6,794 research outputs found

    Self-adaptive exploration in evolutionary search

    Full text link
    We address a primary question of computational as well as biological research on evolution: How can an exploration strategy adapt in such a way as to exploit the information gained about the problem at hand? We first introduce an integrated formalism of evolutionary search which provides a unified view on different specific approaches. On this basis we discuss the implications of indirect modeling (via a ``genotype-phenotype mapping'') on the exploration strategy. Notions such as modularity, pleiotropy and functional phenotypic complex are discussed as implications. Then, rigorously reflecting the notion of self-adaptability, we introduce a new definition that captures self-adaptability of exploration: different genotypes that map to the same phenotype may represent (also topologically) different exploration strategies; self-adaptability requires a variation of exploration strategies along such a ``neutral space''. By this definition, the concept of neutrality becomes a central concern of this paper. Finally, we present examples of these concepts: For a specific grammar-type encoding, we observe a large variability of exploration strategies for a fixed phenotype, and a self-adaptive drift towards short representations with highly structured exploration strategy that matches the ``problem's structure''.Comment: 24 pages, 5 figure

    KInNeSS: A Modular Framework for Computational Neuroscience

    Full text link
    Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.Center for Excellence for Learning Education, Science, and Technology (SBE-0354378); Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    The Pivotal Role of Causality in Local Quantum Physics

    Full text link
    In this article an attempt is made to present very recent conceptual and computational developments in QFT as new manifestations of old and well establihed physical principles. The vehicle for converting the quantum-algebraic aspects of local quantum physics into more classical geometric structures is the modular theory of Tomita. As the above named laureate to whom I have dedicated has shown together with his collaborator for the first time in sufficient generality, its use in physics goes through Einstein causality. This line of research recently gained momentum when it was realized that it is not only of structural and conceptual innovative power (see section 4), but also promises to be a new computational road into nonperturbative QFT (section 5) which, picturesquely speaking, enters the subject on the extreme opposite (noncommutative) side.Comment: This is a updated version which has been submitted to Journal of Physics A, tcilatex 62 pages. Adress: Institut fuer Theoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin presently CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazi

    A morphospace of functional configuration to assess configural breadth based on brain functional networks

    Get PDF
    The best approach to quantify human brain functional reconfigurations in response to varying cognitive demands remains an unresolved topic in network neuroscience. We propose that such functional reconfigurations may be categorized into three different types: i) Network Configural Breadth, ii) Task-to-Task transitional reconfiguration, and iii) Within-Task reconfiguration. In order to quantify these reconfigurations, we propose a mesoscopic framework focused on functional networks (FNs) or communities. To do so, we introduce a 2D network morphospace that relies on two novel mesoscopic metrics, Trapping Efficiency (TE) and Exit Entropy (EE), which capture topology and integration of information within and between a reference set of FNs. In this study, we use this framework to quantify the Network Configural Breadth across different tasks. We show that the metrics defining this morphospace can differentiate FNs, cognitive tasks and subjects. We also show that network configural breadth significantly predicts behavioral measures, such as episodic memory, verbal episodic memory, fluid intelligence and general intelligence. In essence, we put forth a framework to explore the cognitive space in a comprehensive manner, for each individual separately, and at different levels of granularity. This tool that can also quantify the FN reconfigurations that result from the brain switching between mental states.Comment: main article: 24 pages, 8 figures, 2 tables. supporting information: 11 pages, 5 figure

    Optimal map of the modular structure of complex networks

    Full text link
    Modular structure is pervasive in many complex networks of interactions observed in natural, social and technological sciences. Its study sheds light on the relation between the structure and function of complex systems. Generally speaking, modules are islands of highly connected nodes separated by a relatively small number of links. Every module can have contributions of links from any node in the network. The challenge is to disentangle these contributions to understand how the modular structure is built. The main problem is that the analysis of a certain partition into modules involves, in principle, as many data as number of modules times number of nodes. To confront this challenge, here we first define the contribution matrix, the mathematical object containing all the information about the partition of interest, and after, we use a Truncated Singular Value Decomposition to extract the best representation of this matrix in a plane. The analysis of this projection allow us to scrutinize the skeleton of the modular structure, revealing the structure of individual modules and their interrelations.Comment: 21 pages, 10 figure

    Motivations and Physical Aims of Algebraic QFT

    Full text link
    We present illustrations which show the usefulness of algebraic QFT. In particular in low-dimensional QFT, when Lagrangian quantization does not exist or is useless (e.g. in chiral conformal theories), the algebraic method is beginning to reveal its strength.Comment: 40 pages of LateX, additional remarks resulting from conversations and mail contents, removal of typographical error
    • …
    corecore