4 research outputs found

    Towards a Homomorphic Machine Learning Big Data Pipeline for the Financial Services Sector

    Get PDF
    Machinelearning(ML)istodaycommonlyemployedintheFinancialServicesSector(FSS) to create various models to predict a variety of conditions ranging from financial transactions fraud to outcomes of investments and also targeted marketing campaigns. The common ML technique used for the modeling is supervised learning using regression algorithms and usually involves large amounts of data that needs to be shared and prepared before the actual learning phase. Compliance with privacy laws and confidentiality regulations requires that most, if not all, of the data must be kept in a secure environment, usually in-house, and not outsourced to cloud or multi-tenant shared environments. This paper presents the results of a research collaboration between IBM Research and Banco Bradesco SA to investigate approaches to homomorphically secure a typical ML pipeline commonly employed in the FSS industry. We investigated and de-constructed a typical ML pipeline used by Banco Bradesco and applied Homo- morphic Encryption (HE) to two of the important ML tasks, namely the variable selection phase of the model generation task and the prediction task. Variable selection, which usually precedes the training phase, is very important when working with data sets for which no prior knowledge of the covariate set exists. Our work provides a way to define an initial covariate set for the training phase while preserving the privacy and confidentiality of the input data sets. Quality metrics, using real financial data, comprising quantitative, qualitative and categorical features, demonstrated that our HE based pipeline can yield results comparable to state of the art variable selection techniques and the performance results demonstrated that HE technology has reached the inflection point where it can be useful in batch processing in a financial business setting

    On the IND-CCA1 Security of FHE Schemes

    Get PDF
    Fully homomorphic encryption (FHE) is a powerful tool in cryptography that allows one to perform arbitrary computations on encrypted material without having to decrypt it first. There are numerous FHE schemes, all of which are expanded from somewhat homomorphic encryption (SHE) schemes, and some of which are considered viable in practice. However, while these FHE schemes are semantically (IND-CPA) secure, the question of their IND-CCA1 security is much less studied, and we therefore provide an overview of the IND-CCA1 security of all acknowledged FHE schemes in this paper. To give this overview, we grouped the SHE schemes into broad categories based on their similarities and underlying hardness problems. For each category, we show that the SHE schemes are susceptible to either known adaptive key recovery attacks, a natural extension of known attacks, or our proposed attacks. Finally, we discuss the known techniques to achieve IND-CCA1-secure FHE and SHE schemes. We concluded that none of the proposed schemes were IND-CCA1-secure and that the known general constructions all had their shortcomings.publishedVersio
    corecore