10,002 research outputs found

    Feature-Oriented Modelling Using Event-B

    No full text
    Event-B is a formal method for specification and verification of reactive systems. Its Rodin toolkit provides comprehensive support for modelling, refinement and analysis using theorem proving, animation and model checking. There has always been a need to reuse existing models and their associated proofs when modelling related systems to save time and effort. Software product lines (SPLs) focus on the problem of reuse by providing ways to build software products having commonalities and managing variations within products of the same family. Feature modelling is a well know technique to manage variability and configure products within the SPLs. We have combined the two approaches to formally specify SPLs using Event-B. This will contribute the concept of formalism to SPLs and re-usability to Event-B. Existing feature modelling notations were adapted and extended to include refinement mechanism of Event-B. An Eclipse-based graphical feature modelling tool has been developed as a plug-in to the Rodin platform. We have modelled the "production cell" case-study in Event-B, an industrial metal processing plant, which has previously been specified in a number of formalisms. We have also highlighted future directions based on our experience with this framework so far

    Traceability for Model Driven, Software Product Line Engineering

    Get PDF
    Traceability is an important challenge for software organizations. This is true for traditional software development and even more so in new approaches that introduce more variety of artefacts such as Model Driven development or Software Product Lines. In this paper we look at some aspect of the interaction of Traceability, Model Driven development and Software Product Line

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Composing Multiple Variability Artifacts to Assemble Coherent Workflows

    Get PDF
    International audienceThe development of scientific workflows is evolving towards the system- atic use of service oriented architectures, enabling the composition of dedicated and highly parameterized software services into processing pipelines. Building consistent workflows then becomes a cumbersome and error-prone activity as users cannot man- age such large scale variability. This paper presents a rigorous and tooled approach in which techniques from Software Product Line (SPL) engineering are reused and ex- tended to manage variability in service and workflow descriptions. Composition can be facilitated while ensuring consistency. Services are organized in a rich catalog which is organized as a SPL and structured according to the common and variable concerns captured for all services. By relying on sound merging techniques on the feature mod- els that make up the catalog, reasoning about the compatibility between connected services is made possible. Moreover, an entire workflow is then seen as a multiple SPL (i.e., a composition of several SPLs). When services are configured within, the prop- agation of variability choices is then automated with appropriate techniques and the user is assisted in obtaining a consistent workflow. The approach proposed is com- pletely supported by a combination of dedicated tools and languages. Illustrations and experimental validations are provided using medical imaging pipelines, which are rep- resentative of current scientific workflows in many domains

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition

    Aspect-oriented domain analysis

    Get PDF
    Dissertação de Mestrado em Engenharia InformáticaDomain analysis (DA) consists of analyzing properties, concepts and solutions for a given domain of application. Based on that information, decisions are made concerning the software development for future application within that domain. In DA, feature modeling is used to describe common and variable requirements for software systems. Nevertheless, they show a limited view of the domain. In the mean time, requirement approaches can be integrated to specify the domain requirements. Among them, we have viewpoint oriented approaches that stand out by their simplicity, and efficiency organizing requirements. However, none of them deals with modularization of crosscutting subjects. A crosscutting subject can be spread out in several requirement documents. In this work we will use a viewpoint oriented approach to describe the domain requirements extended with aspects. Aspect-oriented domain analysis (AODA) is a growing area of interest as it addresses the problem of specifying crosscutting properties at the domain analysis level. The goal of this area is to obtain a better reuse at this abstraction level through the advantages of aspect orientation. The aim of this work is to propose an approach that extends domain analysis with aspects also using feature modeling and viewpoint
    corecore