5 research outputs found

    DIY hybrid SSVEP-P300 LED stimuli for BCI platform using EMOTIV EEG headset

    Get PDF
    A fully customisable chip-on board (COB) LED design to evoke two brain responses simultaneously (steady state visual evoked potential (SSVEP) and transient evoked potential, P300) is discussed in this paper. Considering different possible modalities in brain-computer interfacing (BCI), SSVEP is widely accepted as it requires a lesser number of electroencephalogram (EEG) electrodes and minimal training time. The aim of this work was to produce a hybrid BCI hardware platform to evoke SSVEP and P300 precisely with reduced fatigue and improved classification performance. The system comprises of four independent radial green visual stimuli controlled individually by a 32-bit microcontroller platform to evoke SSVEP and four red LEDs flashing at random intervals to generate P300 events. The system can also record the P300 event timestamps that can be used in classification, to improve the accuracy and reliability. The hybrid stimulus was tested for real-time classification accuracy by controlling a LEGO robot to move in four directions

    Exploring Effects of Background Music in A Serious Game on Attention by Means of EEG Signals in Children

    Get PDF
    Music and Serious Games are separately useful alternative therapy methods for helping people with a cognitive disorder, including Attention Deficit Hyperactivity Disorder (ADHD). The goal of this thesis is to explore the effect of background music on children with and without ADHD. In this study, a simple Tetris game is designed with Beethoven, Mozart music, and no-music. There are different brainwave techniques for recording; among others, the electroencephalography (EEG) allows for the most efficient use of BCI. We recorded the EEG brain signals of the regular and ADHD subjects who played the Tetris we designed according to our protocol that consists of three trials with three different background music. Attention related Alpha and Beta waves of EEG signals analyzed based on time and time-frequency domain features. The changes in the data over the 1-minute Tetris game sections are investigated with the Short-time Fourier Transform (STFT) method. The results showed that music has a considerable impact on attention of children. When it comes to music types, in general, Mozart music increases Beta waves while decreasing the Alpha band waves for subjects without ADHD. On the other hand, Beethoven music increased both Alpha and Beta band values for children with ADHD

    Improving the Brain-Computer Interface Learning Process with Gamification in Motor Imagery: A Review

    Get PDF
    Brain-computer-interface-based motor imagery (MI-BCI), a control method for transferring the imagination of motor behavior to computer-based commands, could positively impact neural functions. With the safety guaranteed by non-invasive BCI devices, this method has the potential to enhance rehabilitation and physical outcomes. Therefore, this MI-BCI control strategy has been highly researched. However, applying a non-invasive MI-BCI to real life is still not ideal. One of the main reasons is the monotonous training procedure. Although researchers have reviewed optimized signal processing methods, no suggestion is found in training feedback design. The authors believe that enhancing the engagement interface via gamification presents a potential method that could increase the MI-BCI outcome. After analyzing 2524 articles (from 2001 to 2020), 28 pieces of research are finally used to evaluate the feasibility of using gamified MI-BCI system for training. This paper claims that gamification is feasible for MI-BCI training with an average accuracy of 74.35% among 111 individuals and positive reports from 26 out of 28 studies. Furthermore, this literature review suggests more emphasis should be on immersive and humanoid design for a gaming system, which could support relieving distraction, stimulate correct MI and improve learning outcomes. Interruptive training issues such as disturbing graphical interface design and potential solutions have also been presented for further research

    A comprehensive review on motion trajectory reconstruction for EEG-based brain-computer interface

    Get PDF
    The advance in neuroscience and computer technology over the past decades have made brain-computer interface (BCI) a most promising area of neurorehabilitation and neurophysiology research. Limb motion decoding has gradually become a hot topic in the field of BCI. Decoding neural activity related to limb movement trajectory is considered to be of great help to the development of assistive and rehabilitation strategies for motor-impaired users. Although a variety of decoding methods have been proposed for limb trajectory reconstruction, there does not yet exist a review that covers the performance evaluation of these decoding methods. To alleviate this vacancy, in this paper, we evaluate EEG-based limb trajectory decoding methods regarding their advantages and disadvantages from a variety of perspectives. Specifically, we first introduce the differences in motor execution and motor imagery in limb trajectory reconstruction with different spaces (2D and 3D). Then, we discuss the limb motion trajectory reconstruction methods including experiment paradigm, EEG pre-processing, feature extraction and selection, decoding methods, and result evaluation. Finally, we expound on the open problem and future outlooks

    Standardization of Protocol Design for User Training in EEG-based Brain-Computer Interface

    Get PDF
    International audienceBrain-computer interfaces (BCIs) are systems that enable a personto interact with a machine using only neural activity. Such interaction canbe non-intuitive for the user hence training methods are developed to increaseone’s understanding, confidence and motivation, which would in parallel increasesystem performance. To clearly address the current issues in the BCI usertraining protocol design, here it is divided intointroductoryperiod and BCIinteractionperiod. First, theintroductoryperiod (before BCI interaction) mustbe considered as equally important as the BCI interaction for user training. Tosupport this claim, a review of papers show that BCI performance can dependon the methodologies presented in such introductory period. To standardize itsdesign, the literature from human-computer interaction (HCI) is adjusted to theBCI context. Second, during the user-BCI interaction, the interface can takea large spectrum of forms (2D, 3D, size, color etc.) and modalities (visual,auditory or haptic etc.) without following any design standard or guidelines.Namely, studies that explore perceptual affordance on neural activity show thatmotor neurons can be triggered from a simple observation of certain objects, anddepending on objects’ properties (size, location etc.) neural reactions can varygreatly. Surprisingly, the effects of perceptual affordance were not investigatedin the BCI context. Both inconsistent introductions to BCI as well as variableinterface designs make it difficult to reproduce experiments, predict their outcomesand compare results between them. To address these issues, a protocol designstandardization for user training is proposed
    corecore