130 research outputs found

    50 Years of the Golomb--Welch Conjecture

    Full text link
    Since 1968, when the Golomb--Welch conjecture was raised, it has become the main motive power behind the progress in the area of the perfect Lee codes. Although there is a vast literature on the topic and it is widely believed to be true, this conjecture is far from being solved. In this paper, we provide a survey of papers on the Golomb--Welch conjecture. Further, new results on Golomb--Welch conjecture dealing with perfect Lee codes of large radii are presented. Algebraic ways of tackling the conjecture in the future are discussed as well. Finally, a brief survey of research inspired by the conjecture is given.Comment: 28 pages, 2 figure

    A New Approach Towards the Golomb-Welch Conjecture

    Full text link
    The Golomb-Welch conjecture deals with the existence of perfect ee% -error correcting Lee codes of word length n,n, PL(n,e)PL(n,e) codes. Although there are many papers on the topic, the conjecture is still far from being solved. In this paper we initiate the study of an invariant connected to abelian groups that enables us to reformulate the conjecture, and then to prove the non-existence of linear PL(n,2) codes for n12n\leq 12. Using this new approach we also construct the first quasi-perfect Lee codes for dimension n=3,n=3, and show that, for fixed nn, there are only finitely many such codes over ZnZ^n

    Quasi-Perfect Lee Codes of Radius 2 and Arbitrarily Large Dimension

    Get PDF
    A construction of two-quasi-perfect Lee codes is given over the space ?np for p prime, p ? ±5 (mod 12), and n = 2[p/4]. It is known that there are infinitely many such primes. Golomb and Welch conjectured that perfect codes for the Lee metric do not exist for dimension n ? 3 and radius r ? 2. This conjecture was proved to be true for large radii as well as for low dimensions. The codes found are very close to be perfect, which exhibits the hardness of the conjecture. A series of computations show that related graphs are Ramanujan, which could provide further connections between coding and graph theories
    corecore