent of Y3. Moreover since Eve can only change a probability mass of
√
ε, R′3

is
√
ε1 +
√
ε = 1/poly(k)-close to uniform. Therefore we have shown that

[Condition 2] With probability 1−1/poly(k) over the fixings of W = w, Y2 =

y2, Y1 = y1, R′3 is 1/poly(k)-close to uniform, Y3 has min-entropy 0.9kβ and R′3 and

Y3 are independent.

Therefore by the property of the strong extractor Ext, we have

|(Sy, R′3)− (U,R′3)| < 1/poly(k).

Note that we have fixed W = w, Y2 = y2, Y1 = y1, and we can now further fix

R′3 = r′3. After this fixing Sy is just a function of Y and is independent of X. Thus

we have fixed all possible information that Eve could know about Y and Sy is still

close to uniform. Therefore Sy can be treated as local private random bits of Bob.

Now again by Lemma 7.2.9 Bob can authenticate R′3 to Alice such that Eve

can only successfully change a probability mass of ε = 1/poly(n) of R′3. Suppose Alice

obtains R′′3. Now we fix W = w and let Ew stand for the event that Eve changes a
√
ε probability mass of X2|(W = w). By a standard averaging argument we have

Pr
W

[Ew] ≤
√
ε.

Now for a typical fixing of W = w where both X2 and Y2 are close to a some-

where random source and Eve changes less than a
√
ε probability mass ofX2|(W = w),
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X2 is a function of X, Y2 is a function of Y and are thus independent. By Equation 7.2

with probability 1−√ε1 over the fixings of X2 = x2, R3 is
√
e1-close to uniform. Thus

for a further typical fixing of X2 = x2 where X2 is not changed by Eve and R3 is close

to uniform, R3(and R′3) is a function of Y and is independent of X. Therefore we can

further fix X1 = x1 and R′3 is still close to uniform. Note that x1 has length cD log n

and X3 has min-entropy kβ. Thus by Lemma 3.5.14 we have that with probability

1− 1/poly(n) over the fixings of X1 = x1, X3 has min-entropy 0.9kβ.

Now Eve can change a ε = 1/poly(n) probability mass of R′3. Let Ew,x2 stand

for the event that Eve changes a
√
ε probability mass of R′3|(W = w,X2 = x2). By a

standard averaging argument we have

Pr
W,X2

[Ew,x2 ] ≤
√
ε.

Thus for a typical fixing of (W = w,X2 = x2), Eve changes less than
√
ε

probability mass of R′3|(W = w,X2 = x2). Since now all strings revealed by Alice

and W are fixed, no matter what Eve does, the resulting R′′3 is a function of Y and

is still independent of X3. Moreover since Eve can only change a probability mass

of
√
ε, R′′3 is

√
ε1 +

√
ε = 1/poly(k)-close to uniform. Note the probability of typical

fixings of (W = w,X2 = x2) is at least 1 −
√
ε − √ε1 −

√
ε −
√
ε = 1 − 1/poly(k).

Therefore we have shown that

[Condition 3] With probability 1−1/poly(k) over the fixings of W = w,X2 =

x2, X1 = x1, R′′3 is 1/poly(k)-close to uniform, X3 has min-entropy 0.9kβ and R′′3 and

X3 are independent.
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Therefore by the property of the strong extractor Ext, we have

|(Sx, R′′3)− (U,R′′3)| < 1/poly(k).

Note that we have fixed W = w,X2 = x2, X1 = x1, and we can now further

fix R′′3 = r′′3 . After this fixing Sx is just a function of X and is independent of Y , and

is thus also independent of Sy (which now is a function of Y ). Thus we have fixed all

possible information that Eve could know about X and Sx is still close to uniform.

Therefore Sx can be treated as local private random bits of Bob.

Therefore, we have eventually shown that

|(Sx, Sy, X1, Y1,W )− (Ux, Uy, X1, Y1,W )| ≤ 1/poly(k).

Note that now the entire transcript V up till now is a deterministic functions

of W,X1, Y1. Therefore we also have

|(Sx, Sy, V,W )− (Ux, Uy, V,W )| ≤ 1/poly(k).

Note that the transcript has length at most kγ. Therefore by Lemma 3.5.14

with probability 1− 2−k
Ω(1)

over the fixings of the transcript, W still has min-entropy

at least k − kΩ(1). Thus the theorem is proved.

Now all we need to do is to plug in any privacy amplification protocol in

[RW03, KR09a, DW09, CKOR10] to obtain Theorem 7.2.3.
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7.3 Privacy Amplification with Local Uniform Random Bits

In this section we show how to improve previous results in various settings.

Our improvements rely on the construction of non-malleable extractors in Section 6.4.

Dodis and Wichs [DW09] showed that such extractors imply privacy ampli-

fication protocols with 2 rounds and optimal entropy loss. As a direct corollary of

Theorem 6.4.2 and the protocol of Dodis and Wichs, we obtain a 2-round protocol

for privacy amplification with optimal entropy loss, when the entropy rate is 1/2 +α

for any α > 0. This improves the significant entropy loss in the one-round protocols

of Dodis, Katz, Reyzin, and Smith [DKRS06] and Kanukurthi and Reyzin [KR08].

Next, we use our non-malleable extractor to give a constant-round privacy

amplification protocol with optimal entropy loss, when the entropy rate is δ for any

constant δ > 0. This significantly improves the round complexity of [KR09b] and

[CKOR10]. It also significantly improves the entropy loss of [DW09], at the price of

a slightly larger but comparable round complexity (O(1) vs. 2). Our result is stated

as follows.

Theorem 7.3.1. Under conjecture 3.2.2, for any constant 0 < δ < 1 and er-

ror 2−Ω(δn) < ε < 1/n, there exists a polynomial-time, constant-round (δn, δn −

O(log(1/ε)), ε)-secure protocol for privacy amplification. More specifically, the proto-

col takes number of rounds poly(1/δ), and achieves entropy loss poly(1/δ) log(1/ε).
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7.3.1 Overview of the Protocol for Privacy Amplification

We first describe Dodis and Wichs’ optimal two-round protocol using a non-

malleable extractor. The protocol also uses a cryptographic primitive: a one-time

message authentication code (MAC). Roughly speaking, a MAC uses a private uni-

formly random key R to produce a tag T for a message m, such that without knowing

the key, the probability that an adversary can guess the correct tag T ′ for another

message m′ 6= m is small, even given m and T .

Now assume that we have a non-malleable extractor nmExt that works for

any (n, k)-source X. Then there is a very natural two-round privacy amplification

protocol. In the first round Alice chooses a fresh random string Y and sends it to Bob.

Bob receives a possibly modified string Y ′. They then compute R = nmExt(X, Y ) and

R′ = nmExt(X, Y ′) respectively. In the second round, Bob chooses a fresh random

string W ′ and sends it to Alice, together with T ′ = MACR′(W
′) by using R′ as the

MAC key. Alice receives a possibly modified version (W,T ), and she checks if T =

MACR(W ). If not, then Alice aborts; otherwise they compute outputs Z = Ext(X,W )

and Z ′ = Ext(X,W ′) respectively, where Ext is a seeded strong extractor.

The analysis of the above protocol is also simple. If Eve does not change Y ,

then R = R′ and is (close to) uniform. Therefore by the property of the MAC the

probability that Eve can change W ′ without being detected is very small. On the

other hand if Eve changes Y , then by the property of the non-malleable extractor, one

finds that R′ is (close to) independent of R. Thus in this case, again the probability

that Eve can change W ′ without being detected is very small. In fact, in this case

Eve cannot even guess the correct MAC for W ′ with a significant probability.
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The above protocol is nice, except that we only have non-malleable extractors

for entropy rate > 1/2. As a direct corollary this gives our 2-round privacy amplifica-

tion protocol for entropy rate > 1/2. To get a protocol for arbitrary positive entropy

rate, we have to do more work.

We start by converting the shared weak random source X into a somewhere

high min-entropy rate source. The conversion uses recent condensers built from sum-

product theorems. Specifically, any n-bit weak random source with linear min-entropy

can be converted into a matrix with a constant number of rows, such that at least

one row has entropy rate 0.9.1 Moreover each row still has Θ(n) bits. Note that since

Alice and Bob apply the same function to the shared weak random source, they now

also share the same rows.

Now it is natural to try the two-round protocol for each row and hope that

it works on the row with high min-entropy rate. More specifically, for each row i

we have a two round protocol that produces Ri, R
′
i in the first round and Zi, Z

′
i in

the second round. Now let g be the first row that has min-entropy rate 0.9. We

hope that Zg = Z ′g with high probability, and further that Zg, Z
′
g are close to uniform

and private. This is indeed the case if we run the two round protocol for each row

sequentially (namely we run it for the first row, and then the second row, the third

row, and so on), and we can argue as follows.

Assume the security parameter we need to achieve is s, so each of Ri, R
′
i has

O(log n+s) bits by the property of the MAC. As long as s is not too large, we can fix

1In fact, the result is (close to) a convex combination of such matrices. For simplicity, however,
we can assume that the result is just one such matrix, since it does not affect the analysis.
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all these random variables up to row g−1, and argue that row g still has min-entropy

rate > 1/2 (since each row has Θ(n) bits we can actually achieve a security parameter

up to s = Ω(n)). Note that we have essentially fixed all the information about X

that can be leaked to Eve. Therefore now for row g the protocol succeeds and thus

Zg = Z ′g with high probability, and Zg, Z
′
g are close to uniform and private.

However, we don’t know which row is the good row. We now modify the above

protocol to ensure that, once we reach the first good row g, for all subsequent rows

i, with i > g, we will have that Zi = Z ′i with high probability, and further Zi, Z
′
i are

close to uniform and private. If this is true then we can just use the output for the

last row as the final output.

To achieve this, the crucial observation is that once we reach a row i− 1 such

that Zi−1 = Z ′i−1, and Zi−1, Z
′
i−1 are close to uniform and private, then Zi−1 can be

used as a MAC key to authenticate W ′
i for the next row. Now if W ′

i = Wi for row

i, then Zi = Z ′i and Zi, Z
′
i will also be close to uniform and private. Therefore, we

modify the two-round protocol so that in the second round for row i, not only do

we use T ′i1 = MACR′i(W
′
i ) to authenticate W ′

i , but also we use T ′i2 = MACZ′i−1
(W ′

i ) to

authenticate W ′
i .

This would have worked given that Zi−1 = Z ′i−1, and Zi−1, Z
′
i−1 are close

to uniform and private, except for another complication. The problem is that now

T ′i1 = MACR′i(W
′
i ) could leak information about Zi−1 to Eve, so Zi−1 is no longer

private. Fortunately, there are known constructions of MACs that work even when

the key is not uniform, but instead only has large enough average conditional min-

entropy in the adversary’s view. Specifically, Theorem 7.3.3 indicates that the security
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parameter of this MAC is roughly the average conditional min-entropy of the key

minus half the key length, and the key length is roughly twice as long as the length

of the tag. Therefore, we can choose a small tag length for T ′i1 = MACR′i(W
′
i ), and a

large tag length for T ′i2 = MACZ′i−1
(W ′

i ). For example, if the tag length for T ′i1 is 2s,

and the tag length for T ′i2 is 4s, then the key length for T ′i2 is 8s. Thus the average

min-entropy of Zi−1 conditioned on T ′i1 is 8s − 2s = 6s, and we can still achieve a

security parameter of 6s− 4s = 2s.

Finally, the discussion so far implicitly assumed that Eve follows a natural

“synchronous” scheduling, where she never tries to get one party out-of-sync with

another party. To solve this problem, after each Phase i Bob performs a “liveness”

test, where Alice has to respond to a fresh extractor challenge from Bob to convince

Bob that Alice is still “present” in this round. This ensures that if Bob completes the

protocol, Alice was “in-sync” with Bob throughout. However, Eve might be able to

make Alice be out-of-sync with Bob, causing Alice to output a non-random key (and

Bob reject). To solve this last problem, we add one more round at the end which

ensures that Alice always outputs a random key (and Bob either outputs the same

key or rejects).

With this modification, the complete protocol is depicted in Figure 7.2. Essen-

tially, for the first good row, the property of the non-malleable extractor guarantees

that Eve cannot change W ′
g with significant probability. For all subsequent rows, by

using the output Z ′i−1 from the previous row as the MAC key, the property of the

MAC guarantees that Eve cannot change W ′
i with significant probability. Therefore,

the output for the last row can be used to authenticate the last seed of the extractor
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chosen by Alice (for the reason mentioned above) to produce the final output.

Finally, we note that our final protocol has O(1) rounds and achieves asymp-

totically optimal entropy loss is O(s+ log n), for security parameter s.

7.3.2 The Construction and the Analysis

First we need the definition of a MAC. One-time message authentication codes

(MACs) use a shared random key to authenticate a message in the information-

theoretic setting.

Definition 7.3.2. [KR09b] A function family {MACR : {0, 1}` → {0, 1}v} is a ε-

secure one-time MAC for messages of length ` with tags of length v if for any M ∈

{0, 1}` and any function (adversary) A : {0, 1}v → {0, 1}` × {0, 1}v,

Pr
R

[MACR(M ′) = T ′ ∧M ′ 6= M |(M ′, T ′) = A(MACR(M))] ≤ ε,

where R is the uniform distribution over {0, 1}n.

Theorem 7.3.3 ([KR09b]). For any message length d and tag length v, there exists

an efficient family of (dd
v
e2−v)-secure MACs with key length ` = 2v. In particular,

this MAC is ε-secure when v = log d+ log(1/ε).

More generally, this MAC is also enjoys the following security guarantee, even if Eve

has partial information E about its key R. Let (R,E) be any joint distribution. Then,

for all attackers A1 and A2,

Pr
(R,E)

[MACR(W ′) = T ′∧W ′ 6= W | W = A1(E), (W ′, T ′) = A2(MACR(W ), E)] ≤
⌈
d

v

⌉
2v−H∞(R|E).
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(In the special case when R ≡ U2v and independent of E, we get the original bound.)

Finally, we will also need to use any strong (k, ε)-extractor with with optimal

entropy loss O(log(1/ε)). In principle, the seed length d of such an extractor can be

sub-linear in the source length n, which will reduce the communication complexity of

our protocol. However, since our final protocol will also use a non-malleable extractor

nmExt, and our construction of the latter has linear-length seed, using a small-seed

for Ext will not result in any asymptotic savings in communication complexity. In

particular, we might as well use extremely simple extractors from the leftover hash

lemma, having optimal entropy loss 2 log(1/ε) and a linear-length seed.

Case of k > n/2 Given a security parameter s, Dodis and Wichs showed that a

non-malleable extractor which extracts at least 2 log n + 2s + 4 number of bits with

error ε = 2−s−2 yields a two-round protocol for privacy amplification with optimal

entropy loss. The protocol is depicted in Figure 7.1.

Using the bound from Theorem 6.4.6 and setting ε = 2−s and m = s, we get

the following theorem.

Theorem 7.3.4. Under Conjecture 3.2.2 with constant c, for any s > 0 there is a

polynomial time computable (k, ε)-non-malleable extractor with m = s and ε = 2−s,

as long as k ≥ n/2 + (c/2) log n+ 4s+ b, where b is a large enough constant.

Using this theorem, we obtain the following.

Theorem 7.3.5. Under Conjecture 3.2.2 with constant c, there is a polynomial-time

two-round protocol for privacy amplification with security parameter s and entropy
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Alice: X Eve: E Bob: X

Sample random Y .
Y −−−−−−−→ Y ′

Sample random W ′.
R′ = nmExt(X;Y ′).
T ′ = MACR′(W

′).
Set final RB = Ext(X;W ′).

(W,T )←−−−−−−− (W ′, T ′)

R = nmExt(X;Y )
If T 6= MACR(W ) reject.
Set final RA = Ext(X;W ).

Figure 7.1: 2-round Privacy Amplification Protocol for H∞(X|E) > n/2.

loss O(log n + s), when the min-entropy k of the n-bit secret satisfies k ≥ n/2 +

(c/2 + 8) log n+ 8s+ b, where b is a large enough constant.

Case of k = δn Now we give our privacy amplification protocol for the case of

arbitrarily linear min-entropy.

Now we give our privacy amplification protocol for the setting whenH∞(X|E) =

k > δn. We assume that the error ε we seek satisfies 2−Ω(δn) < ε < 1/n. In the de-

scription below, it will be convenient to introduce an “auxiliary” security parameter

s. Eventually, we will set s = log(C/ε)+O(1) = log(1/ε)+O(1), so that O(C)/2s < ε,

for a sufficiently large O(C) constant related to the number of “bad” events we will

need to account for. We will need the following building blocks:

• Let Cond : {0, 1}n → ({0, 1}n′)C be a rate-(δ → 0.9, 2−s)-somewhere-condenser.

Specifically, we will use the one from Theorem 3.5.3, where C = poly(1/δ) =
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O(1), n′ = poly(δ)n = Ω(n) and 2−s � 2−Ω(δn).

• Let nmExt : {0, 1}n′×{0, 1}d′ → {0, 1}m′ be a (0.9n′, 2−s)-non-malleable extrac-

tor. Specifically, we will use the one from Theorem 7.3.4 (which is legal since

0.9n′ � n′/2 + O(log n′) + 8s + O(1)) and set the output length m′ = 4s) (see

the description of MAC below for more on m′.)

• Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k′, 2−s)-extractor with optimal

entropy loss k′ − m = O(s). Specifically, we will set k′ = k − (7C + 11)s =

k − O(s), which means that m = k − O(s) as well. We will use the notation

Exta..b(X;W ), where 1 6 a 6 b 6 m, to denote the sub-string of extracted bits

from bit position a to bit position b. We assume the seed length d 6 n (e.g.,

by using a universal hash function, but more seed-efficient extractors will work

too, reducing the communication complexity).

• Let MAC be the one-time, 2−s-secure MAC for d-bit messages, whose key length

`′ = m′ (the output length of nmExt). Using the construction from Theo-

rem 7.3.3, we set the tag length v′ = s + log d 6 2s (since d 6 n 6 1/ε 6 2s),

which means that the key length `′ = m′ = 2v′ 6 4s.

• Let lrMAC be the another one-time (“leakage-resilient”) MAC for d-bit mes-

sages, but with tag length v = 2v′ 6 4s and key length ` = 2v 6 8s. We will

later use the second part of Theorem 7.3.3 to argue good security of this MAC

even when v′ bits of partial information about its key is leaked to the attacker.

To not confuse the two MACs, we will use Z (instead of R) to denote the key

of lrMAC and L (instead of T ) to denote the tag of lrMAC.
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Using the above building blocks, the protocol in given in Figure 7.2. To emphasize

the presence of Eve, we will use ‘prime’ to denote all the protocol values seen or

generated by Bob; e.g., Bob picks W ′
1, but Alice sees potentially different W1, etc.

Also, for any random variable G used in describing our protocol, we use the notation

G =⊥ to indicate that G was never assigned any value, because the party who was

supposed to assign G rejected earlier. The case of final keys RA and RB becomes a

special case of this convention.

Our protocol proceeds in C + 1 Phases. During the first C Phases, we run C

sequential copies of the two-round protocol for the entropy-rate greater than 1/2 case

(see Figure 7.1), but use the derived secret Xi (output by the somewhere-condenser)

instead of X during the i-th run. Intuitively, since one of the values Xi is expected to

have entropy rate above 1/2, we hope that the key Zi extracted in this Phase is secret

and uniform. However, there are several complications we must resolve to complete

this template into a secure protocol.

The first complication is that Eve might not choose to execute its run with

Alice in a “synchronous” manner with its execution with Bob. We prevent such

behavior of Eve by introducing “liveness tests”, where after each Phase Alice has

to prove that she participated during that Phase. Such tests were implicit in the

original paper of Renner and Wolf [RW03], and made explicit by Khanakurthi and

Reyzin [KR09b]. Each liveness test (except for the last one in Phase C + 1, to be

discussed) consists of Bob sending Alice a seed W ′
i for the extractor Ext (which is

anyway sent during the i-th Phase), and Alice responding with the first s bits of the

extracted output. Intuitively, although Eve may choose to maul the extracted seed
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Alice: X Eve: E Bob: X

(X1, . . . XC) = Cond(X). Phase 1 (X1, . . . XC) = Cond(X).
Sample random Y1.

Y1 −−−−−−−→ Y ′1

Sample random W ′1.
R′1 = nmExt(X1;Y ′1).
T ′1 = MACR′1(W ′1).

(W1, T1)←−−−−−−− (W ′1, T
′
1)

R1 = nmExt(X1;Y1)
If T1 6= MACR1(W1) reject.
Z1 = Exts+1..s+`(X;W1).

Phases 2..C
For i = 2 to C For i = 2 to C

Sample random Yi. Sample random W ′i .
Si−1 = Ext1..s(X;Wi−1).

(Si−1, Yi) −−−−−−−→ (S′i−1, Y
′
i )

If S′i−1 6= Ext1..s(X;W ′i−1) reject.
Z ′i−1 = Exts+1..s+`(X;W ′i−1).
L′i = lrMACZ′i−1

(W ′i ).

R′i = nmExt(Xi;Y
′
i ).

T ′i = MACR′i(W
′
i ).

(Wi, Ti, Li)←−−−−−−− (W ′i , T
′
i , L
′
i)

If Li 6= lrMACZi−1(Wi)
reject.
Ri = nmExt(Xi;Yi).
If Ti 6= MACRi(Wi)

reject.
Zi = Exts+1..s+`(X;Wi).

EndFor EndFor

Phase C + 1

Re-assign
ZC = Ext1..m′(X;WC). Z ′C = Ext1..m′(X;W ′C)
Sample random WC+1.
SC = MACZC (WC+1)

(SC ,WC+1) −−−−−−−→ (S′C ,W
′
C+1)

If S′C 6= MACZ′C (W ′C+1) reject.

Set final Set final
RA = Ext(X;WC+1). RB = Ext(X;W ′C+1).

Figure 7.2: (2C + 1)-round Privacy Amplification Protocol for H∞(X|E) > δn.
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(which might be possible for all Phases, where the entropy rate of Xi is below 1/2),

Eve cannot predict the correct output without asking Alice something. And since

Bob does uses a new liveness test between every two Phases, this effectively forces

Eve to follow a natural “synchronous” interleaving between the left and the right

executions.

The second complication comes from the fact that after a “good” (rate above

1/2) Phase i is completed, the remaining phases might use low-rate sourcesXi+1, . . . , XC .

Hence, one needs a mechanism to make sure that once a good key is extracted in some

a-priori unknown phase, good keys will be extracted in future phases as well, even

if the remaining derived sources Xi have low entropy-rate. This is done by using a

second message authentication code lrMAC, keyed by a value Z ′i−1 extracted by Bob

in the previous Phase (i− 1), to authenticated the seed W ′
i sent in Phase i. The only

subtlety is that Bob still sends the original MAC of W ′
i , and this MAC might be cor-

related with the previous extracted key Zi−1 (especially if the Phase i uses “bad-rate”

Xi). Luckily, by using the “leakage-resilient” property of our second MAC (stated

in Theorem 7.3.3), and setting the parameters accordingly), we can ensure that Z ′i−1

has enough entropy to withstand the “leakage” of the original MAC of W ′
i .

The template above already ensures the robustness of the protocol, if we were

to extract the key ZC (or Z ′C for Bob) derived at the end of Phase C. Unfortunately, it

does not necessarily ensure that Alice outputs a random key (i.e., it does not guarantee

the extraction property for Alice). Specifically, by making Alice’s execution run faster

than Bob’s execution, it might be possible for Eve to make Alice successfully accept a

non-random seed WC , resulting in non-random key ZC . Intuitively, since all the Xi’s
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except for one might have low entropy rate, our only hope to argue security should

come from the non-malleability on nmExt in the “good” Phase i. However, since Bob

is behind (say, at Phase j < i) Alice during the good Phase i, Bob will use a wrong

source Xj for the non-malleable extractor, and we cannot use the non-malleability of

nmExt to argue that Eve cannot fool Alice into accepting a wrong seed Wi (and, then,

wrong Wi+1, . . . ,WC). Of course, in this case we know Bob will eventually reject, since

Eve won’t be able to answer the remaining liveness tests. However, Alice’s key ZC is

still non-random, violating extraction.

This is the reason for introducing the last Phase C+1. During this phase Alice

(rather than Bob) picks the last seed WC+1 and uses it to extract her the final key RA.

Therefore, RA is now guaranteed to be random. However, now we need to show how

to preserve robustness and Bob’s extraction. This is done by Alice sending the MAC

of WC+1 using they key ZC she extracted during the previous round. (We call this

MAC SC rather than TC+1, since it also serves as a liveness test for Alice during Phase

(C+1).) From the previous discussion, we know that, with high probability, (a) either

ZC is non-random from Eve’s perspective, but then Bob will almost certainly reject

(ensuring robustness and preserving Bob’s extraction); or (b) ZC = Z ′C is random

and secret from Eve, in which case the standard MAC security suffices to ensure both

robustness and Bob’s extraction.

We detail the formal proof following the above intuition in the next section,

which also establishes the desired parameters promised by Theorem 7.3.1.
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7.3.2.1 Security Proof of Our Protocol (Proof of Theorem 7.3.1)

We start by noticing that our protocol takes 2C+1 = poly(1/δ) = O(1) rounds

and achieves entropy loss k −m = O(Cs) = O(poly(1/δ) log(1/ε)), as claimed. Also,

the protocol obviously satisfies the correctness requirement.

We will also assume that the side information E is empty (or fixed to a con-

stant), since by Lemma 2.3.16, with probability 1 − 2−s, H∞(X|E = e) > δn − s,

which will not affect any of our bounds. Before proving robustness and extraction

properties of our protocol, we start with the following simple observation.

Lemma 7.3.6. Let E ′ be Eve’s view at the end of her attack (without the keys RA and

RB used in the post-application robustness experiment). Then, for any deterministic

functions f and g, we have

H∞(f(X) | g(E ′)) > H∞(f(X))− (7C − 3)s

In particular, recalling that k′ = H∞(X) − (7C + 11)s, we have H∞(X|g(E ′)) >

k′ + 14s.

Proof. Clearly, if it sufficient to prove the claim for g being identity, as it gives the

predictor the most information to guess f(X). Also notice that, at best, if neither

party rejects, Eve’s view E ′ = (~Y , ~S, ~W ′, ~T ′, ~L′,WC+1), where ~Y = {Y1, . . . , YC},
~S = {S1, . . . , SC}, ~W ′ = {W ′

1, . . . ,W
′
C}, ~T ′ = {T ′1, . . . , T ′C} and ~L′ = {L′2, . . . , L′C}.

Since ~Y , ~W ′ and WC+1 are independent of X (and, thus, f(X)), using Lemma 2.3.17

289



and recalling |Si| = s for i < C, |SC | = |T ′i | = v′ 6 2s, |L′i| = v 6 4s, we have

H∞(f(X)|E ′) > H∞(f(X)|(~Y , ~W ′,WC+1))− |~S| − | ~T ′| − |~L′|

= H∞(f(X))− (C − 1)s− v′ − Cv′ − (C − 1)v

> H∞(f(X))− (C − 1)s− 2(C + 1)s− (C − 1)4s

= H∞(f(X))− (7C − 3)s

Next, we will argue the extraction property for Alice.

Lemma 7.3.7.

∆((RA, E
′), (purify(RA), E ′)) 6 2−s+1

Proof. Since purify(RA) = RA when Alice rejects (i.e., RA =⊥), it is sufficient to show

that Alice’s key is close to uniform conditioned on Alice not rejecting, i.e.

∆((Ext(X;WC+1), E ′), (Um, E
′)) 6 2−s+1 (7.4)

By Lemma 7.3.6, H∞(X|E ′) > k′ + 14s. Using Lemma 2.3.16, we get that

Pr
e′←E′

[H∞(X|E ′ = e′) > k′] > 1− 2−s.

Since Ext is (k′, 2−s)-extractor, Equation (7.4) immediately follows the trian-

gle inequality and the security of the extractor, by conditioning on whether or not

H∞(X|E ′ = e′) > k′.
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Next, we notice that in order to violate either robustness of Bob’s extraction,

Eve must make Bob accept (i.e., RB 6=⊥). Therefore, we start by examining how

Eve might cause Bob to accept. Notice, since Alice sends C + 1 messages, including

the first and the last message, Eve can make C + 1 calls to Alice, which we call

Alice1, . . . , AliceC+1, where, for each call Alicei, 1 6 i 6 C + 1, Eve gets back the

message sent by Alice during Phase i. Additionally, Alice also computes her key

RA in response to AliceC+1 (and gives RA to Eve, in addition to SC and WC+1,

for post-application robustness). Similarly, Eve can also make C + 1 calls to Bob,

denoted Bob1, . . . , BobC+1, where each call Bobi expects as input the message that

Alice supposedly sent to Bob in Phase i. When i 6 C, Bob responds to such a

message with his own message in Phase i. When i = C + 1, Bob computes his key

RB (and gives RB to Eve for post-application robustness). Clearly, the (C + 1) calls

to Alice must be made in order, and the same the (C + 1) calls to Bob. However,

a malicious Eve might attempt to interleave the calls in some adversarial manner

to make Bob accept. We say that Eve is synchronous if he makes his oracle calls

in the (“synchronous”) order Alice1, Bob1, Alice2, Bob2, . . . , AliceC+1, BobC+1. We

notice that, without loss of generality, Eve always starts by making the Alice1() call,

since this call has no inputs Eve needs to provide. Namely, Eve must as well find

out the values Y1 first, and, if she wants, delay using this value until later. With this

convention in mind, we show that Eve must be synchronous in order to make Bob

accept.

Lemma 7.3.8.

Pr[RB 6=⊥ ∧ Eve is not synchronous] 6
3C

2s
(7.5)
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Proof. As we said, we assume Eve always makes the call Alice1 first. After that, Eve

makes C + 1 calls to Bob and C calls to Alice in some order. We claim that for

every 1 6 i 6 C, Eve must make at least one call to some Alicej in between two

successive calls Bobi and Bobi+1. If we show this (with total failure probability from

Equation (7.5)), Eve must be synchronous, since the synchronous scheduling is the

only scheduling that starts with Alice1 and has a fresh call to Alice between Bob1

and Bob2, Bob2 and Bob3, . . ., BobC and BobC+1.

Given 1 6 i 6 C, let Fi denote the event that Eve’s scheduling of calls made

two successive calls Bobi and Bobi+1 without a fresh call to some Alicej, and Bob

does not reject after the call Bobi+1. We claim that Pr[Fi] 6 3/2s. The bound from

Equation (7.5) then follows by simply taking the union bound over all i. We consider

two cases:

Case 1: 1 6 i < C. In this case, after the call Bobi(·, ·) is made, Bob picks a

fresh seed W ′
i , and returns it as part of the output. By assumption, Eve immediately

makes a call Bobi+1(S ′i, ·), without any intermediate calls to Alice, and Bob rejects

if S ′i 6= Ext1...s(X;W ′
i ). Thus, to establish our claim it is sufficient to show that

Pr[S ′i 6= Ext1...s(X;W ′
i )] 6 3/2s. Intuitively, the bound on Pr[Fi] now follows from

the fact that Ext is a good (strong) (k′, 2−s)-extractor, since, conditioned on Eve’s

information so far, the s-bit value Ext1...s(X;W ′
i ) is 2−s-close to random, and, hence,

cannot be predicted with probability better that 2−s + 2−s (the third 2−s is due to

Lemma 2.3.16, since our extractor is assumed to be worst case, and is not needed for

universal hash function extractors [DORS08]).

A bit more formally, let Ei be Eve’s view before the call to Bobi is made, and
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E ′i = (Ei,W
′
i , T

′
i , L

′
i) be Eve’s view after the call to Bobi is made. We notice that E ′i

is a deterministic function of E∗i = (Ei, Z
′
i−1, R

′
i) and W ′

i , since L′i = lrMACZ′i−1
(W ′

i )

and T ′i = MACR′i(Wi). Moreover, W ′
i is freshly chosen even conditioned on E∗i . Thus,

Pr[Fi] 6 Pr[Eve(E∗i ,W
′
i ) = Ext1..s(X;W ′

i )], where W ′
i is independent of (X,E∗i ). We

also note that H∞(X|Ei)) > k′ + 14s, by Lemma 7.3.6, since Ei is a function of

E ′. Thus, H∞(X|E∗i ) > H∞(X|Ei) − |Z ′i−1| − |R′i| > k′ + 14s − 4s − 8s = k′ + 2s.

Using Lemma 2.3.16, Pre∗i [H∞(X|E∗i = e∗i ) > k′] > 1− 2−s, and the rest follows from

the fact that in this case (W ′
i ,Ext1..s(X;W ′

i )) is 2−s-close to (W ′
i , Us), as mentioned

earlier.

Case 2: i = C. In this case, after the call BobC(·, ·) is made, Bob picks a

fresh seed W ′
C , and returns it as part of the output. By assumption, Eve immediately

makes a call Bobi+1(S ′C ,W
′
C+1), without any intermediate calls to Alice, and Bob

rejects if S ′C 6= MACZ′C (W ′
C+1), where Z ′C = Ext1...m′(X;W ′

i ). Thus, to establish our

claim it is sufficient to show that Pr[S ′C 6= MACZ′C (W ′
C+1)] 6 3/2s. Completely similar

to the previous case, we can argue that the value Z ′C used by Bob is 21−s-close to

Um′ conditioned on Eve’s view so far. Moreover, the 2−s-security of MAC ensures

that, when the key Z ′C is truly uniform, Eve cannot successfully forge a valid tag

MACZ′C (W ′
C+1) of any (even adversarially chosen) message W ′

C+1 with probability

greater than 2−s, completing the proof of this case as well.

Therefore, from now on we assume that Eve is indeed synchronous. Moreover,

since Eve must make Bob accept, we assume Eve finishes the both left and right

execution (with the last call to BobC+1, hoping that Bob will accept). Also, by Theo-

rem 3.5.3, we have that (X1, · · · , XC) is 2−Ω(δn)-close to a somewhere rate-0.9 source.
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Thus, we will ignore the error and think of (X1, · · · , XC) as indeed being a somewhere

rate-0.9 source, as it only adds 2−Ω(δn) � 2−s to the total probability of error. Also,

it is sufficient to show robustness and extraction for Bob properties assuming that

(X1, · · · , XC) is an elementary somewhere rate-0.9 source, since (X1, · · · , XC) is a

convex combination of elementary somewhere rate-0.9 sources. Hence, from now one

we assume that some “good” index 1 6 g 6 C satisfies H∞(Xg) > 0.9n′. We stress

that this index g is not known to Alice and Bob, but could be known to Eve. We start

by showing that, with high probability, Eve must forward a correct seed Wg = W ′
g to

Alice in the “good” Phase g.

Lemma 7.3.9. Assuming Eve is synchronous,

Pr[RB 6=⊥ ∧Wg 6= W ′
g] 6

3

2s
(7.6)

Proof. Let E ′g−1 be Eve’s view before the call to Aliceg. Note that Xg is a determin-

istic function of X, and (E ′g−1, Sg−1, L
′
g) is a deterministic function of Eve’s transcript

E ′. Thus, by Lemma 7.3.6,

H∞(Xg|(E ′g−1, Sg−1, L
′
g)) > H∞(Xg)− (7C − 3)s

> 0.9n′ − (7C − 3)s

= (n′/2 +O(log n′) + 8s+O(1)) + s− (0.4n′ −O(Cs+ log n))

> (n′/2 +O(log n′) + 8s+O(1)) + s

where the last inequality follows since n′ = poly(1/δ)n � O(Cs + log n)). By

Lemma 2.3.16, with probability 1 − 2−s over the fixings of E ′g−1, Sg−1, L
′
g, the min-

entropy of Xg conditioned on these fixings is at least n′/2 + O(log n′) + 8s + O(1).
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Notice also that the seed Yg is independent of E ′g−1, Sg−1, L
′
g. Moreover, for the argu-

ment in this lemma, we will “prematurely” give Eve the value L′g already after the call

to Aliceg (instead of waiting to get it from the call to Bobg). Let us now summarize

the resulting task of Eve in order to make Wg 6= W ′
g, and argue that Eve is unlikely

to succeed.

After the call to Aliceg, with high probability the min-entropy of Xg condi-

tioned on Eve’s view is greater than n′/2+O(log n′)+8s+O(1), so that we can apply

the non-malleability guarantees of nmExt given by Theorem 7.3.4. Alice then picks

a random seed Yg for nmExt and gives it to Eve. (Synchronous) Eve then forwards

some related seed Y ′g to Bobg (and another value S ′g−1 that we ignore here), and learns

some message W ′
g and the tag T ′g of W ′

g, under key R′g = nmExt(Xg;Y
′
g ) (recall, we

assume Eve already knows L′g from before). To win the game, Eve must produce a

value Wg 6= W ′
g and a valid tag Tg of Wg under the original key Rg = nmExt(Xg;Yg).

We consider two cases. First, if Eve sets Y ′g = Yg, then Rg = R′g is 2−s-

close to uniform by Theorem 7.3.4. Now, if Rg was truly uniform, by the one-time

unforgeability of MAC, the probability that Eve can produce a valid tag Tg of a new

message Wg 6= W ′
g is at most 2−s. Hence, Eve cannot succeed with probability more

that 2−s+1 even with Rg which is 2−s-close to uniform, implying the bound stated in

the lemma (since we also lost 2−s by using Lemma 2.3.16 at the beginning).

On the other hand, if Eve makes Y ′g 6= Yg, Theorem 7.3.4 implies that ∆((Rg, R
′
g),

(Um′ , R
′
g)) 6 2−s. Thus, the tag T ′g under R′g is almost completely useless in predict-

ing the tag of Wg under (nearly random) Rg. Therefore, by 2−s security of MAC, once

again the probability that Eve can successfully change W ′
g without being detected is
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at most 2−s+1 (giving again the final bound 3/2s).

Now, we want to show that, once Eve forwards correct Wg = W ′
g to Alice in

Phase g, Eve must forward correct seeds Wi = W ′
i in all future phases i = g+1, . . . , C.

We start by the following observation, which states that the derived keys Z ′i−1 used by

Bob in lrMAC look random to Eve whenever Eve forwards a correct key Wi−1 = W ′
i−1

to Alice.

Lemma 7.3.10. Assume Eve is synchronous, 2 6 i 6 C, and Eve forwards a correct

value Wi−1 = W ′
i−1 to Alice during her call to Alicei. Also, let Ei be Eve’s view after

the call to Alicei(Wi−1, ·, ·). Then

∆((Z ′i−1, Ei), (U`, Ei)) 6
3

2s
(7.7)

Proof. Notice that Ei = (Ei−1,W
′
i−1, T

′
i−1, L

′
i−1, Si−1, Yi), where Ei−1 is Eve’s view

after the call to Alicei−1. For convenience, we replace the two tags T ′i−1, L
′
i−1 of

W ′
i−1 by the corresponding MAC keys R′i−1, Z

′
i−2, respectively, since this gives Eve

only more information. Also, since Wi−1 = W ′
i−1, we know that the value Si−1 =

Ext1..s(X;Wi−1) = Ext1..s(X;W ′
i−1). Recalling that Z ′i−1 = Exts+1..s+`(X;W ′

i−1), and

denoting “side information” by E∗i = (Ei−1, R
′
i−1, Z

′
i−2, Yi), it is enough to argue

∆((E∗i ,W
′
i−1,Ext1..s(X;W ′

i−1),Exts+1..s+`(X;W ′
i−1)) , (E∗i ,W

′
i−1,Ext1..s(X;W ′

i−1), U`)) 6
3

2s

(7.8)

where we notice that E∗i is independent of the choice of random W ′
i−1. In turn, Equa-

tion (7.8) follows from the fact that Ext is (k′, 2−s)-extractor provided we can show

that H∞(X|E∗i ) > k + s. Indeed, the first error term 2−s comes from Lemma 2.3.16
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to argue that Pre∗i [H∞(X|E∗i = e∗i ) > k] > 1 − 2−s, and the other two error terms

follow from the triangle inequality and the security of the extractor (first time applies

on the first s extracted bits, and then on all s+ ` extracted bits).

So we show that H∞(X|E∗i ) > k + s.

H∞(X|E∗i ) = H∞(X|Ei−1, R
′
i−1, Z

′
i−2, Yi)

> H∞(X|Ei−1, Yi)− |R′i−1| − |Z ′i−2|

= H∞(X|Ei−1)−m′ − `

> k′ + 14s− 4s− 8s

= k′ + 2s

where the first inequality used Lemma 2.3.17, the second equality used the fact that

Yi is independent of (X,Ei−1), and the second inequality used Lemma 7.3.6, since

Ei−1 is deterministic function of E ′.

Next, we use Lemma 7.3.9 and Lemma 7.3.10 to show that, with high proba-

bility, Alice and Bob must agree on the same key ZC = Z ′C when they reach the last

Phase (C + 1).

Lemma 7.3.11. Assuming Eve is synchronous,

Pr[RB 6=⊥ ∧ ZC 6= Z ′C ] 6
4C

2s
(7.9)
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Proof. Since ZC = Ext1...m′(X;WC) and Z ′C = Ext1...m′(X;W ′
C), we get

Pr[RB 6=⊥ ∧ ZC 6= Z ′C ] 6 Pr[RB 6=⊥ ∧WC 6= W ′
C ]

6 Pr[RB 6=⊥ ∧ Wg 6= W ′
g] +

C∑
i=g+1

Pr[RB 6=⊥ ∧ Wi−1 = W ′
i−1 ∧ Wi 6= W ′

i ]

6
3

2s
+ (C − 1) ·max

i>g
Pr[RB 6=⊥ ∧ Wi−1 = W ′

i−1 ∧ Wi 6= W ′
i ]

where the second inequality states that in order for WC 6= W ′
C , either we must already

have Wg 6= W ′
g (which, by Lemma 7.3.9, happens with probability at most 3/2s), or

there must be some initial Phase i > g where Wi−1 = W ′
i−1 still, but Wi 6= W ′

i . Thus,

to establish Equation (7.9), it suffices to show that, for any Phase g < i 6 C,

Pr[RB 6=⊥ ∧ Wi−1 = W ′
i−1 ∧ Wi 6= W ′

i ] 6
4

2s
(7.10)

Intuitively, this property follows from the unforgeability of lrMAC, since Eve

must be able to forge a valid tag Li of Wi 6= W ′
i , given a valid tag of W ′

i (under the

same Zi−1 = Z ′i−1 since Wi−1 = W ′
i−1). The subtlety comes from the fact that Eve

also learns the v′-bit value T ′i = MACR′i(W
′
i ), which could conceivably be correlated

with the key Z ′i−1 for lrMAC. Luckily, since the tag length v of lrMAC is twice as large

as v′, Theorem 7.3.3 states that lrMAC is still unforgeable despite this potential “key

leakage”.

More formally, if Eve forwards a correct value Wi−1 = W ′
i−1, both Alice and

Bob use the same key Z ′i−1 = Zi−1 = Exts+1..s+`(X;W ′
i−1) to lrMAC during Phase i.

Moreover, by Lemma 7.3.10, we know that this key Zi−1 looks random to Eve right

before the call to Bobi: ∆((Z ′i−1, Ei), (U`, Ei)) 6
3
2s

, where Ei is Eve’s view after the
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call to Alicei(Wi−1, ·, ·). After the call to Bobi, Eve learns the tag L′i of W ′
i , and

also a v′-bit value T ′, which, for all we know, might be correlated with the key Z ′i−1.

Therefore, to argue the bound in Equation (7.10), it is sufficient to argue that Eve

can succeed with probability at most 2−s in the following “truncated” experiment.

After the call to Alicei, the actual key Z ′i−1 is replaced by uniform Z∗i−1 ← U`. Then

a random message W ′
i is chosen, its tag L′i is given to Eve, and Eve is also allowed to

obtain arbitrary v′ bits of information about Z∗i−1. Eve succeeds if she can produce

a valid tag Li (under Z∗i−1) of a different message Wi 6= W ′
i . This is precisely the

precondition of the second part of Theorem 7.3.3, where H∞(Z∗i−1|E) > ` − v′ =

2v − v/2 = 3v/2. Hence, Eve’s probability of success is at most d2v−3v/2 = d2−v/2 =

d2−v
′
6 2−s.

We need one more observation before we can finally argue Bob’s extraction and

robustness. Namely, at the end of Phase C, (synchronous) Eve has almost no informa-

tion about the authentication key Z ′C used by the Bob (and Alice, by Lemma 7.3.11)

in the final Phase C + 1.

Lemma 7.3.12. Assume Eve is synchronous, and let E ′C be Eve’s view after the call

to BobC. Then

∆((Z ′C , E
′
C | RB 6=⊥), (Um′ , E

′
C | RB 6=⊥)) 6

2

2s
(7.11)

Additionally, H∞(X|(E ′C , Z ′C)) > k′ + 10s.

Proof. The proof is similar to, but simpler than, the proof of Lemma 7.3.10. We notice

that E ′C = (EC ,W
′
C , T

′
C , L

′
C), where EC is Eve’s view after the call to AliceC . For
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convenience, we replace the two tags T ′C , L
′
C of W ′

C by the corresponding MAC keys

R′C , Z
′
C−1, respectively, since this gives Eve only more information. Recalling that

Z ′C = Ext1..m′(X;W ′
C), and denoting “side information” by E∗C = (EC , R

′
C , Z

′
C−1), it

is enough to argue

∆((E∗C ,W
′
C ,Ext1..m′(X;W ′

C)) , (E∗C ,W
′
C , Um′)) 6

2

2s
(7.12)

where we notice that E∗C is independent of the choice of random W ′
C . In turn, Equa-

tion (7.12) follows from the fact that Ext is (k′, 2−s)-extractor provided we can show

that H∞(X|E∗C) > k + s, where the extra error term 2−s comes from Lemma 2.3.16

to argue that Pre∗C [H∞(X|E∗C = e∗C) > k] > 1− 2−s.

So we show that H∞(X|E∗C) > k + s.

H∞(X|E∗C) = H∞(X|EC , R′C , Z ′C−1)

> H∞(X|EC)− |R′C | − |Z ′C−2|

= H∞(X|EC)−m′ − `

> k′ + 14s− 4s− 8s

= k′ + 2s

where the first inequality used Lemma 2.3.17, and the second inequality used Lemma 7.3.6,

since EC is deterministic function of E ′.

The final claim H∞(X|(E ′C , Z ′C)) > k′ + 10s follows from Lemma 2.3.17 and

fact that H∞(X|E ′C) > k′ + 14s (Lemma 7.3.6) and |Z ′C | = m′ 6 4s.

Lemma 7.3.11 and Lemma 7.3.12 imply that, in order for the synchronous Eve

to have a non-trivial chance to make Bob accept, at the end of Phase C Alice and Bob
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must agree on a key ZC = Z ′C which looks random to Eve. Moreover, X still has a

lot of entropy given Z ′C and Eve’s view so far. Thus, to show both (post-application)

robustness and extraction for Bob, it is sufficient to show these properties for a very

simply one-round key agreement protocol, which emulates the final Phase (C + 1)

of our protocol with Alice and Bob sharing a key ZC = Z ′C which is assumed to

be random and independent from Eve’s view so far. We start with post-application

robustness.

Post-Application Robustness: To cause Bob output a different key than

Alice in Phase (C+1), Eve must modify Alice seed WC+1 to W ′
C+1 6= WC+1, and then

forge a valid tag S ′C of W ′
C+1 under the shared key ZC = Z ′C . For pre-application

robustness, the unforgeability of MAC immediately implies that Eve’s probability of

success is at most 2−s. However, in the post-application robustness experiment, Eve

is additionally given Alice’s final key RA = Ext(X;WC+1). Luckily, since X has more

than k′ + s bits of min-entropy even conditioned of the MAC key ZC , security of the

extractor implies that that the joint distribution of ZC and RA looks like a pair of

independent random strings. In particular, Eve still cannot change the value of the

seed WC+1 in Phase (C + 1), despite being additionally given Alice’s key RA, since

that key looks random and independent of the MAC key ZC = Z ′C .

Extraction for Bob: We just argued (pre-application) robustness of our

protocol, which — for synchronous Eve — means that if Bob does not reject, then,

with high probability, he outputs the same key RB = Ext(X;W ′
C+1) as Alice’s key

RA = Ext(X;WC+1). Thus, Bob’s extraction is implied by Alice’s extraction, which

was already argued in Lemma 7.3.7. Alternatively, Alice’s extraction can be seen
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directly, as she chooses a fresh seed WC+1 and H∞(X|E ′C , ZC) > k′ + 10s.

This concludes the proof of Theorem 7.3.1.
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