10,063 research outputs found

    Intrusion Detection System using Bayesian Network Modeling

    Get PDF
    Computer Network Security has become a critical and important issue due to ever increasing cyber-crimes. Cybercrimes are spanning from simple piracy crimes to information theft in international terrorism. Defence security agencies and other militarily related organizations are highly concerned about the confidentiality and access control of the stored data. Therefore, it is really important to investigate on Intrusion Detection System (IDS) to detect and prevent cybercrimes to protect these systems. This research proposes a novel distributed IDS to detect and prevent attacks such as denial service, probes, user to root and remote to user attacks. In this work, we propose an IDS based on Bayesian network classification modelling technique. Bayesian networks are popular for adaptive learning, modelling diversity network traffic data for meaningful classification details. The proposed model has an anomaly based IDS with an adaptive learning process. Therefore, Bayesian networks have been applied to build a robust and accurate IDS. The proposed IDS has been evaluated against the KDD DAPRA dataset which was designed for network IDS evaluation. The research methodology consists of four different Bayesian networks as classification models, where each of these classifier models are interconnected and communicated to predict on incoming network traffic data. Each designed Bayesian network model is capable of detecting a major category of attack such as denial of service (DoS). However, all four Bayesian networks work together to pass the information of the classification model to calibrate the IDS system. The proposed IDS shows the ability of detecting novel attacks by continuing learning with different datasets. The testing dataset constructed by sampling the original KDD dataset to contain balance number of attacks and normal connections. The experiments show that the proposed system is effective in detecting attacks in the test dataset and is highly accurate in detecting all major attacks recorded in DARPA dataset. The proposed IDS consists with a promising approach for anomaly based intrusion detection in distributed systems. Furthermore, the practical implementation of the proposed IDS system can be utilized to train and detect attacks in live network traffi

    Mitigating Insider Threat Risks in Cyber-physical Manufacturing Systems

    Get PDF
    Cyber-Physical Manufacturing System (CPMS)—a next generation manufacturing system—seamlessly integrates digital and physical domains via the internet or computer networks. It will enable drastic improvements in production flexibility, capacity, and cost-efficiency. However, enlarged connectivity and accessibility from the integration can yield unintended security concerns. The major concern arises from cyber-physical attacks, which can cause damages to the physical domain while attacks originate in the digital domain. Especially, such attacks can be performed by insiders easily but in a more critical manner: Insider Threats. Insiders can be defined as anyone who is or has been affiliated with a system. Insiders have knowledge and access authentications of the system\u27s properties, therefore, can perform more serious attacks than outsiders. Furthermore, it is hard to detect or prevent insider threats in CPMS in a timely manner, since they can easily bypass or incapacitate general defensive mechanisms of the system by exploiting their physical access, security clearance, and knowledge of the system vulnerabilities. This thesis seeks to address the above issues by developing an insider threat tolerant CPMS, enhanced by a service-oriented blockchain augmentation and conducting experiments & analysis. The aim of the research is to identify insider threat vulnerabilities and improve the security of CPMS. Blockchain\u27s unique distributed system approach is adopted to mitigate the insider threat risks in CPMS. However, the blockchain limits the system performance due to the arbitrary block generation time and block occurrence frequency. The service-oriented blockchain augmentation is providing physical and digital entities with the blockchain communication protocol through a service layer. In this way, multiple entities are integrated by the service layer, which enables the services with less arbitrary delays while retaining their strong security from the blockchain. Also, multiple independent service applications in the service layer can ensure the flexibility and productivity of the CPMS. To study the effectiveness of the blockchain augmentation against insider threats, two example models of the proposed system have been developed: Layer Image Auditing System (LIAS) and Secure Programmable Logic Controller (SPLC). Also, four case studies are designed and presented based on the two models and evaluated by an Insider Attack Scenario Assessment Framework. The framework investigates the system\u27s security vulnerabilities and practically evaluates the insider attack scenarios. The research contributes to the understanding of insider threats and blockchain implementations in CPMS by addressing key issues that have been identified in the literature. The issues are addressed by EBIS (Establish, Build, Identify, Simulation) validation process with numerical experiments and the results, which are in turn used towards mitigating insider threat risks in CPMS

    Data security in European healthcare information systems

    Get PDF
    This thesis considers the current requirements for data security in European healthcare systems and establishments. Information technology is being increasingly used in all areas of healthcare operation, from administration to direct care delivery, with a resulting dependence upon it by healthcare staff. Systems routinely store and communicate a wide variety of potentially sensitive data, much of which may also be critical to patient safety. There is consequently a significant requirement for protection in many cases. The thesis presents an assessment of healthcare security requirements at the European level, with a critical examination of how the issue has been addressed to date in operational systems. It is recognised that many systems were originally implemented without security needs being properly addressed, with a consequence that protection is often weak and inconsistent between establishments. The overall aim of the research has been to determine appropriate means by which security may be added or enhanced in these cases. The realisation of this objective has included the development of a common baseline standard for security in healthcare systems and environments. The underlying guidelines in this approach cover all of the principal protection issues, from physical and environmental measures to logical system access controls. Further to this, the work has encompassed the development of a new protection methodology by which establishments may determine their additional security requirements (by classifying aspects of their systems, environments and data). Both the guidelines and the methodology represent work submitted to the Commission of European Communities SEISMED (Secure Environment for Information Systems in MEDicine) project, with which the research programme was closely linked. The thesis also establishes that healthcare systems can present significant targets for both internal and external abuse, highlighting a requirement for improved logical controls. However, it is also shown that the issues of easy integration and convenience are of paramount importance if security is to be accepted and viable in practice. Unfortunately, many traditional methods do not offer these advantages, necessitating the need for a different approach. To this end, the conceptual design for a new intrusion monitoring system was developed, combining the key aspects of authentication and auditing into an advanced framework for real-time user supervision. A principal feature of the approach is the use of behaviour profiles, against which user activities may be continuously compared to determine potential system intrusions and anomalous events. The effectiveness of real-time monitoring was evaluated in an experimental study of keystroke analysis -a behavioural biometric technique that allows an assessment of user identity from their typing style. This technique was found to have significant potential for discriminating between impostors and legitimate users and was subsequently incorporated into a fully functional security system, which demonstrated further aspects of the conceptual design and showed how transparent supervision could be realised in practice. The thesis also examines how the intrusion monitoring concept may be integrated into a wider security architecture, allowing more comprehensive protection within both the local healthcare establishment and between remote domains.Commission of European Communities SEISMED proje

    Framework for Security Transparency in Cloud Computing

    Get PDF
    The migration of sensitive data and applications from the on-premise data centre to a cloud environment increases cyber risks to users, mainly because the cloud environment is managed and maintained by a third-party. In particular, the partial surrender of sensitive data and application to a cloud environment creates numerous concerns that are related to a lack of security transparency. Security transparency involves the disclosure of information by cloud service providers about the security measures being put in place to protect assets and meet the expectations of customers. It establishes trust in service relationship between cloud service providers and customers, and without evidence of continuous transparency, trust and confidence are affected and are likely to hinder extensive usage of cloud services. Also, insufficient security transparency is considered as an added level of risk and increases the difficulty of demonstrating conformance to customer requirements and ensuring that the cloud service providers adequately implement security obligations. The research community have acknowledged the pressing need to address security transparency concerns, and although technical aspects for ensuring security and privacy have been researched widely, the focus on security transparency is still scarce. The relatively few literature mostly approach the issue of security transparency from cloud providers’ perspective, while other works have contributed feasible techniques for comparison and selection of cloud service providers using metrics such as transparency and trustworthiness. However, there is still a shortage of research that focuses on improving security transparency from cloud users’ point of view. In particular, there is still a gap in the literature that (i) dissects security transparency from the lens of conceptual knowledge up to implementation from organizational and technical perspectives and; (ii) support continuous transparency by enabling the vetting and probing of cloud service providers’ conformity to specific customer requirements. The significant growth in moving business to the cloud – due to its scalability and perceived effectiveness – underlines the dire need for research in this area. This thesis presents a framework that comprises the core conceptual elements that constitute security transparency in cloud computing. It contributes to the knowledge domain of security transparency in cloud computing by proposing the following. Firstly, the research analyses the basics of cloud security transparency by exploring the notion and foundational concepts that constitute security transparency. Secondly, it proposes a framework which integrates various concepts from requirement engineering domain and an accompanying process that could be followed to implement the framework. The framework and its process provide an essential set of conceptual ideas, activities and steps that can be followed at an organizational level to attain security transparency, which are based on the principles of industry standards and best practices. Thirdly, for ensuring continuous transparency, the thesis proposes an essential tool that supports the collection and assessment of evidence from cloud providers, including the establishment of remedial actions for redressing deficiencies in cloud provider practices. The tool serves as a supplementary component of the proposed framework that enables continuous inspection of how predefined customer requirements are being satisfied. The thesis also validates the proposed security transparency framework and tool in terms of validity, applicability, adaptability, and acceptability using two different case studies. Feedbacks are collected from stakeholders and analysed using essential criteria such as ease of use, relevance, usability, etc. The result of the analysis illustrates the validity and acceptability of both the framework and tool in enhancing security transparency in a real-world environment

    A GENERIC ARCHITECTURE FOR INSIDER MISUSE MONITORING IN IT SYSTEMS

    Get PDF
    Intrusion Detection Systems (IDS) have been widely deployed within many organisations' IT nenvorks to delect network penetration attacks by outsiders and privilege escalation attacks by insiders. However, traditional IDS are ineffective for detecting o f abuse o f legitimate privileges by authorised users within the organisation i.e. the detection of misfeasance. In essence insider IT abuse does not violate system level controls, yet violates acceptable usage policy, business controls, or code of conduct defined by the organisation. However, the acceptable usage policy can vary from one organisation to another, and the acceptability o f user activities can also change depending upon the user(s), application, machine, data, and other contextual conditions associated with the entities involved. The fact that the perpetrators are authorised users and that the insider misuse activities do not violate system level controls makes detection of insider abuse more complicated than detection o f attacks by outsiders. The overall aim o f the research is to determine novel methods by which monitoring and detection may be improved to enable successful detection of insider IT abuse. The discussion begins with a comprehensive investigation o f insider IT misuse, encompassing the breadth and scale of the problem. Consideration is then given to the sufficiency of existing safeguards, with the conclusion that they provide an inadequate basis for detecting many o f the problems. This finding is used as the justification for considering research into alternative approaches. The realisation of the research objective includes the development of a taxonomy for identification o f various levels within the system from which the relevant data associated with each type of misuse can be collected, and formulation of a checklist for identification of applications that requires misfeasor monitoring. Based upon this foundation a novel architecture for monitoring o f insider IT misuse, has been designed. The design offers new analysis procedures to be added, while providing methods to include relevant contextual parameters from dispersed systems for analysis and reference. The proposed system differs from existing IDS in the way that it focuses on detecting contextual misuse of authorised privileges and legitimate operations, rather than detecting exploitation o f network protocols and system level \ailnerabilities. The main concepts of the new architecture were validated through a proof-of-concept prototype system. A number o f case scenarios were used to demonstrate the validity of analysis procedures developed and how the contextual data from dispersed databases can be used for analysis of various types of insider activities. This helped prove that the existing detection technologies can be adopted for detection o f insider IT misuse, and that the research has thus provided valuable contribution to the domain

    Database Intrusion Detection Using Role Profiling

    Get PDF
    Insider threats cause the majority of computer system security problems and are also among the most challenging research topics in database security. An anomaly-based intrusion detection system (IDS), which can profile inside users’ normal behaviors and detect anomalies when a user’s behaviors deviate from his/her profiles, is effective to protect computer systems against insider threats since the IDS can profile each insider and then monitor them continuously. Although many IDSes have been developed at the network or host level since 1980s, there are still very few IDSes specifically tailored to database systems. We initially build our anomaly-based database IDS using two different profiling methods: one is to build profiles for each individual user (user profiling) and the other is to mine profiles for roles (role profiling). Detailed comparative evaluations between role profiling and user profiling are conducted, and we also analyze the reasons why role profiling is more effective and efficient than user profiling. Another contribution of this thesis is that we introduce role hierarchy into database IDS and remarkably reduce the false positive rate without increasing the false negative rate

    Protecting private information for two classes of aggregated database queries

    Get PDF
    An important direction of informatics is devoted to the protection of privacy of confidential information while providing answers to aggregated queries that can be used for analysis of data. Protecting privacy is especially important when aggregated queries are used to combine personal information stored in several databases that belong to different owners or come from different sources. Malicious attackers may be able to infer confidential information even from aggregated numerical values returned as answers to queries over large collections of data. Formal proofs of security guarantees are important, because they can be used for implementing practical systems protecting privacy and providing answers to aggregated queries. The investigation of formal conditions which guarantee protection of private information against inference attacks originates from a fundamental result obtained by Chin and Ozsoyoglu in 1982 for linear queries. The present paper solves similar problems for two new classes of aggregated nonlinear queries. We obtain complete descriptions of conditions, which guarantee the protection of privacy of confidential information against certain possible inference attacks, if a collection of queries of this type are answered. Rigorous formal security proofs are given which guarantee that the conditions obtained ensure the preservation of privacy of confidential data. In addition, we give necessary and sufficient conditions for the protection of confidential information from special inference attacks aimed at achieving a group compromise
    • …
    corecore