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ABSTRACT 
DNA data contains sensitive health information and personally identifiable data. Currently, 
even if DNA data is stored in encrypted databases, it must be decrypted for health 
professionals and researchers to analyze, which means that DNA data exists in plaintext on 
unsecured, untrusted servers and machines during analysis. This thesis describes a complete 
system for homomorphically encrypting DNA data in a trusted context and then running 
analytic operations on the encrypted DNA data in an untrusted context, thus allowing 
healthcare professionals and researchers to run both high volume analytics on many 
individuals’ sequenced DNA and run complex analytics on a single individual’s sequenced 
DNA without ever handling plaintext data.  
 
Symmetric encryption is used as a mechanism for controlling which queries are made on the 
data. The threat model addressed by this system allows an authorized party to run only 
authorized queries on a genome, while restricting any additional access. 
 
The system implemented achieves substring search, substring search with wildcards 
representing mutations, and percent match between two nucleotide sequences by converting 
genomic data into one-hot binary matrixes and encrypting each bit individually using 
OpenFHE’s LWE Encryption implemented using the CGGI scheme. While runtime for each 
operation is O(nm), each operation is maximally parallelized using OpenMP, thus allowing 
for accelerated performance on machines with multiple CPUs without the need for batching. 
 
Keywords: Fully Homomorphic Encryption, homomorphic substring search, OpenFHE, LWE 
Encryption, Genomic privacy, parallelized encrypted search on sequenced DNA, CGGI 
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1 Introduction 
In the past decade, DNA sequencing technology has dramatically advanced, allowing 
individuals to get their entire DNA sequenced for a manageable cost [69] . While sequencing 
technology has advanced dramatically, the storage and management of DNA data has 
remained largely the same. This means that even though individuals can get their entire DNA 
sequence, a feat, this sensitive data is stored in the same way as all general health data. 
Healthcare and research analysis is done on plaintext DNA, and the data is protected only by 
the trust in those handling DNA. 
 

1.1 Introduction to DNA privacy concerns 
1.1.1 Genomic data has expanded with better sequencing technology 
The sequencing of the human genome has rapidly improved over the past decade. In 2003, 
the first human genome was sequenced. The project was funded nationally by several 
organizations, most notably the National Human Genome Research Institute under the 
National Institute of Health under the Human Genome Project. The first genome took about 
13 years to sequence and cost an estimated 3 billion dollars at project completion [89] . In 
2008, the cost of sequencing one individual’s genome was reduced to about 1 million dollars 
via utilization of massively parallel DNA sequencing and took about two months to complete 
[103] .  In 2009, technology to sequence a genome was estimated to cost $100,000 [89] . 
Today, development of technology to sequence the entire 6 gigabyte human genome for 
under $1000 is underway, a project funded by National Human Genome Research Institute 
[15] . 
 
The impact of full genome sequencing cannot be understated. The COVID-19 pandemic 
brought with it the ability to efficiently mass produce mRNA vaccines at low cost. While the 
COVID-19 mRNA vaccines wrapped mRNA into a lipid-nanoparticle shell [85] , companies 
like Moderna and Pfizer have demonstrated that the same delivery method can carry DNA 
fragments, opening the door for treatments that target DNA directly.   
 
Databases containing DNA are being used for more functionality than ever before [25] [28] . 
In their 2009 paper for the International Journal of Law, Crime, and Justice, Dahl and Sætnan 
discuss the concept of “function creep” of DNA databases, which describes the increasing 
utilization of DNA databases, beyond their intended original use [28] . Some examples of 
function creep for DNA database, they describe, include the usage of databases containing 
either complete or partial patient DNA sequences, originally created for healthcare purposes, 
for forensic purposes such as identifying family members and identifying suspects in criminal 
cases. 
  
With ever increasing utilization of DNA data in modern healthcare, and the utilization of 
DNA databases for functionality beyond their intended healthcare purposes, it is ever more 
important to have secure systems in place to protect the privacy, integrity, and confidentiality 
of patient DNA data [77] .  
 

1.1.2 A need for anonymizing data and controlling partial database access 
Healthcare data is some of the most private, personal, and regulated forms of information. 
There are a myriad of laws and regulations to protect this information from being used by bad 
actors. 
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When a research lab requests access to medical records, the systems in place to prevent the 
misuse of the data are policy based. Researchers follow laws and regulations such as the 
Health Insurance Portability and Accountability Act, standards set by the Institutional Review 
Board, and the policies of their direct institutions regarding how they access, store, and use 
sensitive healthcare data. For example, for healthcare providers working with electronic 
patient medical records, common requirements include using an encryption service to encrypt 
the hard drive of the machine where data is stored on, restrictions on storing data in cloud-
based services such as Google Docs and AWS, and restrictions on the individuals that can 
access the data [58] . 
 
In research labs, there is often a hierarchy of roles. For example, in a research study involving 
electronic medical records, the Primary Investigator may need access to a wider set of data 
than the research assistants using the data. Some people involved in the research may not 
even need access to the entire set of data the lab has access to complete their tasks. For 
example, in a lab using untrained volunteers to codify patient symptoms, the set of the data 
containing the patient symptoms often contains other personally identifiable information 
including names, phone numbers, identification numbers, addresses, and other data that 
although included in the database, is irrelevant for the current task at hand [12] .  
 
For labs that request a wide set of patient data, there is often no effective mechanisms for 
removing irrelevant personally identifiable health data from the shared databases amongst 
their team[12] . Many labs store this data in simple Excel sheets, and anonymizing the 
information requires a manual modification of the entire database to physically remove data 
that should not be shared with others.  
 
However, this approach has many risks. First, the primary investigator could fail to remove 
irrelevant personally identifiable information or could invertedly modify the database in 
doing the manual operation. More pressingly however, this approach does not allow for a 
simple way of hiding information in the database for some team members, but not all. Team 
members that do not need all the information in the database to complete their analysis still 
receive the entire set of data to look at. This inappropriately wide access puts sensitive patient 
data in the hands of unseasoned and often poorly vetted researchers who may use the data 
inappropriately, and who may not follow stringent policy requirements for use of the data, 
such as, for example, putting the data into Google Docs, talking about personally identifiable 
health data with others, or even posting inappropriate details of their work on social media. 
 
For researchers using an Excel-based data system, an obvious solution is to simply obfuscate 
and deobfuscate patient data as needed  [12] . A simple solution is to encrypt the data sections 
that should be hidden, and simply unencrypt when access to the full database is needed. 
However, medical researchers often do not have the software background to parse, encrypt, 
and decrypt specific sections via a program such as a python script.  
 
Today, there are many APIs that provide out of the box solutions for hiding partial Excel data 
via encryption and obfuscation methodologies, such as PyCryptodome [60] , Google’s Fully 
Homomorphic Encryption Library [92] , Microsoft’s SEAL library [67] , and many others 
[104] . Using these APIs is unfeasible for professionals outside the software field and hiring a 
software engineer onto a team to make custom tools is cost-prohibitive and introduces an 
additional party poorly versed in regulations meant to secure sensitive health data. 
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1.1.3 Genomic data is badly protected by existing regulations 
Existing regulations on healthcare data set by the IRB, HIPAA laws, and institutional-specific 
protocols rely on trust of human actors in the system.  
 
In organizations that have such regulations in place, a non-malicious actor that fails to follow 
protocols threatens the privacy of genomic data to which they have access. 
 
DNA data is unique from general healthcare data [77] . In a post published by NIST, genomic 
data is outlined as unique from other healthcare data, and thus requiring additional regulatory 
and cybersecurity-based protections, due to several attributes unique to DNA [77] . First, 
genomic data is immutable; once collected, DNA data does not change over the lifetime of 
the patient. Additionally, NIST recognizes the uniquely impactful role of genomic data in 
personalized healthcare treatments; the risk of genomic data being used to discriminate 
against patients or their family members; the risk of genomic data being used to impact 
financial aspects of patients’ life such as insurance costs; and the risk of biological weapon 
creation [77] . 
 
The United States’ Genomic Privacy Act was created to apply additional protections to DNA 
data, regulating the usage of the data more stringently than other healthcare data [1] . The act 
“protects individual privacy while permitting medical uses of genetic analysis, legitimate 
research in genetics, and genetic analysis for identification purposes”[3] . Additionally, the 
United States’ Genetic Information Nondiscrimination Act of 2008, or “GINA”, was created 
to protect against discrimination of individuals by insurance companies based on sequenced 
genetic information [39] .  Split into two sections, or Titles, “Title I of GINA prohibits 
discrimination based on genetic information in health coverage.  Title II of GINA prohibits 
discrimination based on genetic information in employment.” [39]  
 
However, even databases that follow HIPAA regulations are susceptible to de-identification 
attacks using cross references from publicly available databases [58] [97] . In a 2013 study by 
the Harvard School of Engineering and Applied Sciences, Sweeny et al showed that it was 
possible to identify the complete name of all participants in an anonymized genetic database 
using cross references to other publicly available databases [97] .   
 
Finally, bad actors can maliciously access healthcare databases directly, an inappropriately 
view private health data, including specific databases containing genomic data linked to 
personally identifiable information such as names, addresses, and identification numbers [90] 
. 

1.1.4 Summary of goals 
The goals of this project are therefore to: create a system, usable by professionals without 
software development experience, that provides partial encryption and decryption of a 
database, provides homomorphic encryption of the data in the database, exports the encrypted 
database, is able to decrypt an encrypted database, allows for relevant operations on the 
encrypted data in an untrusted environment, and allows for decryption of the final data after 
relevant transformations have been applied. 
 

1.2 System overview and use cases 
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1.2.1 Use case: trusted and untrusted environments 
The trusted environment exists offline; the untrusted environment exists online.  
 
The central use case of this system is that a trusted party has access to a DNA database and 
needs to give an untrusted or partially trusted party access to the DNA data. The goal of the 
trusted party is to restrict access to the data for untrusted parties. 
 
Some examples of this use case include having a locally secure DNA database in a clinical 
setting but wanting to use cloud computing technology to operate on the data. In this case, the 
clinical setting represents the trusted environment, and the cloud setting represents the 
untrusted environment. 
 
Another use case includes a trusted party having access to a DNA database in a clinical 
setting but needing to give untrusted or partially trusted parties access to some, but not all, of 
the data. For example, a manager of a database might want to allow employees to query the 
database but wants to strongly control the ability of the corruptible parties to view the data. In 
this scenario, the corruptible parties need to be able to make legitimate queries on the data for 
research purposes, but they should not be able to access more data than they are authorized 
for via their queries. 
 

1.2.2 Use case: real world examples 
Some real-world examples of the use cases described in section 1.2.2 include police needing 
to search a DNA database for forensic purposes. The clinical setting should cooperate with 
the police but should assure that the police only access the data they need to access within the 
database to protect confidentiality of patients in the database. 
 
Another example of these use cases includes the case of corruptible insiders. To protect 
against corruptible insiders, we wish to restrict access to the database to the minimal required 
data subset. 
 

1.3 Threat Model 
The central asset in the system is the privacy of individuals to whom the genomes in the 
dataset belong. Alice’s challenge is to allow Bob to query the dataset while protecting the 
privacy of these genomes. 
 
The parties in the system are database owner Alice and querier Bob. The other assets are 
Alice’s DNA database and Alice’s secret key used to encrypt the dataset. The primary threat 
is Bob running analysis on Alice’s DNA beyond what she allows. The secondary threat is 
Bob gaining access to Alice’s secret key and decrypting the encrypted dataset. 
 

1.3.1 What are is being protecting from whom, and how can the threat be realized? 
The threat in this system is unauthorized access to the dataset and unauthorized querying of 
the dataset. The threat is realized through the vulnerabilities of the system, which is the 
communication between the querier (Bob) to the database, and the vulnerable storage of the 
database. The assets in system are the genomic dataset and metadata about the dataset. 
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Honest Alice wants to protect against unauthorized access to her genomic database from an 
honest but curious Bob, a compromised Bob, or a malicious Bob. 
 
In all cases, Bob needs to make some queries on the database. However, Alice only wants 
Bob to make queries on the database that she allows. 
 
An honest querier will only query the dataset with authorized queries and will seek to glean 
the minimum possible information he requires from the dataset. For example, an honest 
querier who is authorized only to look up the incidence of gene X in a population will only 
attempt to execute that query, and only gain that information form the dataset. 
 
The threat of unauthorized access to the database can be realized in several different ways. 
First, the querier could directly access the dataset, thus gaining complete access to the dataset 
beyond his authorized level. Second, the querier could make unauthorized queries to the 
database, and gain more information than allowed. 
 
The threat of unauthorized access can be realized through corruption of the querier. In the 
case the querier is honest but has complete access to the dataset, the querier may be hacked, 
bribed, coerced, or otherwise corrupted; in this case, the querier would leak the entire dataset 
to a malicious adversary. 
 
An honest but curious querier threatens the system by accessing information beyond his 
authorized level, which violates the privacy of the individuals to whom the genomes in the 
database belong. The people who have their genomic data in Alice’s database consent to a 
specific set of querying to be performed. While honest but curious Bob may only be trying to 
get additional data from the dataset, he is violating the privacy of the individuals in the 
dataset which Alice has promised to protect. 
 
A malicious querier threatens the system by attempting to break the core security of the 
system, which relies on the security of Alice’s secret key.  
 

1.3.2 External threats to the system 
External threats to the system exists beyond Alice and Bob. In the system, external threats are 
malicious third-party actors that attempt to gain access to the some or all of the plaintext 
genome dataset.  
 
Motivations for a third-party attacker to violate the privacy of the system range from curiosity 
to monetary gain. If this system is implemented into consumer DNA services (such as 
23AndMe) an attacker would be motivated to breach the system in order to run their 
unauthorized queries on the individuals in the dataset, find a familial association between a 
police-held genome and the genomes in the dataset (as in the Golden State Killer case); 
identify genes in an inappositely acquired genome for persecution, monetary gain, or 
curiosity (for example, a fan purchasing Madonna’s personal assets containing her DNA or 
police swabbing discarded items for prosecution). 
 
This threat can be realized in several different ways. 
 
A third-party attacker can attempt to gain access to the plaintext dataset by impersonating, 
coercing, or otherwise corrupting Alice and the Trusted Environment to expose the plaintext 
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dataset. In this scenario, there is no cryptographic defense to protect Alice. Instead, external 
authentication systems (such as multi-factor authentication or usage of an HSM) are expected 
to be used. The attacker can also attempt to gain access to Alice’s secret key to decrypt the 
encrypted dataset in the Untrusted Environment. Thus, we expect Alice to store her secret key 
using an HSM. 
 
A third-party attacker can also attempt to gain access to the parts of the dataset by corrupting 
Bob. If Bob is corrupted, the third-party gets access to the data that Bob has, which is the 
encrypted dataset, and the result of the query. In our threat model, we assume that Bob is 
honest but curious and therefore a malicious third-party impersonating Bob would corrupt the 
privacy of the system. We assume that common computer-security authorization defenses 
have been placed to prevent a corrupted Bob or a corrupted Untrusted Environment from 
launching a CCA1 or CCA2 attack to recover Alice’s secret key. Such defenses include 
authorization level assignment and management during login to the system or login with 
client-side certificates issued by a trusted certificate authority, both of which can occur in an 
offline setting to decrease vulnerability to hacking. 
 
We expect the system described in this thesis to be run within a reasonably secure 
infrastructure to minimize these failure points. 
 
We also expect Alice and Bob to communicate through secure channels, using technology 
such as TLS to create a channel that preserves the integrity, confidentiality, integrity, and 
availability of Bob’s queries that Bob sends to Alice, and the encrypted genome that Alice 
sends to Bob along with, if Bob is honest but curious, the re-encrypted query. It should be 
noted that while Alice has a symmetric secret key, Bob has a public/private key pair 
generated by PKE. 
 

1.3.3 Who has access to what assets, and why? 
Alice has access to the database containing genomes, her secret key, Bob’s public key, and 
the patterns (nucleotide sequences) that Bob would like to use as queries on the database. 
Alice uploads all this information to the Trusted Environment. 
 
The trusted environment must access Bob’s public key to re-encrypt the ciphertext query 
result such that Bob can decrypt it with his secret key. 
 
Bob has access to the homomorphically encrypted genome, which is encrypted with Alice’s 
secret key. If Bob is honest but curious, he also has access to the re-encrypted result of his 
query from the Untrusted System. 
 
If Bob is malicious or corrupted, he gets the plaintext result of the query from the Untrusted 
System. 
 
In other words, Bob is more trusted (honest but curious, not malicious), the Untrusted 
Environment will not see the plaintext result of the query. If Bob is less trusted (malicious or 
corrupted) the Untrusted System will decrypt the result of the query into plaintext to export it 
to Bob. The trust levels between Bob and the Untrusted Environment are inversely correlated 
due to the nature of homomorphic encryption being only IND-CPA, or semantically, secure. 
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1.3.4 Restrictions on the threat model 
In the system, we assume Alice is honest and incorruptible, and that Bob cannot coerce, 
bribe, or otherwise corrupt Alice into giving up the plaintext genomic database or her secret 
key used to encrypt the database. 
 
We assume the Trusted Environment is incorruptible. This can be realized in the real world 
via the use of a Hardware Secure Module (HSM) to store Alice’s secret key. 
 
We assume that the Untrusted Environment will not launch a regular or adaptive chosen 
ciphertext attack on the encrypted database. Most modern ciphers are immune to such attacks 
and exhibit IND-CCA2 security. However, by definition of IND-CCA2, these ciphers do not 
exhibit homomorphism, and thus systems that utilize such encryptions require the decryption 
of data before querying the system. In the system implemented in this thesis, we relax the 
requirement CAA2 security down to CPA security, the maximum security level guaranteed 
by FHE schemes. Although we downgrade the security level of system, we relieve the 
vulnerability of having data in plaintext in an untrusted environment. 
 
If Bob is honest but curious, we assume that Bob will not launch a chosen ciphertext attack to 
recover Alice’s secret key. 
 
If Bob is malicious or corrupted, we assume that Bob will not influence the Untrusted 
Environment to launch a CCA1 or CCA2 attack. 
 

1.3.5 Total Leakage of the System 
If Alice is corrupted, or if the Untrusted System launches a chosen ciphertext attack, the 
security of the system is broken. Alice has populated the dataset, and thus no cryptographic 
primitive will prevent her from knowing the data in the dataset. The Untrusted System 
homomorphically operates on the encrypted database, operations which are only secure 
against chosen plaintext attacks; or in other words, protect against the semantic security of 
the system. 
 
The most secure system that protects the privacy of the database completely is one in which 
Bob does not query the dataset. In this thesis, we address the case in which the querier needs 
some access to the dataset to reflect the real-world use cases of genomic data; thus, we relax 
some security guarantees. 
 

1.3.6 Relaxation of the security of the system for increased functionality of the 
operational model 

Because the dataset is symmetrically encrypted, the security of the system depends on the 
security of Alice’s secret key. Because the dataset is encrypted using FHE, only IND-CPA 
security is guaranteed, under the assumption that Learning With Errors (LWE) [100] is 
secure.  
 
This system was created to allow restricted access to a person’s genome. Therefore, part of 
the operational model requires that some information about the genome will be leaked during 
normal function; namely, the result of the query must be decrypted at some point.  
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The system does not attempt to, and cannot, restrict all access to the private genome; instead, 
this system minimizes the amount of information exposed to a querier, or in other words, 
reveals the minimum set of information required to answer a query. 
 
In short, the system lets you ask questions without revealing the source.  
 
It allows for only consented queries; for example, letting researchers identify the incidence of 
diabetes as consented to by the population, but not of schizophrenia (as in the case of ASU 
researchers violating the privacy of the Havasupai population’s genomes).  
 
 

1.3.7 Security Policy  
The security policy is twofold. First, only authorized users shall run authorized queries on the 
database. Second, only the owner of the database shall be able to see the plaintext values in 
the dataset. 
 
As in traditional large-scale security systems, a separate certificate authority shall 
authenticate Bob before letting him access the system.  
 
The underlying mathematical properties of homomorphic encryption will allow only 
authorized queries to be run on the database and will only allow the owner of the database to 
access the plaintext values of the dataset. 
 

1.3.8 Use cases  
One example of a use case in this model is as follows: Alice is the principal investigator of a 
research lab. She has an employee, Bob. Bob is not malicious, but he is badly educated on 
rules as to how to handle sensitive data. Alice wants to allow Bob to perform some analysis 
on her DNA database—specifically, she wants Bob to identify the number of individuals in 
the database with gene X. She wants Bob to only perform the specific query that she allows 
for; in other words, Bob should not be able to glean any more information about the genome 
such as reconstruction of genome or search for additional genes.  
 
Another use case that fits this model: Alice is the PI in the above example wanting Bob to 
identify how many individuals in her database have gene X.  One day, Bob is hacked, and an 
unauthorized attacker tries to read the genomes that Alice sent Bob.  
 
Another use case: Alice writes a research article discussing the prevalence of gene X in a 
populations DNA, and Bob is a malicious reviewer at the journal. Bob must verify Alice’s 
claims about the prevalence of the gene in her population, but Bob also wants to glean 
additional information about the population (for example, if they have gene Y). The system is 
created so that Bob can only run the analysis that Alice allows. 

1.3.9 Fewer parties = fewer links in the chain 
Alice wants to allow Bob to run allowed queries directly on her database, without allowing 
for a compromised impersonator to see the plaintext values of the dataset.  
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This can be visualized as follows: 
 
 

 
 

Figure 1.1: A secure system in which Alice and Bob are the only participants. 
 

In reality, Alice does not communicate with Bob directly. Alice interacts with her computer 
(which we shall call the Trusted Environment). Bob interacts with his computer (which we 
shall call the Untrusted Environment). Alice and Bob communicate through these 
environments. This can be visualized as follows: 
 
 
 

 
 

Figure 1.2: A secure system in which Alice and Bob are the only participants, showing Alice 
interacting with her trusted environment and Bob interacting with his untrusted environment. 

 
In this model, there are two parties, and only one can be corrupted. However, communication 
still exists between the Trusted Environment and the Untrusted environment. If Bob is 
corrupted, he can maliciously communicate with the Trusted Environment. 
 
Therefore, we desire to further separate the communication between Alice and Bob. The 
figure below shows the final system, in which Alice’s trusted environment is separated from 
Bob’s untrusted environment. 
 

Traditionally, this use case is managed by a third-party server that controls 
Bob’s access to the database. The authentication server either contains direct 
access to the database or sends authorized query.  
 
The Authentication Server not only injects additional trust requirements into 
the system, it becomes the weak link—if the authentication server falls, the 
DNA database is exposed. While Bob can only be compromised directly, the 
authentication server can be compromised both directly through a hack and 
indirectly by a compromised Bob. 
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Figure 1.3: A system in which the Untrusted System acts on the encrypted database without querying 

the Trusted Environment 
 

1.3.10 Trusted vs. Untrusted environments 

The system consists of a trusted environment and an untrusted environment. The trusted 
environment has access to the database and performs the initial homomorphic encryption of 
the entire database. This operation occurs with a single master encryption and decryption key 
and is stored within the trusted system. Section 4 describes this system in detail. 
 
The trusted environment generates a new master decryption key each time a new database is 
encrypted. This prevents misuse of leaked keys affecting many databases. 
 
The trusted environment does not store any database information, neither in encrypted nor 
plaintext format, other than the master encrypt and decrypt key. Instead, it only exports the 
homomorphically encrypted database out. The trusted system is a minimal module meant to 
perform the initial encryption of the database. Additionally, the system is designed such that 
it supports incremental updates to the database. 
 
Additionally, the trusted environment exports a re-encryption key for each query made, 
which defined the range of data a query is authorized to access. This re-encryption key is 
linked to a query, a querier’s ID, and is symmetrically encrypted and digitally signed. 
 
The untrusted environment interacts with the homomorphically encrypted database and the 
query.  
 
In the untrusted environment, the query is corruptible. In other words, the query can be 
maliciously modified to attempt to access a greater range of data than is authorized. The 
purpose of the re-encryption key is to identify when a query is attempting to access a greater 
amount of data than is appropriate.  
 
The untrusted environment contains the system to access the database and perform logical 
operations on the database. Although this system is in a corruptible location, unauthorized 
access is prevented in several ways. First, the data in the database is encrypted. Second, the 
relationship between the queries and the portioned key are validated, assuring that no queries 
try to badly access the encrypted data. 
 
The untrusted environment outputs a single data value for each query in encrypted format. 
The key to decrypt this result lays in the trusted environment only. 
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1.4 Threat model: parties 
The threat model consists of a database, database operator, querier, and queries. Access 
control is built into the system via the use of homomorphic encryption. 

  
The Database contains sensitive data; authorized parties should only perform authorized 
actions on the database. 

  
The database operator is honest but curious. The database operator converts the queries made 
from the querier to actions on the database and can see the queries they receive. 
 
The database operator is the entity that interacts most closely with the database. The database 
operator interacts with encrypted data only. Even though the database operator is corruptible, 
the data the operator cannot see the plaintext data it interacts with. This assures that in the 
case of an adversarial operator, the data in the database remains secret. 

  
The querier can be corrupted.  
 
The querier makes requests to get certain information from the database. To constrain the 
scope of the system, we assume that the queries made by the querier cannot be modified after 
they are made. The querier sometimes is honest, but sometimes can be a corrupted entity 
trying to access the database beyond their authorized access level. Therefore, queries should 
be checked for legitimacy within the system. 

  
The encryption of the database, and the created functional interface into the database, will 
only allow authorized parties to decrypt the results of queries on the database. 
 

1.5 Threat Model: assets 
A threat is a combination of a vulnerability and a motivated adversary [9] . In the threat 
model, we will identify who the adversary is and the capabilities they are assumed to have. 
 
The following secretion defines the threat model of the system with the purpose of narrowing 
the scope of this project to focus on specific cybersecurity applications [65] .  
 

1.5.1 Central security objective 
The central security objective is to prevent individuals from gaining unauthorized access to 
any subset of data in a database containing DNA data. 
 

1.5.2 Assets in the trusted system 
The trusted system contains two central assets: the master key and the plaintext dataset. 
Secondary assets include the querier’s public key and the generated re-encryption key, and 
the generated public/private key pair. 
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In this thesis, the goal is to protect both the master key and the plaintext dataset from leaking 
into a malicious party. 
 
We constrain the definition of a malicious party to be an insider threat or an eavesdropper in 
a cloud-based environment. The system is not built to protect against parties with very high 
computing power and nearly unlimited technical resources, such as threats posed by nation 
states.  
 
Some examples of real world threats to genomic datasets are: researchers in clinical settings 
with access to the dataset that do not abide cryptographic and security regulations to protect 
patients’ data; insider threats selling or sharing patient data; bad-actor researchers with access 
to the dataset that share the dataset with other laboratories, performing research beyond the 
patients’ agreed scope, especially research that is culturally and religiously sensitive such as 
in the case of the usage of indigenous people’s genomic data in ways that violated their 
religious and cultural beliefs [43] ; and cloud based provides that have a security breach of 
their own, leaking data of their customers, leading to financial penalties on entities holding 
regulated health data. 
 
If a master key is corrupted, the database may be completely unencrypted to exist in plaintext 
only. Therefore, the highest priority asset to protect is the master key. 
 
The second asset, the plaintext dataset, is equally as important. The plaintext dataset contains 
sensitive genomic data and should not be seen by entities without authorization. 
 
Finally, the trusted system contains the protocol to homomorphically encrypt the dataset. This 
asset is open source and does not need to be protected—knowledge of the encryption protocol 
does not leak information about the data to be encrypted.  
 

1.5.3 Assets in the untrusted system 
The untrusted system contains as assets: the homomorphically encrypted dataset, the 
homomorphically encrypted result of the query, and the query protocols. 
 
The first asset is the homomorphically encrypted dataset. The encrypted dataset is 
unprotected as it does not leak meaningful information about the private genomic dataset.  
The second asset is the query which exists in ciphertext form. In this scenario, the query that 
has been encrypted is not protected but certain security requirements are defined. The 
ciphertext query should not be forged, and the query should be bound to the querier.  
 
This system does not protect the query, but instead protects the integrity and non-repudiation 
of the query against untrusted environments and insider threats. Finally, the system protects 
the access to the dataset. Each query must only access the minimal subset of the dataset 
required to answer the query. 
 
These assets are all protected against an insider threat wishing to analyze the dataset beyond 
what is necessary for them to complete their task. For example, a research assistant with 
access to patient DNA data should not be able to access portions of the genome beyond what 
is needed for their analysis. In short, these informational assets should be protected against 
the curiosity of an individual without true need to access the data. 
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1.6 Operational model 
The following secretion defines the operational model of the system with the purpose of 
defining the supported functionalities of the system, and the allowed and disallowed 
functions that build up the definition of a breach of security [65] .  
 
The purpose of the operational model is to constrain the querier to access the minimum 
required data they need to perform their analysis. 
 

1.6.1 Functionalities supported by the system 

Using the system, the following functionalities are supported on the database, where ‘loci’ 
refers to a specific location in the genome. 

 
For one individual, run analysis on DNA via direct DNA access. This includes looking up 
specific loci, looking up loci range, and searching for an allele in the DNA. It is also possible 
to access personally identifiable information in the database, phenotypic information, and 
other data held in the database.  
 
Using the system, it is possible to run a comparative analysis on many individuals in a 
database and run statistical operations. It is possible to access the DNA strings of many 
individuals, a specific locus, or a loci range for uses of comparative and statical analysis. 
 
By using the query operations exposed to the user, the system can answer questions such as: 
does an individual have a gene; what the frequency of a gene in the system is or in a subset of 
the individuals in the system; what genetic commonalities between individuals or between a 
demographic of individuals are; and what mutations are present in a gene for an individual. 
 

1.6.2 Allowed queries 
 

1.6.2.1 Substring Search 
Substring Search does a pattern matching operation to identify if a substring is located in a 
string. In practice, Substring Search can be used to identify if an individual has a gene, and at 
which locus the gene is located at.  
 

1.6.2.2 Percent Match 
Percent Match returns the percentage of matching nucleotides between two genomes, or 
between a genome and a sequence of nucleotides (a gene or a gene with a mutation). When 
two genomes are known, Percent Match can be used to identify familial relationships 
between two individuals. For example, 23 and Me detects related individuals based on the 
percent of DNA shared between two individuals, and the amount of contiguous matching 
segments that are at least 700 SNPs long. 
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1.6.2.3 Homolog Search 
Homolog Search allows for searching for mutation through the use of wildcards. The input to 
the function is a sequence of nucleotides with wildcards, and the function returns the 
sequence in the genome. For example, given genome “aaaaggcgaaaagtcg” and wildcard 
pattern “agXcg”, homolog search returns two matching sequences: “aggcg” and “agtcg”. 
 

1.6.3 Disallowed queries 
The querier shall not be able to modify the database via a read or write operation, or perform 
a query beyond which has been authorized by the database owner.  
 
Given data that resides in the database, the querier shall not be able to request additional 
attributes located in either the row or column of that data. In other words, the querier shall not 
access additional data on the individual, even if they have one or more data on the individual. 
For example, given a phenotype, the querier shall not be able to query the DNA string, and 
given the DNA string or substring, shall not be able to query other attributes such as ID, 
name, or phenotype. 
 
For all queries, given a value in a row in the database, the query shall not return the entire 
row, or another value in the row. Similarly, given a value in a column, the query shall not 
return related row values. 
 

1.6.4 Access control is managed via symmetric encryption 
Because the genomic dataset is symmetrically encrypted, queries must operate on patterns 
that are also symmetrically encrypted. In the system, Bob must send his patterns to Alice who 
will use the trusted system to symmetrically encrypt the patterns.  
 
This gives Alice total control on the subsequences that are used to query a pattern-match 
request on the genome.  
 
In the real-world example, this would correspond to a participant in a research study 
encrypting nucleotide sequences that the researcher has requested to study. Because the 
owner of the dataset must encrypt queries on the dataset symmetrically, the owner of the 
dataset controls which nucleotide sequences may be used to pattern match on the genome.  
 
Access control is approved through the owner of the dataset and enforced through 
homomorphic encryption; by definition of symmetric homomorphism, it is not possible to 
query the dataset with strings that have not been encrypted by the dataset owner. 
 

1.6.5 Key management 
Given a secure key to the database and a querier’s public key, a new key is generated called a 
“re-encryption key” that is used to re-encrypt the ciphertext result of the dataset so that the 
querier can decrypt it with their private key.  
 
In the system, re-encryption occurs in the trusted environment. The re-encryption protocol 
decrypts the Learning With Errors ciphertext result from the untrusted environment and 
encrypts it with BFV, a scheme that supports PKE and therefore proxy re-encryption (more 
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details are in section 4.1.3.1.3. Thus, during re-encryption the plaintext result of the query 
exists in the trusted environment, which Alice has access to. In order to reduce the overall 
required trust in the system, this re-encryption protocol should be run as a separate service on 
a secure HSM so that Alice is not able to see the result of Bob’s query. 
 

1.6.6 Information flow sequence 
A querier (Bob) passes their desired patterns to query on to the database owner (Alice). Alice 
passes the patterns, her secret key, and her genomic dataset to the Trusted System.  
 
The trusted system symmetrically encrypts the genomic dataset and the patterns to be used in 
querying with Alice’s secret key. The trusted system serializes the genome and the patterns 
into files and compresses the file set to download onto Alice’s machine. 
 
Alice then gives the encrypted file set to Bob, who uploads it to the Untrusted System. The 
untrusted system listens to a query command from Bob, and then performs encrypted queries 
on the encrypted genomic dataset. Upon completion of the dataset, the untrusted system 
outputs the encrypted results. 
 
Re-encryption of the result then occurs so that Bob can decrypt the query with his private 
key. Details on re-encryption are discussed in section 4.1.3.1 
 

1.6.7 Security violation definition 
A security violation is defined as an access violation in which a querier tries to access a 
greater subset of the database than they are allowed. 
 

1.6.8 Internal database representation 
 
The trusted system stored the genome sequence into a one-hot encoded representation 
internally. It stores the patterns to be compared against the genome in the same one-hot 
encoded representation. 
 
Each item in the dataset must consist of only the characters a t g c. 
 
Internally, each genome and pattern is converted into a 4 by <sequence length> array, where 
each row in the array is a one-hot encoded location of a (index 0), c (index 1), g (index 2), t 
(index 3).  
 
Tables 1.1 and 1.2 below show the internal representation of data in plaintext form, where n 
is the length of the genome and m is the length of each pattern (the lengths of each pattern 
need not be the same).  
 
 

Table 1.1: Plaintext representation genomes in the system. 
 

Genome (nucleotide sequence) 

[ [ {0, 1}n], [{0, 1}n] , [{0, 1}n] , [{0, 1}n] ] 
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Table 1.2: Plaintext representation of patterns in the system. 

 

Patterns (nucleotide sequence) 

[ [ {0, 1}m], [ {0, 1}m], [ {0, 1}m], [ {0, 1}m]] 

[ [ {0, 1}m], [ {0, 1}m], [ {0, 1}m], [ {0, 1}m]] 

 
In the untrusted system, all data exists in encrypted form. Tables 1.3 and 1.4 show this 
representation. In this system, Enc is the Learning With Errors binary encryption algorithm 
and sk is Alice’s secret key. 

 
Table 1.3: Encrypted representation of a genome in the system. 

 

Genome (nucleotide sequence) 

[ [ Encsk({0, 1}n)], [ Encsk({0, 1}n)], [ Encsk({0, 1}n)], [ Encsk({0, 1}n)]] 

 
 
 

Table 1.2: Encrypted representation of patterns in the system. 
 

Patterns (nucleotide sequence) 

[ [ Encsk({0, 1}m)], [ Encsk({0, 1}m)], [ Encsk({0, 1}m)], [ Encsk({0, 1}m)]] 

[ [ Encsk({0, 1}m)], [ Encsk({0, 1}m)], [ Encsk({0, 1}m)], [ Encsk({0, 1}m)]] 

… 
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2 Privacy 
“It is outrageous and grossly offensive that my DNA could be auctioned for sale to the 

general public.” – Madonna 
 
Information security is typically defined by three tenets: confidentiality, integrity, and 
privacy. In other words, cyber systems attempt to protect personal data by preventing 
unauthorized disclosure of information, preventing unauthorized modification of information, 
and preventing unauthorized withholding of information. This thesis focuses on building a 
system that secures the confidentiality of data.  
 
In other words, the threat of disclosure of data is addressed by creating a system with 
minimized vulnerabilities to leakage attacks. 
 
In this paper, the security policy is simple: unauthorized users shall not have access to any 
part of an individual’s genome located in the database. Authorization is defined by the owner 
of the data; in other words, only the owner of the data shall have access to the genomes of 
individuals in the database. Parties other than the original owner shall only be given the result 
of their queries on the database. 
 

2.1 Personal Privacy 
Privacy is a core tenant of security. When the privacy, or confidentiality, of data fails, this 
data can be misused. Misuse of an individual’s data can occur at the hands of other 
individuals and organizations. 
 
Third parties often have legitimate reasons for needing to access some aspect of an 
individual’s personal data. However, rarely do third parties need to access the entire corpus of 
data belonging to an individual. For example, a third party may need to check the familial 
relationship of two individuals. To check relation, the party will have to identify percentage 
match between two genomes and identify contiguous stretches of genomes that match to a 
certain degree [51] .  
 
Ideally, the party will only have access to the information it needs to answer its query. If a 
party needs to know the percentage of genome match, the length of contiguous matching 
genomes, or the percent match between areas of a genome, the party should only get 
responses to these questions and nothing more. The party should not be able to know other 
genes inside an individual’s genome, other mutations in an individual’s genome, or other 
relevant health data that can be extracted from a genome. 
 
Why is it important to control the extent of the information a party can gain from a genome?  
 
Genomic analysis is a powerful tool that can be used for “good” in many contexts. Within the 
general ethical rules of society, there are many appropriate contexts for genome analysis: 
emergency services may need to identify an individual in critical care; police may need to 
ascertain the relationship between a victim and an attacker; individuals may be curious as to 
their familial relationship to another individual; genes that indicate an increased risk to 
adverse phenotypes should be identified to allow for better preventative care. 
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However, indiscriminate access to an individual’s genome easily leads to corruption of, at 
best, well-intentioned parties. Emergency services may pass genetic information to insurance 
companies, who may choose to illegally restrict coverage of an individual on the basis of 
their genotypic data. Police may use third party datasets to prosecute individuals based on 
information contained within these genome datasets. Third parties meant for genealogy 
exploration may release private health information contained an individual’s genome for 
monetary gain. Well-intentioned healthcare practitioners with access to an individual’s 
genome may pass the genome to parties that will use the data to perform research that the 
individual does not consent to. 
 
While it may seem improbable that bad actors reside within these structures that are ingrained 
into society, real world examples of each of these abuses has occurred. 
 
In 1989, Arizona State University approved a study to identify the incidence of diabetes 
within the Havasupai population, a Native American tribe native to and living in Arizona [87] 
[16] . Researchers John Martin and Teri Markow collected blood samples from tribal 
members and used genomic technology, which at the time was in its rudimentary stages, to 
assess the incidence of genomic markers for diabetes within the tribe.  
 
In this complicated case, which included omission of informed consent from the participants, 
the researchers used the genomic samples to identify the incidence of other diseases that 
members of the tribe had not consented to, namely schizophrenia. Over several years, several 
other abuses of the data occurred, including the extraction and storage of cell lines from the 
blood cultures in 1991 without consent [87] . Furthermore, the genetic information was stored 
and shared with researchers at both the University of Arizona and the University of Chicago 
to public papers about “inbreeding”, alcoholism, and origin of migration of the tribe from 
Asia [96] . Not only did the resultant research come from gross misuse of the tribe’s genomic 
data, the research performed contracted the tribe’s religious beliefs, specifically religious 
laws governing familial origin and links within the tribe [96] [48]  [49] . In 2003 these abuses 
were discovered by the tribe, and they subsequently sued the Arizona Board of Regents in 
2008 for invasion of personal, religious, and cultural privacy [49] . 
 
In recent years, police usage of genomic data has increased both with ease of collection of 
genomic information and with the increased number of commercial parties privy to an 
individual’s genomic data according to the American Civil Liberties Union (ACLU) [94] . In 
2015, police in Florida began implementing “Stop and Frisk”, a program that allows police to 
collect genomic data “voluntarily” from individuals and minors, without any of the 
safeguards that protect personal privacy guaranteed by the 4th Amendment of the US 
Constitution  [57] , especially the requirement for police to have reasonable suspicion of a 
crime before requiring a search. Additionally, in the absence of a legally ordered warrant or 
subpoena, law enforcement may simply purchase genomic data from private organizations 
outright [27] , which is outside the restrictions granted by the Fourth Amendment [27] [95] . 
 
A 2003 report by the ACLU outlined that despite discrimination laws currently in place, 
personal health data is routinely shared between healthcare providers and insurance 
providers. The report outlines the consequences for genomic data as discrimination by 
insurers, employment discrimination, and genetic spying, the improper analysis of high-
profile genetic information such as that belonging to politicians or celebrities [95] . In a high 
profile 2018 case, Madonna famously lost her bid to stop the auction of personal items 
including those which contained her DNA, such as a hairbrush containing some of her hair 
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[56] . The case was tried in the state court in New York which ruled that since the items were 
stolen from her in 2004, the statute of limitations (three years in New York) prevented her 
from suing to get them back.  In this case, the larger, and to genomic security researchers the 
more relevant, point regarding sale of genetic information was not ruled on by the court [50]  
.  
 
Since the 2018 case, the courts have upheld the sale of genomic data to law enforcement [44] 
, allowed civilians to identify the Golden State Killer by accessing publicly available genomic 
data and upheld a conviction based on this data [50] , allowed police to use genetic data 
collected from newborn genetic screening to search for suspects [44] , and upheld the ability 
to collect DNA at a private residence without a warrant to convict a suspect in South Dakota 
State v. Bentass [82] . Specifically, the court ruled that “Because defendant had no reasonable 
expectation of privacy in the items searched, the Fourth Amendment does not apply to the 
DNA testing performed on those items” [35] . In each of these cases, the defendants claimed 
that DNA data is too sensitive to be treated in the same manner as other items to which a 
person does not have an expectation of privacy and needs additional protection under the law. 
The courts did not agree. 
 
The legal challenges of protecting DNA in law enforcement contexts cannot be understated. 
Should the Golden State killer be let free because the data came from a public database? 
Should Bentass, who was genetically linked to a baby found in a ditch [35] , escape 
conviction because her DNA was extracted without due process? Should doctors stop 
working with insurance because of the risks of discrimination?  
 
Private companies like GEDMatch, a genealogical database, can and are used as tools for law 
enforcement [32] . In the Golden State Killer case, police uploaded a genetic profile 
generated from a crime-scene investigation to the GEDMatch website, and then used the tools 
on that website to identify the great-great-great-grandparents of the killer, and then 
reconstructed the family tree until they were able to identify the living relations of the 
individual [54] . Joseph James DeAngelo was arrested 44 years after he committed the initial  
crimes, including at least 12 murders, 50 rapes, and 100 burglaries, based on this evidence. 
 
This case highlights that the privacy of an individual is directly related to the privacy of their 
direct relations  [86] . In this case, the result was justice. The ACLU describes this privacy as 
“networked privacy” [32] , comparing the mechanisms of finding an individual similar to 
Facebook’s networking API, which describes members on the site in a connected traversable 
graph.  
 
In the words of Eric Rescorola, CTO of Firefox, for publicly available genomic tools the 
“intended use case and the adversarial use case” are the same [86] . Therein lays the 
difficulty, and to some the impossibility [75] , of creating a legal system to protect the rights 
of individuals. 
 
Genomic data is the most deeply identifying feature of an individual. It is the clearest 
identifier of the human body; of human lineage; and with the rising field of epigenetics, 
which studies how environmental factors after birth influence the gene expression of an both 
an individual and the descendants of that individual, of human actions [31] .   
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This thesis posits a solution to address the challenge of keeping an individual’s genomic data 
private while still allowing (hopefully) honest but curious parties to extract meaningful data 
from it. 
 

2.1.1 Keeping data private from other individuals 
Linda Avey, cofounder of 23andMe, said “it is a fallacy to think that genomic data can be 
fully anonymized” [98] . And in the words of Laura Lyman Rodriguez, the director of policy, 
communications and education at the National Human Genome Research Institute, “DNA is 
so unique, and there are so many data sources out there, that it is incredibly hard to fully 
anonymize — and more so to promise and provide any absolute guarantee that the data are 
anonymized”  [98] .  
 
The system described and prototyped in this thesis does not address all possible genomic 
misuse scenarios. Instead, the system protects against honest but curious parties. It allows 
only that access to which the owner (in the crypto-game, Alice) permits. By leveraging 
homomorphic encryption, the system removes the requirement of a trusted third party to 
police allowed and disallowed queries. In this system, the only parties are Alice and her 
computer, and Bob and his computer. 
 
For example, consider the scenario in which a patient (Alice) would like to know if she is an 
increased candidate for breast cancer. She does not feel comfortable allowing her physician to 
know other information about her genome. In this scenario, the physician can tell Alice which 
genes they would like to assess (for example, a mutation in her BRCA1/2 genes). 
 
Perhaps it may seem contrived that Alice would not want to hide data from her physician; 
consider the case in which a consumer DNA company like 23AndMe wants to be able to 
check for certain traits, but some customers may not want the company to know other traits 
such as ethnic ancestry or markers for addiction likelihood. In this case, customers can 
control which data the company gets to run analytics on. 
 
In the ASU-Havasupai case, the Havasupai population consented for one trait—diabetes—to 
be analyzed by ASU researchers. Using this system, Havasupai volunteers would be able to 
symmetrically encrypt only the genes requested by the original researchers to look for the 
incidence of diabetes. Without the active consent of the study participants, the researchers 
cannot look for other genes in the genome. Additionally, researchers cannot decrypt the 
genomes to make copies, storing the participant’s genomic data for longer than originally 
agreed upon. 
 
Genomic research is critical to advances in healthcare. However, no participant should have 
to give up their complete control of their genome to allow for targeted research to occur on 
their genetic material. The system proposed in this paper allows for the consented querying of 
genetic information, while preventing gross negligence of this private data. We see this 
system as being a step in protecting patients’ rights.  
 
Patients should be in control of their privacy; when they go to the doctor’s office, and when 
they selflessly volunteer to further medical research.  
 
It the absence of laws and policy, and especially in societies in which the legal system is both 
impacted by the political environment and impacts on healthcare regulations, privacy 
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preserving technology can assure that healthcare goals are met while allowing individuals to 
implement, rather than exercise, a right to privacy. 
 

2.1.2 Limitations of the system 
The system described in this paper only works in cases in which one party holds the data, and 
the other party is querying the data. This system provides no guarantees of privacy in the case 
in which one party both owns and queries the databases, such as in the case of police genomic 
datasets.  
 

2.1.3 Challenges in restricting data usage to one party 
One of the central use cases of this system is to restrict access to genomic information to one 
party. One party can encrypt their genome and queries on that genome such that only one 
other party can decrypt.  
 
Thus, passing genomic data from one party to the next requires active participation from the 
party that owns the genomic data, since the owner must both encrypt the new party's patterns 
and generate re-encryption keys specific for the new party. This prevents scenarios witnessed 
in the ASU-Havasupai case in which the participants’ genomes were freely passed from one 
researcher to the next without active consent from the participants in the study. 
 

2.2 The need for privacy despite exiting legal frameworks 
One of the challenges of creating legal frameworks to control authorized access to genomes is 
that the intended use case is the same as the adversarial use case; the trusted party’s 
operations on the genome are the same as the untrusted party’s operations on the genome. It 
is therefore difficult to create legislation that allows some parties access to genomes, 
especially when private consumer facing companies have access to so much individual 
genetic information and yet, as private companies, have fewer restrictions on to whom they 
can share or sell this data. 
 
It has been noted by several legal scholars [25]  that laws governing genomic data are not 
able to evolve as quickly as genomic analytics are advancing. While legal frameworks 
protecting privacy do exist such as the Genomic Privacy Act, Genetic Information 
Nondiscrimination Act (GINA) and HIPAA, these laws restrict only a subset of 
organizations, and have minimal impact on private companies that process genomic data [25]  
 
The legality of the use of genomic data is often determined on a case-by-case basis. As seen 
in the cases mentioned in this chapter, courts often decrease restrictions on the privacy of 
genomic information in favor of allowing for relatively straightforward persecution cases, 
such as in the persecution of the Golden State Killer; however, the precedent set by these 
cases is then used to allow for broader access to genomic data in cases that are not strictly 
criminal, such as the case of persecution of individuals based on discarded genomic material 
without judicial oversight or a warrant process. 
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3 Related work 
While this thesis sits on the foundation set by past research in cryptography, DNA security, 
and security systems, the central differentiation between this thesis and past work, and the 
value add of this thesis, is the implementation of cryptographic research into a visual user 
interface useable by professionals without software development experience. 
 
Many software libraries and APIs provide encryption and homomorphic encryption 
functions. However, the purpose of this thesis is to create a complete system with a visual 
user interface, usable by researchers with no software development or cryptography 
experience.  
 
Currently, there is no existing product that allows a user completely or partially encrypt their 
database, export that database and be able to decrypt it, and then run operations on the 
encrypted database in an untrusted online environment. 
 
3.1 Background on Homomorphic Encryption 

3.1.1 Homomorphic encryption in insecure environments 
Much of the literature on homomorphic encryption in healthcare settings focuses on the need 
to move sensitive healthcare data to cloud-based systems, which can allow for better sharing 
of data, harness more robust computational power, and allow for more computationally 
expensive analytics to be performed on healthcare data, especially when working with 
Electronic Health Records [100] .  
 
Vengadapurvaja et al (2017) discuss the use of homomorphic encryption to encrypt medical 
image data, allowing it to be uploaded to cloud bases systems. Their solution builds a custom 
homomorphic encryption library with a focus on efficiency of encryption and decryption in a 
cloud system, and their FHE scheme supports multiplication and addition, allowing for basic 
image processing functionalities to be run on the encrypted data. 
 
While their use case focused on the financial sector, Masters et al presented an application of 
the FHE scheme CKKS, an FHE scheme located in the HElib software library, to create a 
secure big data pipeline on financial data. Additionally, they showed that they were able to 
run basic machine learning algorithms on the CKKS encrypted data. Specifically, they ran a 
logistical regression on binary data encrypted with CKKS successfully [66] . 
 
Similarly, as the Masters et al study, FHE has been applied to patient data to support machine 
learning capabilities in an untrusted environment, specifically for cancer research 
applications. In their 2019 paper, Paddock et al encrypted patient identifiers in their database, 
while relevant tags of cancer type were kept in plaintext [72] . The researchers used the 
HomomorphicEncryption library native to R and showed that they were able to train and 
predict on this data set using basic machine learning models. Importantly, they discuss the 
need for a solution that will anonymize data without modifying the original database, stating 
that “past solutions to either completely anonymize data or restrict access through stringent 
data use agreements have limited the utility of abundant and valuable data [72] .”  
 
This study found that while learning on partially encrypted FHE data was time consuming, it 
was possible and successful in a cancer analytics study. The results of this study highlight the 
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need to encrypt databases to allow researchers to use sensitive data in less restricted 
computational environments. 
 
3.1.2 Using Fully Homomorphic Encryption to ensure privacy: technical solutions to 

address criticisms            
Fully homomorphic encryption allows data to be encrypted while it is operated upon, thus 
assuring that even if the encrypted dataset is leaked the privacy of the data remains intact. 
Although FHE offers strong privacy guarantees, primary criticism of FHE systems is that 
they are slow and memory-intensive. Thus, design choices of data representation, scheme 
selection, and parallelization have been selected to reduce runtime and memory usage of each 
operation. 
 
In this section, we explore the challenges of implementing a practical FHE system to explain 
the technical design decisions made in the system. 
 

3.1.2.1 Modern cryptographic schemes should be post-quantum secure 
One of the critiques of relying on cryptography to provide privacy guarantees is security 
properties of cryptographic schemes when operated upon a quantum computer. 
Cryptographic schemes derive their security guarantees from mathematical promises of 
hardness of their primitives; if the underlying primitives are insecure in a post-quantum 
setting, so too is the scheme relying on these primitives.  
 
This critique is legitimate; several schemes have been shown to break under post quantum 
conditions. Schemes that rely on the hardness of the discrete log problem, i.e., computing the 
discrete log in cyclic groups is hard, fail in a post-quantum world since the discrete log 
problem can be solved in polynomial time (efficiently) using a quantum computer as shown 
by Shor’s algorithm for prime factorization [91] . This leads to the insecurity of popular PKE 
schemes such as the Diffie-Helman Key Exchange, RSA, or elliptic-curve cryptosystems. 
  
In this thesis, the homographic protocol used derives its security from the hardness of the 
Learning with Errors problem [84] . Learning With Errors (LWE) is a Lattice-based 
cryptographic primitive; a rigorous reduction from the worst-case of lattice problems that are 
considered secure in post-quantum environments [19] . It is therefore currently believed that 
LWE is secure in post-quantum systems [19] . 
 
3.1.2.1 Systems leveraging homomorphic cryptographic security must speed up 

encryption and operation runtime 
In cryptographic systems, fully homomorphic encryption has been regarded as too slow to be 
usable in practical settings [59] . This is due to a combination of long ciphertext size leading 
to large storage requirements, and lengthy compute time for mathematical operations arising 
from many Fully Homomorphic Encryption schemes such as BGV and CKKS [59] . The 
large ciphertext size arises from large security parameters, including a large plaintext 
modulus and large plaintext size. 
 
Genomic DNA presents a unique challenge to analyze due to its large size and lack of logical 
tokens such as ‘words’ or ‘prefixes’. It is  difficult to know the start locations of each gene in 
the genome and much of DNA consists of non-coding regions, segments of nucleotides that 
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are not meant to be transcribed, and the variable length these non-coding segments as the 
DNA incurs damage and changes during repeated cell replication over the lifetime of the 
organism.  
 
The cryptosystem implemented in this thesis utilizes a the Chillotti-Gama-Georgieva-
Izabachene (CGGI) [21] scheme, which is built upon the LWE primitive.  
 
As background, the Gentry-Sahai-Waters (GSW) homomorphic scheme combines LWE with 
linear algebra to encrypt messages as the eigenvalues of matrixes that have a common 
eigenvector. 
 
Homomorphic encryption incurs noise both during initial encryption and increases the error 
during each homomorphic operation. Homomorphic schemes are said to be ‘leveled’, where 
the level of the ciphertext decreases for each multiplication operation; when the level hits 
zero the ciphertext is no longer decryptable. The result of this is that the number of operations 
on each homomorphic encryption is limited.  
 
For this reason, homomorphic ciphertexts must be periodically refreshed to allow for correct 
decryption. Bootstrapping is a technique proposed by Gentry in his original paper on 
homomorphic encryption to refresh, or reduce the error term, of the homomorphic ciphertext. 
Bootstrapping is a traditionally expensive operation; a 2014 implementation of Halevi and 
Shoup’s bootstrapping algorithm in IBM’s HELib library required approximately six minutes 
per bootstrap operation [46] [47] . In 2015, Ducas and Miccciancio created a scheme, referred 
to as DM or FHEW,  to reduce bootstrapping time dramatically to “less than a second”  [30] , 
but required that only one NAND operation is allowed between consecutive ciphertext 
refreshing operations [102] .  
 
The CGGI scheme replaces the inner product of the GSW scheme with a simpler external 
product between a GSW ciphertext and an LWE ciphertext [21] . CGGI then expresses the 
DM/TFHE bootstrapping scheme in terms of the inner product to reduce bootstrapping time 
from 1 second to less than 0.1 seconds and reduce the bootstrapping key size from 1 GB to 24 
MB without reducing security parameters. Finally, CGGI replaces the exact decomposition 
result with an approximate decomposition result to reduce noise reduction computation time. 
 
The small message space and plaintext modulus required to encrypt one bit, combined with 
the bootstrapping optimizations in the CGGI scheme make the binary homomorphic learning 
with errors scheme perform fast encryption and fast binary operations.  
 

3.1.2.1 Parallelization without synchronization allows for maximal sub-threading 
While the lightweight CGGI scheme provides faster encryption and binary operations, 
parallelization is used to further speed up computations. To be able to use the maximum 
number of sub-threads available on a machine, encryption, decryption, serialization, and 
homomorphic operations (homolog/mutation search, substring search, and pattern match) all 
occur without the need for any synchronization between threads. OpenMP, an open-source 
multi-threading library, allocates the maximum number of sub-threads to be handled by a 
system. This is typically 16 on an 8-core machine and 40 on a 20-core machine. 
 
In order to allow threading to occur without the need for synchronization, the data must be 
represented without the need for ordering of operations.  
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Therefore, the genome is one-hot encoded into a 4 x <genome length> matrix, where each 
row in the matrix corresponds to the positions of each nucleotide in the genome. Each value 
in the matrix is either a 1 or 0 if the nucleotide exists at that position. 
Each pattern is encoded in the same way, into a plaintext 4 x <pattern length> matrix. 
 
During encryption, the structure of the one-hot encoded matrix is preserved. Figure 3.1 below 
illustrates this: 
 
 

 
 
 

Figure 3.1: Visualization of encryption in the system  
 
 
This matrix representation allows for each encrypted bit to be operated on without need for 
synchronization between threads; an encrypted pattern bit and an encrypted genome bit can 
undergo an AND, OR, or XNOR operation independent of other encrypted bits in the system. 
In other words, each bit can be encrypted in parallel, and each encrypted bit can also be 
operated on in parallel. Figure 3.2 below shows a visualization of pattern match when a 
pattern is not found in the genome. 
 
 

 
 

Figure 3.2: visualization of homomorphic pattern match  
 
 



 

Page 31 of 77 
 

By using a matrix representation for the genomic data, all pattern match operations can occur 
without the need for synchronization between threads allows for the maximum number of 
CPU cores available in a system to be utilized at once to allow the maximum number of bits 
in the genome to be operated on at the same time. 
 

3.1.2.1 Cryptographic systems should support memory-constrained environments 
During serialization, each encrypted bit is serialized to a binary file at a time in parallel. The 
size of each ciphertext is small, and therefore each file is approximately 4 KB in size. 
 
The lean CGGI scheme operates on relatively short ciphertexts, thus reducing RAM usage as 
the system runs as well. 
 
Finally, multithreading is controlled by OpenMP which not only automatically tailors the 
number of sub-threads created to the number of processors available but also utilizes a 
shared-memory model for lower memory bandwidth usage. 
 

3.2 Background on existing security systems for DNA 
Security system for databases containing DNA often contain large scale systems that must be 
used as a single unit. However, there is a sizeable amount of research looking into security of 
DNA databases. The following section is an overview of a sampling of research in this field. 
 

3.2.1 Security in DNA databases should be inherent within the database, and not 
guaranteed by external factors 

Research in the security of DNA databases tends to focus on forensic use cases. Much of this 
research is focused on the more urgent need to security on databases as the use case of data in 
DNA database expands [28] , as outlined in Dahl, J. and Saetnan, A’s 2009 paper. 
Additionally, Guillen et al (2000) point out that DNA databases often hold genetic markers as 
well as raw DNA data and discuss the ethical ramifications of preserving the privacy of DNA 
databases for use in a criminal investigation [45] .  
 
The need for security in DNA databases arises from the increased functionality of DNA. Ge, 
J (2020) notes the technical mechanism for searching relatives in DNA databases for forensic 
analysis and details the needs for robust security practices in forensic settings [38] .  
 
In their 2000 paper, Bohannon et al outline a method of implementing forensic DNA 
database to only allow legitimate queries [11] . Specifically, they focus on the requiring prior 
genetic information about an individual to be passed in as input before a query, such as 
familial relation, about that individual can be made on the database. 
 
To address the ability to share DNA data without violating the privacy of personally 
identifiable data in the database, Nassar et al (2019) outline a deterministic method for 
aggregate statistical queries on DNA data [68] . 
 
In a survey of existing literature, Arshad et al (2021) provide outline privacy and security 
challenges of DNA databases and applications accessing those databases[8] . Particularly, 
they highlight the vulnerable software that DNA researchers use while accessing sensitive 
genomic databases.  
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Overall, the existing literature highlight the need to security within genomic databases that 
does not depend on external systems for security and privacy.  
 

3.2.2 Background on advances in private information retrieval 
Advances in encrypted genomic similarly operations have leveraged encryption protocols to 
privately compute across the allelic profiles of many patients. In a 2018 study by Asharov, 
Halevi, Lindel, and Rabin, a Similar Patient Query operation was privately run on remote 
genomic data [5] . This operation was used to find similar patients with similar genomic 
profiles across a large patient dataset while preserving the privacy of each patient’s genomic 
profile from the server. Asharov et. al. demonstrated the private search compare operation via 
applying an approximation method on the compare operation to allow for private 
computation, and then optimization a two-party protocol to complete the operation. Their 
protocol presented low runtime on databases containing thousands of alleles for many 
patients, and showed linearly scaled performance with linearly increasing database size. 
Specifically, the showed the two-party protocol achieved a 1 second performance to identity 
the nearest 5 records to a query on a dataset of size 500 and length 3500 sequences. Asharov 
et al demonstrated that a 2 party protocol combined with private approximation techniques 
can yield approximately 3 times performance gain as compared to existing secure protocols 
that utilize existing edit distance algorithms. Asharov et. al. demonstrated that modified 
protocols can be privacy preserving and show performance gains by leveraging 
approximation algorithms. Their solution also yields performance gains by having the client 
and server pre-process their inputs into efficient data structures. The idea of preprocessing 
inputs to decrease runtime is borrowed in the FlexFHE system; the data is transformed into a 
data structure that can be exploited for performance gains on private operations. 
 
In developing private search on database systems, several papers explore different threat 
models and suggest solutions tailored to different security requirements. In their 2015 paper 
titled Malicious-Client Security in Blind Seer: A Scalable Private DMBS, authors Fish, Vo, 
Krell, Kumarasubramanian, Kolesnikov, Malkin, and Bellovin describe a modified Blind 
Seer database management system that allows client query privacy and server data privacy by 
encrypting the client input with the query evaluation and policy check circuits provided by 
Blind Seer, and encrypting the database record result with a key that is obtained only when 
the query is successfully answered and the privacy policy are found to be followed [36] . In 
this way, they were able to solve a threat model that allows a client and server to 
communicate privately when the client is malicious. Their solution relied on the utilization of 
bloom filters to counteract malicious attempts to modify query results on the client end, an 
improved garbled policy circuit, and an improved modification of the query circuit described 
in Blind Seer [73] .  
 
Exploring private data retrieval under a slightly different threat model in which the server is 
honest but curious and the multiple clients are malicious, 2013 paper by Jarecki, Jutla, 
Krawczyk, Rosu and Steiner explored symmetric private information retrieval [53]  by 
showing a protocol that allowed a client to learn only the information from a database to 
which they were given authorization, while ensuring the privacy of the results of the client’s 
query. Their solution provides for the ability to enforce authorization rules without the 
database owner learning the privacy policy. As part of their solution, they utilized a 
homomorphic signature scheme to sign trapdoors given to the client. The client then 
homomorphically transformed the signatures on their search tokens. Jarecki et al showed that 
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by levering homomorphic signatures, forgery of the tokes or signatures is not possible by 
malicious clients, thus preserving the integrity of the system. 
 
These works show different approaches to privacy preserving database search. All leverage 
unique architectures and specific cryptographic protocols to achieve security against specific 
threat models. Similarly in this work, the architecture is built to support a specific threat 
model as well, and data privacy is provided and client authorization is enforced by the 
underlying homomorphic encryption of the data. 
 

3.3 Encrypted genomic search related work, and how FlexFHE differs 
Much of the related work on encrypted genomic search utilizes a SNP table, encrypting it into 
a tree structure, and doing an encrypted logical traversal to identify string match. For 
example, Mahdi et al. (2021) [63] build a generalize suffix tree from a haplotype SNP 
representation . Figure 3.3, taken from the 2021 paper, shows a sample of the SNP table 
representation used in this paper.  
  
 

 
Figure 3.3 Haplotype SNP representation used in Mahdi et al. 

Taken from source: Mahdi et al 2021[63]  
 
 
Mahdi et al use a set maximal search to perform a pattern match between two SNP tables as 
well as identify differences between a sequence and the genotype.  
 
Instead of using a haplotype SNP data representation, the system described in this thesis 
performs search on a sequenced DNA segment, without the need for a SNP table. While the 
operations performed are similar, the system implemented in this thesis is able to perform 
secure substring search, find the percent match between to sequences, and identify mutations 
via simple wildcard notation on sequences which do not easily have a SNP table 
representation such as plasmids. Additionally, the system is easily extensible to support RNA 
variants using only the RNA sequence, and no additional data.  
 
Another way of approaching encrypted substring search on a string is presented by Bonte and 
Iliashenko in their 2015 paper [13] . In this paper, they split the string into vectors of fixed 
length, and use homomorphic subtraction to perform substring search with a constant 
multiplicative depth. While this system is effective in reducing search time by reducing 
multiplicative depth of homomorphic operations, it utilizes a costly Homomorphic equality 
protocol which utilizes homomorphic AND, Addition, subtraction, and a non-zero check . In 
this protocol, the length of the substring must be known ahead of time as it is used to partition 
and encrypt the larger text, and the text must be re-encrypted for queries of varying sizes. 
 
The protocol described in this thesis is able to encrypt and serialize one bit at a time, allowing 
both for parallelization and for support of memory constrained systems. Additionally, 
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homomorphic operations only work on one bit a time, and equality checking is done via an 
XNOR operation which is relatively fast. Most importantly, the length of the query is 
irrelevant in the encryption of the larger text (genome). The genome may be encrypted once 
and operated on with ciphertexts of any length thereafter. 
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4 System Architecture 
This section provides a technical description of the architecture of the system. 
 

4.1 Addressing the operational model in the context of the threat model 
The purpose of this project is to provide a system that can be used by professionals without a 
software engineering background to provide security to database systems existing in 
untrusted environments. 
 
One of the known difficulties of working with data encrypted with fully homomorphic 
encryption is the lengthy runtime of running operations, making the system inefficient. The 
success of the system comes not from levering fully homomorphic encryption, but rather by 
leveraging a partially homomorphic encryption of the database based on the desired 
operations.  
 
Overall, this software is split into two parts; one which represents an untrusted environment 
and the other which represents a trusted environment.  
 

4.1.1 Trusted environment 
The trusted environment contains the system and software to partially or completely 
homomorphically encrypt a database containing DNA. 
 
The user passes in their database into the software and can then export their partially or 
completely homomorphically encrypted database. The trusted environment stores the master 
key for decryption of the data. Figure 4.1 below represents the encryption of the database in 
the trusted environment. Please note that while not included in the picture, encryption and 
decryption is done via a Master Key stored in the Trusted System. 
 

 
 

Figure 4.1: The trusted system encrypts the database and the query set. 
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4.1.2 Untrusted environment 
The untrusted environment contains all the operations to run on the encrypted database, such 
as direct analysis of one individual’s DNA or aggregate statistical analysis on many 
individuals’ DNA. Figure 4.2 below represents operations run on the encrypted data in the 
untrusted environment.  
 

 
Figure 4.2: The untrusted system operates on the encrypted data. 

 
 

4.1.3 Untrusted environment: analysis of components 
The untrusted environment is meant to model an environment, in which an adversary has 
access to all components in the environment. The following section describes an analysis of 
the assets in the untrusted environment, which are inherently corruptible. 
 
4.1.3.1 Re-encryption to querier’s key: tradeoff between engineering efficiency and 

query confidentiality  
In the untrusted environment, data in the database exists only encrypted form. The data is 
homomorphically encrypted to the master key. In other words, at the completion of a 
functional operation, the result must be decrypted with the master key.  
 
In the operational model, the querier may be corrupted. This is meant to represent both the 
scenario of internal threats, in which a person with access to the database cannot be trusted, 
and the scenario of cloud-based computations, in which computations run on external servers 
can be eavesdropped upon and intercepted. 
 
For this reason, it is undesirable for master key to be used in the untrusted environment, or 
for the querier to have access to the master key for decryption. And it is desirable for the 
owner of the database (the holder of the master key) to be able to retract access to the 
database when needed. 
 
4.1.3.1.1 Re-encryption strategies fail in the untrusted environment 
Ideally, re-encryption to the querier’s key occurs in the untrusted environment. Re-encryption 
would occur via Gentry’s Recrypt protocol, via TFHE’s Key Switching protocol, or via 
OpenFHE’s scheme switching protocol. 
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Gentry’s Recrypt protocol utilizes a PKE public key and secret key pair to generate a re-
encryption key. In the system described in this thesis, symmetric encryption was selected to 
allow Alice to control the queries that Bob runs on her dataset without the use of an 
additional authorization mechanism, therefore this cannot be used in the untrusted system. 
 
TFHE/CGGI defines a key switching protocol in which allows a ciphertext symmetrically 
encrypted under one key to be modified such that it will decrypt with another key. In CGGI, 
each ciphertext is a large vector and key switching is achieved via a homomorphic 
multiplication operation. In their original paper, CGGI defines a key switching protocol for a 
Ring Learning With Error based scheme. Kew switching occurs by mathematically canceling 
the secret key of the original ciphertext and re-encrypting under a new secret key.  
 
At the end of the key switching operation, the secret key has switched but the message is 
constant. However, to do this process the untrusted system must have access to a re-
encryption key, which is created with both Bob and Alice’s secret keys. If Alice is to give a 
key-switching key to the untrusted environment, she would require access to Bob’s secret 
key, injecting an additional level of trust within the system. Bob can be corrupted to give a 
malicious party’s secret key to Alice, and the untrusted system can be corrupted to re-encrypt 
the entire dataset with the key-switching key, thereby allowing a malicious party to decrypt 
the dataset. 
 
Additionally, in practice, the symmetric key switching operation must be accompanied by a 
noise flooding operation that adds random noise to the prior error which reveals information 
about the original secret key. Noise flooding is an operation that adds noise bits to a 
ciphertext. As background, the error in ciphertexts is always sampled from a distribution. 
Where the error distribution of the base scheme is bounded from [-B, B], lambda is the 
security parameter, the error distribution for the additional error added to the ciphertext (the 
noise flooding) should approximately be [-B2lambda, B2lambda] [4]  to allow for a sufficiently 
large standard deviation in the noise distribution [4] [70] , in practice however, noise flooding 
is often set as a constant value deemed to be large enough which provides slightly less than 
128 bits of security, even if it is acceptable  
 
The current implementation of key switching in OpenFHE only supports switching from a 
RLWE ciphertext to a LWE ciphertext, without noise flooding. Adding the noise flooding 
operation would therefore not only increase the complexity of the code base but also cause a 
slowdown in key switching and subsequent decryption. As a note to the user, CKKS has 
implemented noise flooding to 128 bits of security, but only for the CKKS scheme and with 
slowdown [70] .  
 
4.1.3.1.2 Why not utilize a PKE scheme with built in re-encryption 
 
A PKE protocol would allow for simple Proxy Re-Encryption per Gentry’s Recrypt protocol. 
However, utilizing a PKE protocol would allow anyone with Alice’s public key to query the 
dataset; in the threat model, Alice desires to restrict the possible queries on her dataset and 
enforces the restriction by symmetrically encrypting only the patterns she approves. 
 
Additionally, PKE schemes like CKKS, BGV, and BFV use larger security parameters and 
larger ciphertext size than CGGI. Only CGGI can achieve a ciphertext size of less than 1MB 
per plaintext and is able to run on less than 2GB of RAM [88] . Meanwhile, CKKS, BGV, 
and BFV are all vectorized schemes, encrypting an entire vector of data into a single 
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ciphertext. In practice, the data in each vector is only a subset of the text, which in this case is 
a genome. Encrypt time of an entire genome into a single ciphertext is extremely high and is 
therefore unsuitable for RAM-constrained machines.  
 
The encryption of vectorized ciphertexts is also difficult to parallelize, since each vector must 
be encrypted all together in a synchronized manner.  
 
Finally, substring search or pattern matching is slow on vectorized ciphertexts. Encrypted 
search algorithms on vectorized ciphertexts rely either on hashing or on tree traversal. 
Algorithms like Rabin-Karp use hashing to find patterns in strings. Encrypted Rabin-Karp 
hashes each vector and uses a homomorphic subtraction operation to identify the substring in 
a text. The drawback to this algorithm is that although it runs in time O(n + m) in the best 
case and O(nm) in the worst case where m is the pattern size and n is the text size, each 
homomorphic “compare” operation requires several multiplication, addition, and subtraction 
operations each of which take significant time; especially when compared to a binary XNOR 
operation.  
 
4.1.3.1.3 Implemented solution: Alice performs proxy re-encryption 
 
The implemented solution was selected with the goal of minimizing RAM and disk memory 
requirements and minimizing pattern match operation runtime and encryption time on the 
large genomes, while still adhering to the operational model informed by the threat model. 
 
In the threat model, Alice is the owner of the dataset and Bob is assumed to be honest but 
curious, while Bob’s Untrusted Environment is malicious. The corresponding operational 
model allows Bob to use the untrusted environment to query the dataset. In the model, Alice 
has access to the queries, the dataset, and Bob’s public key; therefore, our threat model 
allows Alice to query the dataset herself. In other words, our threat model supports Alice 
seeing the result of Bob’s queries.  
 
Therefore, upon completion of the query, the Untrusted Environment will output the 
ciphertext result to Bob. Bob will send the ciphertext to Alice, who will decrypt the 
ciphertext, re-encrypt the ciphertext with a BFV scheme, and perform a proxy-re-encryption 
operation using Bob’s public key. She then sends the PRE encrypted cyphertext to Bob, who 
decrypts with his secret key.  
 
A visualization of how an encrypted query result from the untrusted environment is re-
encrypted to be decrypted with the querier’s private key is shown in Figures 4.3 and 4.4 
bellow. Figure 4.3 shows the re-encryption key generation protocol in detail, while Figure 4.4 
shows the trusted system utilizing the re-encryption key generation protocol as a subroutine 
in the re-encryption of the ciphertext. 
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Figure 4.3: The Re-encryption Key Generation protocol generates a re-encryption key by generating 

a new private, public key pair and combing the generated private key with Bob’s public key 
 
 

 
 

 
 

Figure 4.4: The Re-encryption protocol generates a re-encryption key by generating a new private, 
public key pair and combing the generated private key with Bob’s public key 

 
 
 

4.1.3.2 Running functional operations on the database 
In the untrusted environment, the database exists in encrypted form. While the untrusted 
environment has access to the queries on the database, the untrusted environment does not 
have access to the result of those queries. 
 
Privacy preserving queries on databases is a strong branch of cybersecurity and cryptographic 
research. It is also well known that queries can leak at least some data about the database [99] 
. Regarding queries that answer only aggregate questions, Cho et al. (2020) note that even 
aggregate query answers can leak data about the dataset [24] . Cho et al finds a solution in the 
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usage of differential privacy techniques to differentially modify the dataset, and Vaidya et al 
(2013) bound the attack query inference to statistical dataset, describing solutions that audit 
information leaked by queries, utilizing differential privacy techniques to modify the queries, 
and using differential privacy techniques to modify the dataset.    
 
In this system, we constrain the scope of the definition of security to that of the output of the 
queries, and not of the queries themselves. In the trade-off of security and usability, we allow 
the queries in the untrusted environment to operate on the encrypted dataset directly, instead 
relying on the cryptographic security of the output of these queries.  
 

4.1.4 Key Management 
During re-encryption time, the trusted environment generates a new private, public key pair. 
It decrypts the ciphertext using the owner’s secret key and re-encrypts the ciphertext using 
Brakerski/Fan-Vercauteren scheme (BFV), which is a leveled  FHE protocol utilizing 
private/public keys from public key encryption that obtains its security from the hardness of 
ring learning with errors (RLWE). RLWE is a generalization of LWE to polynomial rings 
over a finite field. RLWE supports PKE while LWE encryption supports only symmetric 
encryption. For this reason, systems that are built on top of RLWE encryption can more 
readily implement Gentry’s Recrypt protocol, which utilizes the private key of one party and 
the public/private key pair of another party to create a third re-encryption key. 
 
The untrusted environment uses a key generation protocol which takes as input the private 
key from the public key/private key pair that was newly generated and Bob’s public key. 
 
As a note, while the trusted environment could simply encrypt the result of the query 
symmetrically using a LWE scheme, doing so would require Bob to give his secret key to 
Alice. 
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5 Data Flow  
This section describes the flow of information throughout the system. The Trusted 
Environment and the Untrusted Environment represent Alice and Bob, respectively. Alice is 
trusted, and Bob is either untrusted, or honest but curious. The security of the system is 
adaptable to the trustworthiness of Bob, or the trustworthiness of the Untrusted System. 
 

5.1 Trusted Environment 
We will first describe the overall data flow through the trusted environment, and then expand 
on each operation taken in the trusted environment. 
 

5.1.1 Data Flow Overview in the Trusted Environment 
For context, we say that Alice interacts with the trusted environment, and Bob interacts with 
the untrusted environment. 
 
Begin in the trusted environment. This environment is one that is protected by external 
systems and organizations. One example of a trusted environment is an “air gapped” 
computer that does not have access to an external internet source. Another example is a 
computer located within an organization that provides reasonably strong security guarantees, 
or an organization within which plaintext analysis of a genome is allowed such as a secure 
lab within a hospital. 
 
The trusted environment script will run in the trusted environment and will access the 
genome file within the trusted environment. 
 
First, the genome will be one-hot-encoded. Four vectors one-hot vectors will be created, one 
representing the positions of A within the genome, one representing the indexes of C within 
the genome, one representing the indexes of T, and one representing the indexes of G within 
the genome. The four vectors are appended to another vector, creating a 4 x <length of 
genome> representation of the genome. 
 
The first one-hot vector contains a 1 if the genome has an A nucleotide at the index, and a 0 
otherwise. The is applied to the one-hot vectors representing C, G, and T. An example of a 
one-hot encoding of the nucleotide sequence ‘AATT’ is shown below: 
 

 
Figure 8.2: A one-hot encoding of the nucleotide sequence AATT. The first row represents the 

positions of the A nucleotide, the second row the positions of the C nucleotides, the third row the 
positions of the G nucleotides, and the fourth row the positions of the T nucleotides. 
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Alice will also encrypt the patterns that Bob would like to match against the genome. The 
patterns are also one-hot encoded. The resultant matrixes will be of size 4 x <length of 
pattern>. The patterns can be of any length. 
 
The Trusted System will encrypt each one-hot encoded using a Learning With Errors (LWE) 
fully homomorphic scheme that encrypts only binary values.  

 
 
A 4 x <length of sequence> vector will be created, where each index represents an encrypted 
1 or 0. 

 
 
Bob has a PKE public, private key pair while Alice has a symmetric key. If Bob is honest but 
curious, during re-encryption time, the trusted environment will use Bob’s public key to 
transform the ciphertext encrypted under Alice’s secret key into that may be decrypted by 
Bob’s private key. 
 

 
The trusted environment will compress the switching key, encrypted patterns, and encrypted 
genome into a file system. Alice will then send this tar file to the Untrusted Environment. 
 

5.1.2 Binary Encoding Discussion 
Why convert the genome and patterns into a binary encoding? 

A binary LWE FHE is chosen because it drastically decreases the encryption 
time. Additionally, it allows the serialization of the ciphertext to occur one bit 
at time, allowing for systems with limited RAM and memory to serialize the 
genome in a reasonable amount of time (please see chapter 6 for performance 
metrics). 
 
Additionally, a Binary LWE FHE scheme creates very small ciphertexts as 
only one bit is encrypted. Ciphertexts created by probabilistic encryption 
schemes are highly random. Compression protocols like ZIP or TAR rely on 
patterns and uniformity within a file to compress the data within a file to 
create a compressed file of decreased file. Because compression protocols are 
largely ineffective at compressing serialized ciphertexts, the ciphertexts must 
be small to allow Alice to download her genome locally. 
 

Because LWE introduces random error during encryption, two identical bits 
will be encrypted to different ciphertexts. 

Fully Homomorphic Schemes is only IND-CPA; thus, it will leak the Alice’s 
secret key in non-adaptive chosen ciphertext attacks. 
 
If Bob is untrusted, then Bob should not receive any ciphertexts. In this 
setting, Bob receives only the plaintext result of his query. 
 
However, consider the threat model in which Bob is honest but curious and is 
not expected to launch a chosen ciphertext attack. In this case, the Untrusted 
Environment (Bob’s computer) may remain completely insecure while Bob 
receives a ciphertext only he can decrypt.  
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One-hot encoding converts a sequence of nucleotides into a matrix of binary data. In code, 
this is represented in both 2-D array and a 2-D vector. A matrix representation was chosen 
because it is easy to transpose the matrix.  
 
Why a matrix? 
 
By having data in matrix format, we can easily transpose the matrix from a 4 x <sequence 
length> to a <sequence length> x 4 matrix. When parallelizing the loop, the transposed 
matrix representation prevents systems with a small number of CPU cores from falling into 
the trap of only using 4 sub-threads, when more are potentially available.  
 
OpenMP [17] , an open-source implementation of multithreading that supports shared 
memory multiprocessing, is used to parallelize the encryption. Using openMP, the iteration 
on the rows and the iterations on the columns of the matrix is collapsed. OpenMP then uses 
the Fork-Join model to parallelize the loop, wherein the primary thread forks into several sub-
threads and the divides the tasks amongst sub-threads. The runtime environment then 
allocates the sub-threads to different processers on the system to allow the sub-threads to run 
concurrently.  
 
The one-hot model allows the matrix (2-d char array) to allocate memory dynamically on the 
heap before encryption begins, and column and rows are easily indexed. Thus, openMP can 
be directed to allocate the maximum number of sub-threads that the system can support, and 
no synchronization between the sub-threads is needed. In every encrypted operation, the 
pattern of allocating the matrix on the heap and then using maximizing the number of threads 
the system can support (i.e., 16 for an 8-core machine and 40 for a 20-core machine). This 
means that compared to the same code without threading, an 8-core machine experiences a 
16-fold speedup in completing a full operation (“full operation” meaning completing a query, 
i.e., encrypting a complete genome, finding a pattern, finding a homolog, finding a percent 
match) and a 20-core machine experiences a 40-fold speedup in completing the operation. 
 
Why binary data? 
 
Because the data exists in binary form, time to encrypt is very simple: one bit is encrypted at 
a time. This means that traditional approaches to speed up encryption, such as batching, are 
not used.  
 
Why not rely on batching for speedup? 
 
Batching encrypts many messages into a one ciphertext, so that one homomorphic operation 
can act on many messages at once, as defined by the Chinese Remainder Theorem.  
 
Plaintext modulus is a security parameter that impacts both correctness and performance. 
When the plaintext modulus is too small, overflow occurs, but a large plaintext modulus 
decreases performance of encryption. The plaintext modulus is 1 modulo the ring dimension. 
Typical default values of the plaintext modulus is 216 + 1, which is considered conservative; 
in an example provided by OpenFHE , encrypting Anna Karenina requires a plaintext 
modulus of 786433 [71] .  
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In batching, the longer the plaintext modulus, the larger the security parameter required by 
the scheme. Theoretically, if the size of the security parameter is poly(size of the message) 
we can say the system is secure and efficient.  
 
However, practically, when the message is very long and the security parameter is very large 
(even when it is polynomial in the size of the message), encryption of the message takes a 
very long time. Additionally, the encrypted data needs to be stored in RAM until it is 
serialized. In systems with constrained RAM (i.e., less than 16 GB RAM), this often causes 
the process to crash. Encoding even very small subsections of genomes of less than 10,000 
base pairs requires substantial RAM. Finally, the entire ciphertext must be serialized all at 
once, writing a substantially large ciphertext file to disk. Finally, parallelization is restricted 
during encryption since the batch operations must occur serially. 
 
 
Binary data simplifies serialization and deserialization. 
 
Encrypting one bit at a time allows the system to serialize each encrypted bit of the plaintext 
at a time. Each serialized encrypted bit is written to a single file with a label indicating its 
index (column indexing is defined by folder the file is saved to). Thus, serialization of the 
encrypted genome can occur in parallel and with the maximum number of sub-threads 
possible supported by the machine, managed by OpenMP and without any need to 
synchronize the threads or utilize a mutex lock.  
 
 
Binary data has a small message space, quick encrypt time, and quick operations. 
 
Because each bit is encrypted one at a time, the plaintext modulus is 2. FHE schemes like 
BGV, BFV, and CKKS are all based on Learning With Errors encryption; so much so that 
OpenFHE defines a “Binary FHE” library which is a CGGI/GINX scheme, a wrapper on the 
Learning With Errors encryption scheme. Each higher-level scheme is built on top of the 
binary Learning With Errors scheme. 
 
The Binary LWE scheme provides minimal operations (AND, OR, and NOT). Operations 
like XNOR and XOR, used for equality checking between two bits, are composed of 
combinations of these three binary operations.  
 
Binary LWE allows small security parameters which leads to fast encryption/decryption and 
small key size, small ciphertext size (approx. 4 KB when serialized into a binary file), and 
fast rudimentary operations that are easily explained (i.e., an XNOR operation is composed of 
AND, OR, and NOT operations and thus takes three times as long as each of those).  
 
Compared to a higher-level scheme like BFV, each encrypt and each binary operation is 
faster; and the system is highly parallelizable , allowing multi-threading to occur at the 
maximum capacity of the machine the code is running on.  
 
Thus, even though the system described in this thesis only achieves an O(nm) runtime for 
each operation, the operations run much faster because they are highly parallelized. 
Encryption, substring search, percent match, homolog search, and decryption thus occur at 
fast rates and use less RAM. 
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5.1.3 Step By Step functionality in the Trusted Environment 
5.1.3.1 Driver Code 

The driver code of the trusted environment works as follows: 
 
The drive code defines a genome, in file name holding the input genome, vector to hold the 
one-hot genome, vector to hold the one-hot-pattern, vector to hold the encrypted one-hot-
genome, and vector to hold the encrypted one-hot-pattern. 
 
The driver code calls read_from_file to store the data in the genome file in a plaintext 
vector. The driver then calls one_hot_encode to encode the plaintext genome into a one-
hot vector. The driver then calls one_hot_encode to encode the plaintext pattern into a 
one-hot-vector.  
 
The driver code then creates a CryptoContext object for the LWE binary fully homomorphic 
scheme. This object allows the driver to access key generation, encryption, and decryption 
functions provided by OpenFHE. 
 
The driver uses the CryptoContext object to create Alice’s secret key and Alice’s “switch 
key”, which will be used later for re-encrypting the result of Bob’s query before the 
ciphertext exists the untrusted environment. 
 
The driver than calls encrypt_me which encrypts the one-hot pattern and the one-hot 
genome and stores the result into the vectors representing the ciphertexts of the pattern and 
the genome. 
 
The driver than calls serialize_keys_and_contexts which serializes the encrypted 
genome and the encrypted plaintext. 
 

5.1.3.2 Read From File 
Read_from_file takes in as parameters plaintext genome vector, which is passed by 
reference to the function. Read_from_file also takes in the string which holds the 
absolute path to the genome file on the system. 
Read_from_file opens the file and populates the plaintext genome vector character by 
character with the data in the genome file and returns the number of characters in the genome 
file, or the size of the plaintext genome vector. 
 

5.1.3.3 One Hot Encode 
One_hot_encode takes in as parameters a plaintext vector of characters which is the read-
only input, and a 2-dimensional vector object which contains vectors of plaintext integers 
passed by reference which is the write-to output. 
 
The function creates four temporary vectors, one that holds the one-hot encoding of the letter 
‘A’, one for the one-hot-encoding of the letter ‘C’, one for the one-hot-encoding for the letter 
‘G’, and one for the one-hot-encoding of the letter ‘T’. 
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One_hot_encode reads through the input one character at time. For each character, it 
appends the integer 1 to temporary vector corresponding to the letter of that character and 
appends the integer 0 to all the other temporary vectors. 
 
Upon reaching the end of the input string, it appends the four vectors to output vector, so that 
the ‘A’ one hot vector is located at index 0 of the output vector, ‘C’ vector is located at index 
1 of the output vector, ‘G’ vector is located at index 2 of the output vector, and ‘T’ vector is 
located at index 3 of the output vector. 
 
The final output vector is thus a 4 x <length of sequence> matrix represented by a 2-D vector. 
 

5.1.3.4 Serialization 
Serialize_keys_and_context takes in a Binary CryptoContext object, a secret key, absolute 
path as a string which represents the folder to write the serialization data to, and a Boolean 
value ‘serialize’ which indicates if the function should serialize the data or not. 
 
If the ‘serialize’ is false, the function returns. 
 
Otherwise, the function uses the CryptoContext to serialize the secret key, the refresh key, the 
key switching key, and the CryptoContext object itself into a binary file which is saved on the 
system. 
 
Serialization of the encrypted ciphertext and patterns occurs in the Encrypt function. 
 
Serialization occurs via OpenFHE’s serialization library, which is a simple wrapper on 
Cereal, open-source software that serializes C++ objects into binary files[14] . 
 

5.1.3.5 Encryption 
Encryption takes in as input the one_hot_genome passed by value, the one_hot_pattern 
passed by value, the Binary CryptoContext object passed by value, the ciphertext 2-D vector 
to populate the encrypted genome into passed by reference, and the ciphertext 2-D vector to 
populate the encrypted pattern into passed by reference, Alice’s secret key passed by value, 
and a ‘serialize’ Boolean which indicates if the data should be serialized (true) or not (false). 
 
Encryption  iterates through all four indexes of the input one-hot-encoded genome and the 
input one-hot-encoded pattern. It creates a temporary vector of ciphertexts for each index of 
the genome. Encryption iteratively encrypts each integer using the secret key and the Binary 
Crypto Context and appends the encrypted item to the temporary ciphertext vector. At the 
end of the vector at that index, Encryption appends the temporary ciphertext to the ciphertext 
genome and pattern variable passed by reference.  
 
The resultant ciphertext genome is thus a 2-D vector that represents a 4 x <genome size> 
matrix, where each location in the matrix contains the encrypted bit at the same row and 
column of the one-hot genome. 
 
The resultant ciphertext pattern is thus a 2-D vector that represents a 4 x <genome size> 
matrix, where each location in the matrix contains the encrypted bit at the same row and 
column of the one-hot pattern. 
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If serialization is selected, the Encryption function will also serialize the encrypted data. For 
the genome and pattern, it will populate four folders (‘zero’, ‘one’, ‘two’, and ‘three’). Each 
folder will contain a 4 KB file which contains the binary serialization of the encrypted bit 
corresponding to the 2-D one-hot-encoded vector. The name of each file contains the index of 
each bit. 
 
The example of pattern is shown below: 
 

 
 

Figure 8.4: A visual representation of the folder structure created during serialization of the 
encrypted pattern, with the index of the pattern being appended to each file name. In this case, the 
pattern encrypted of length 5. Each file contains the encryption of one bit of the one-hot-encoded 

pattern. 
 
 

5.2 Untrusted Environment 
5.2.1 Data Flow Overview in the Untrusted Environment 
The Untrusted Environment will decompress the encrypted patterns and encrypted genome. 
When Bob sends the command to substring search, homolog search, or get percent patch 
between a pattern and a genome, the Untrusted Environment will begin the search process. 
 
The Untrusted Environment will create a new LWE Binary FHE context object, which 
contains the algorithms to homomorphically operate on bits. It will use the homomorphic 
XNOR function to get the (encrypted result) of the equality of two bits, and the homomorphic 
AND function to aggregate the result of the equality of the bits. Finally, it will use the 
homomorphic OR function to identify if a pattern exists or not. 
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If Bob is honest but curious (i.e., Alice does not expect Bob to launch a CCA attack), the 
trusted environment will decrypt and re-encrypt the ciphertext result of the query using Bob’s 
public key. The Untrusted Environment will then compress the ciphertext result of the query 
and download it to Bob’s computer, who will send it to the Trusted Environment to get the 
re-encrypted ciphertext. Bob will then decrypt with is private key. 
 
If Bob is untrusted and is expected to launch a CCA attack, the untrusted environment will 
simply decrypt the result of the query and return the plaintext query result to Bob. 
 

 
5.2.2 Step by Step functionality in the Untrusted Environment 
This system describes the driver code and each of the operations in greater detail. 
 

5.2.2.1 Driver Code 
First, Deserialize is called to convert the serialized files into a 4 x <length of sequence> 
representation of the genome, as well as for each of the patterns encrypted. 
 
The driver code operates an infinite loop, listening for each operation to be called. 
 
Each operation is parallelized.  
 

5.2.2.2 Encrypted Substring Search 
Encrypted Substring Search transposes the binary genome and pattern matrixes and allocates 
a matrix of size <genome length – pattern length + 1> x 4 matrix on the heap. The 
parallelized function then performs a simple search operation as follows: 
 

 
It then transposes resultant matrix to be of dimensions 4 x <genome length – pattern length 
+1>, where each index contains a 1 if the pattern begins at that index or a 0 if the pattern does 
not begin at that index, respective for the one-hot encoding of each nucleotide. 
 

To allow FHE to be used in the system, we must assume that the Untrusted 
Environment is also honest but curious and will not launch a CCA attack on 
the ciphertexts either. 
 

For each index in each row the genome: 
Ciphertext res ; 
For each index in each row of the pattern: 

Ciphertext temp; 
temp =  Homomorphic XNOR (encrypted genome bit, encrypted pattern bit) 
res = Homomorphic AND (res, temp) 

 
result_array[index of genome, row of genome] = res 
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An example is shown below, where the substring “AA” is searched for in the genome 
“AATT”. In the function, the operation occurs entirely on encrypted data; the plaintext 
version is shown to clarify the logic of the function. 

 

 
 
 
The resultant representation is stored to allow for the return of the index at which the pattern 
occurs, logic which is used in homolog search operation. 
 
5.2.2.2.1 Encrypted T/F is pattern found 
 
This is a helper function for Encrypted Substring Search. 
 
This parallelized function takes in the result of the Substring String function and performs a 
homomorphic AND operation on the four rows of each index. It then returns the 
homomorphic OR on the result of each AND operation. The pseudocode is show below:  

 

 
Ciphertext res; 
res =  Homomorphic AND (substring_search_result[0][0] , substring_search_result[1][0]) 
res =  Homomorphic AND (res , substring_search_result[2][0]) 
res =  Homomorphic AND (res , substring_search_result[3][0]) 

 
For i in range(1, genome_len – patten_len +1) 

Ciphertext temp; 
temp =  Homomorphic AND (substring_search_result[0][i], substring_search_result[1][i]) 
temp =  Homomorphic AND (temp, substring_search_result[2][i]) 
temp =  Homomorphic AND (temp, substring_search_result[3][i]) 
 
res = homomorphic OR (res, temp) 

 
return res 
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5.2.2.3 Percent Match 
This function takes in Alice’s encrypted genome and a pattern (which can be another 
genome) and returns the percent match between the two. It also takes in an offset, which 
allows a user to check the percent match between a nucleotide sequence and a starting 
position in the genome. 
 
It take in the result of Raw Match, and performs the following operation: 
 

 
This function is fully parallelized, therefore the order in which each index appears in the final 
vector is not constant. The decryption to find the percent match only adds up the number of 
matchers, thus the order of the result vector does not matter. 
 
5.2.2.3.1 Raw Match 
This function is used as a helper for Percent Match, which finds the percent similarity 
between two genomes, or between a genome and a pattern. An offset can be defined as the 
starting index at which to begin the match (for example, if the first X nucleotides of the 
genome should be ignored in the getting the Percent Match value) 
 
This allocates a matrix of size 4 x < genome_len - pattern_len + 1 - offset> matrix on the 
heap. The parallelized function then performs a match search operation as follows: 
 

 
 
An example of the operation is shown below; note that while in this function all values are 
encrypted, the plaintext is shown to explain the operation. 

 

 
Vector result_vector; 
For i in range(1, genome_len – patten_len +1) 

Ciphertext res; 
res =  Homomorphic AND (substring_search_result[0][i], 
substring_search_result[1][i]) 
res =  Homomorphic AND (res, substring_search_result[2][i]) 
res =  Homomorphic AND (res, substring_search_result[3][i]) 
 
result.push_back(res) 

 
return result_vector 

 
 
 
 

  
 

For each index in each row the genome: 
For each index in each row of the pattern: 

Ciphertext res; 
res =  Homomorphic XNOR (encrypted genome bit, encrypted pattern 
bit) 

result_array[index of genome - offset, row of genome] = res 
 
return result_array 
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5.2.2.1 Homolog Search 
Homolog search takes in a pattern with wildcards and returns an encryption of if the pattern 
was found. During decryption, the result of Homolog Search is used to return the actual value 
in the wildcard, thus simulating the presence of mutations in an allele in the genome. 
 
X is used to indicate a wildcard. For example, in the genome aaaaggcgaaaagtcg, the 
pattern agXcg has homologs aggcg and agtcg .  
 
 
5.2.2.1.1 Encrypted Substring Search for Homolog 
Encrypted Substring Search for Homolog operates similarly as Encrypted Substring Search 
for normal patterns, except that it will skip over the wildcard characters in the pattern as it 
does its comparison as shown below: 
 

 

For each index in each row the genome: 
Ciphertext res ; 
For each index in each row of the pattern with wildcards: 

If found wildcard: 
skip 

Ciphertext temp; 
temp =  Homomorphic XNOR (encrypted genome bit, encrypted pattern bit) 
res = Homomorphic AND (res, temp) 

 
result_array[index of genome, row of genome] = res 
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5.2.2.1.2 Encrypted Percent Match for Homolog 
This function takes in the result of Homolog Substring Search and performs the same 
operations as the Percent Match for non-wildcard patterns. 
 

5.3 Re-encryption protocol 
The untrusted environment will output a tar file containing the encrypted results of Bob’s 
queries. This tar file will be uploaded to the trusted environment, where it will be decrypted 
into plaintext, encrypted into a BFV, a FHE scheme that supports PKE, and finally using 
proxy re-encryption and Bob’s public key will be re-encrypted such that Bob may decrypt 
with his secret key. 
 
Because this operation would allow Alice to see the plaintext result of Bob’s query, the re-
encryption protocol should occur in an HSM that Alice does not have access to in order to 
reduce the overall trust of the system. 

5.4 Decryption Operations 
Once the result of each ciphertext is output from the Untrusted Environment, it must be 
decrypted. 
 

5.4.1 Decryption for Substring Search 
Decrypting substring search requires the secret key and the result of the query, which is a 
single ciphertext. The ciphertext is decrypted into a 1 if the substring was found, and 0 
otherwise. 
 

5.4.2 Decryption for Percent Match 
The decryption operation will take in the ciphertext vector result from Percent Match, which 
is of dimensions 1 x <genome_len – pattern_len + 1>. The decryption will occur as follows: 
 

 
5.4.3 Decryption for homolog search 
The ciphertext output of homolog search is a ciphertext vector of dimensions 1 x 
<genome_len – pattern_len + 1 – num_wildcards>. Decryption occurs as follows: 

int total = 0; 
For each ciphertext in encrypted vector: 

Plaintext result = decrypt(ciphertext) 
Total += result 
 

Return total / genome_len 
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Vector<char*> result; 
 
For i in range (0, ciphertext_vector.size() ): 

Plaintext homolog = decrypt(ciphertext[i]) 
If (result): 

For j in range (0, wildcard_pattern.size(): 
a = genome_ciphertext[0][i+j]); 
c = genome_ciphertext[1][i+j]); 
g = genome_ciphertext[2][i+j]); 
t = genome_ciphertext[3][i+j]); 
 
if (a): homolog[j] = ‘a’ 
if (c): homolog[j] = ‘c’ 
if (g): homolog[j] = ‘g’ 
if (t): homolog[j] = ‘t’ 
 

result.push_back(homolog) 
 
for homolog in result: 

print (homolog)  
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6 Underlying Algorithms 
6.1 OpenFHE 

OpenFHE is an open-source lattice-based fully homomorphic encryption library [1] . 
OpenFHE wraps other open-source fully homomorphic encryption libraires including 
PALISADE, HELib, HEAAN, and provides an implementation of TFHE (The Fast 
Homomorphic Encryption over the Torus) library [22] . Thus, OpenFHE supports the 
following fully homomorphic encryption schemes: CKKS, BGV, BFV,DM, and CGGI. 
 
This section describes the underlying algorithms developed by CGGI and implemented into 
OpenFHE. 
 

6.1.1 BinaryFHE and LWE (Learning With Errors) 
The BinFHE library of OpenFHE, also called Boolean FHE is the basis for the encryption of 
the genome in this project. This library implements the CGGI encryption scheme—this is the 
same scheme implemented by TFHE.  
 
BooleanFHE uses LWE ciphertexts, which means LWE is used to encrypt a message. The 
secret key in LWE is a short binary key in which each bit is generated randomly. The 
ciphertext is composed of k elements, where k – 1 is the length of the secret key.  
 
As described by Chillotti et al in their original paper[21]  [22] , and further explained on 
Chillotti’s blog for Zama.ai [20] , the first k – 1 elements of the ciphertext are randomly 
chosen, and the last kth bit B is the summation of each random element multiplied by each 
element of the secret key plus a gaussian error term, plus the message. Decryption occurs by 
multiplying the vector of the random elements by the vector of the secret key and subtracting 
this result to obtain the message plus the gaussian error [20] . 
 

Where p is the plaintext modulus and q  is the ciphertext modulus, are two positive integers 
that are powers of 2, otherwise, implement a rounding operation in decryption. p ≤ q, define 

the scaling factor ∆= q/p. Message M∈ ℛ!.  
 

The generalized LWE ciphertext encrypting M under secret key 𝑆 = 	 (𝑆", . . . , 𝑆#	%	&) ∈ ℛ# is 
a tuple: 

 
  (𝐴"	, …	 , 𝐴#%&	, 𝐵) 	∈ 𝐺𝐿𝑊𝐸	'⃗,*(∆𝑀) ⊆ 	ℛ+

#,&  
𝑤ℎ𝑒𝑟𝑒	𝐴- 	𝑓𝑜𝑟	𝑖 ∈ [0, 𝑘– 1]	𝑖𝑠	𝑠𝑎𝑚𝑝𝑙𝑒𝑑	𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦	𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦	𝑓𝑟𝑜𝑚	ℛ+ 	 

𝑎𝑛𝑑	𝐵	 = 	L 𝐴- ∙ 𝑆- 	+ ∆𝑀	 + 	𝐸	 ∈ 	ℛ+ 	
#%&

-	.	"

 

and 𝐸	 ∈ 	ℛ+ 
The decryption protocol is canonical: 

𝐵	–	L 𝐴- ∙ 𝑆- 	= ∆𝑀	 + 	𝐸	 ∈ 	ℛ+ 	
#%&

-	.	"

 

M	 = 	 ⌊∆𝑀	 + 	𝐸⌋/∆	 
 Text taken from source: Chillotti, I. (2022). TFHE Deep Dive Part I Ciphertext types. ZAMA.AI blog. 

https://www.zama.ai/post/tfhe-deep-dive-part-1 

https://www.zama.ai/post/tfhe-deep-dive-part-1
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Message M is stored in the MSB of ∆𝑀	 + 	𝐸, and the error E is stored in the LSB.  
The following images show a visualization of a generalization of LWE encryption and 
decryption protocol. When the |𝐸| 	< 	∆/2, in other words every coefficient 𝑒- 	𝑜𝑓	𝐸	𝑖𝑠	|𝑒- 	| <
∆/2 to allow for correct decryption. 
 
Figures 5.0, 5.1, and 5.2 below from Chilloti’s blog post shows a visualization of the message 
m, the scaling factor	∆, and the gaussian error e for (non-generalized) LWE. The visualization 
highlights that as homomorphic operations are applied to encrypted m, the gaussian error 
(noise) grows. This noise is reduced in bootstrapping operations.  

 
Figure 5.0: A visualization of LWE encrypted ciphertext. 

Text taken from source: Chillotti, I. (2022). TFHE Deep Dive Part I Ciphertext types. ZAMA.AI blog. 
https://www.zama.ai/post/tfhe-deep-dive-part-1  

 
 

 
Figure 5.1: A visual formation of the ciphertext using generalized LWE encryption. The secrete key is 

represented by S, M represents the message, E is a Gaussian error, and B is the last bit of the 
ciphertext. 

Text taken from source: Chillotti, I. (2022). TFHE Deep Dive Part I Ciphertext types. ZAMA.AI blog. 
https://www.zama.ai/post/tfhe-deep-dive-part-1  

 
 

 
Figure 5.2: A visual representation of decryption of the ciphertext using LWE encryption.  

Text taken from source: Chillotti, I. (2022). TFHE Deep Dive Part I Ciphertext types. ZAMA.AI blog. 
https://www.zama.ai/post/tfhe-deep-dive-part-1  

https://www.zama.ai/post/tfhe-deep-dive-part-1
https://www.zama.ai/post/tfhe-deep-dive-part-1
https://www.zama.ai/post/tfhe-deep-dive-part-1
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For LWE encryption, the scheme used to encrypt the genome, instantiate 𝑘 = 𝑛 ∈
ℤ	𝑎𝑛𝑑	𝑁	 = 	1. When N = 1,  𝑤ℎ𝑒𝑟𝑒	𝐴- 	𝑓𝑜𝑟	𝑖 ∈
[0, 𝑘– 1]	𝑖𝑠	𝑐ℎ𝑜𝑠𝑒𝑛	𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦	𝑎𝑡	𝑟𝑎𝑛𝑑𝑜𝑚	𝑓𝑟𝑜𝑚	ℤ+. 
 

The LWE ciphertext encrypting m under secret key 𝑠 = 	 (𝑠", . . . , 𝑠/	%	&) ∈ {0,1}/ is a tuple: 
  (𝑎"	, …	 , 𝑎/%&	, 𝑏) 	∈ 𝐿𝑊𝐸	'⃗,*(∆𝑀) ⊆ 	ℤ+

/,&  
𝑤ℎ𝑒𝑟𝑒	𝑎- 	𝑓𝑜𝑟	𝑖 ∈ [0, 𝑛– 1]	𝑖𝑠	𝑠𝑎𝑚𝑝𝑙𝑒𝑑	𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦	𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦	𝑓𝑟𝑜𝑚	ℤ+ 

𝑎𝑛𝑑	𝑏	 = 	L 𝑎- ∙ 𝑠- 	+ ∆𝑚	 + 	𝑒	 ∈ ℤ+ 	
/%&

-	.	"

 

and 𝑒	 ∈ ℤ+ 
 
 
 
And decryption is canonical.  
 
Figure 5.3 bellow shows a visualization of the LWE scheme. 
 

 
Figure 5.3: A visual formation of the ciphertext using LWE encryption. The secrete key is represented 

by S, M represents the message, E is a Gaussian error, and B is the last bit of the ciphertext. 
Text taken from source: Chillotti, I. (2022). TFHE Deep Dive Part I Ciphertext types. ZAMA.AI blog. 

https://www.zama.ai/post/tfhe-deep-dive-part-1  
 
 

6.1.2 Invoked CryptoContext functions 
The invoked homomorphic encryption functions via the LWE Binary FHE library are XNOR 
and AND. 
 
XNOR is used for equality checking. To illustrate, 1 XNOR 1 = 1, 0 XNOR 0 = 0, 1 XNOR 0 
= 0, 0 XNOR 1 = 0. 
 

6.1.3 Chosen Security Parameters 
The chosen security parameters on the LWE crypto context are the STD128 parameters, 
detailed in tables below. The specific scheme used is GINX, an implementation of the 
Chillotti-Gama-Georgieva-Izabachene (CGGI) FHE scheme [21] . This scheme is used to 
evaluate Boolean circuits [22] . CGGI is specifically used as the bootstrapping method. 
 
 

 

Text taken from source: Chillotti, I. (2022). TFHE Deep Dive Part I Ciphertext types. ZAMA.AI blog. 
https://www.zama.ai/post/tfhe-deep-dive-part-1 

https://www.zama.ai/post/tfhe-deep-dive-part-1
https://www.zama.ai/post/tfhe-deep-dive-part-1
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Table 5.1: STD128 security params 
 Source: OpenFHE source code https://github.com/openfheorg/openfhe-

development/blob/main/src/binfhe/lib/binfhecontext.cpp   
 

numberBits cycleOrder latticeParam mod modKS stdDev baseKS gadgetBase baseRk 
27 2048 512 1024 1<<14 STD_DEV 1<<7 1 << 7 32 

 
 
 
 

Table 5.2: Security Param Details 
 Source: OpenFHE source code https://github.com/openfheorg/openfhe-

development/blob/main/src/binfhe/lib/binfhecontext.cpp   
 

variable description 
numberBits Used for intermediate prime and RLWE (Ring GSW) used in bootstrapping 
cycleOrder Used for intermediate prime and RLWE (Ring GSW) used in bootstrapping 
latticeParam LWE crypto parameter 
mod Modulus for additive LWE 
modKS Modulus for Key Switching 
stdDev Preset to 2.19 
baseKS base for key switching 
gadgetBase gadget base used in the bootstrapping, used for Ring GSW + LWE 
baseRk base for the refreshing key, used for Ring GSW + LWE 

 
 

6.1.4 Private, refreshing, and re-encryption keys 
The private key is generated by OpenFHE’s LWE Binary FHE context object. The private 
key serves as a symmetric key. 
 
The refreshing key is also generated by OpenFHE’s LWE Binary FHE context object. The 
rotation key is used to bootstrap the ciphertext.  
 
The re-encryption key is generated by creating a new PKE key pair in the trusted 
environment, using a protocol that takes as input the new private key and Bob’s public key. 
The new re-encryption key is used proxy-re-encrypt a ciphertext encrypted by the generated 
private key to a ciphertext that can be decrypted with Bob’s private key. Re-encryption is 
described in greater detail in section 4.1.3.1.3. 
 
 

6.2 Proxy Re-Encryption and Key Switching 
Craig Gentry, in his PhD thesis, identified that the noise-reduction operation of bootstrapping 
could be used to transform a ciphertext asymmetrically encrypted by Alice into one that can 
be decrypted by Bob [40] . In his paper describing FHE using ideal latices, which is the 
underlying construction of the RLWE FHE scheme, he defines a Recrypt function, the 
existence of which implies the existence of a one-way proxy re-encryption scheme [41] . 

https://github.com/openfheorg/openfhe-development/blob/main/src/binfhe/lib/binfhecontext.cpp
https://github.com/openfheorg/openfhe-development/blob/main/src/binfhe/lib/binfhecontext.cpp
https://github.com/openfheorg/openfhe-development/blob/main/src/binfhe/lib/binfhecontext.cpp
https://github.com/openfheorg/openfhe-development/blob/main/src/binfhe/lib/binfhecontext.cpp
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Gentry defines the re-encryption operation by switching an asymmetrically encrypted 
ciphertext by Alice to one that can be decrypted with Bob’s private key [41] . Gentry’s 
Recrypt function is formally described below. 
 
 
 

 
Figure 5.4: Gentry’s Recrypt function.  

 Text taken from source: Gentry 2009 [41]  
 
 
In the context of this project, the key switching operation transforms a message encrypted 
under LWE. The “switching key” is a generated public key. Key switching takes as input a 
message encrypted with secret key	𝑆, and outputs the same message encrypted by secret key 
	𝑆′^̂̂ ⃗. Key switching dramatically increase the noise generated on the ciphertext as compared to 
the amount of noise generated by a homomorphic operation or by encryption. A visual 
representation of key switching is show below: 
 
 

 
Figure 5.5: A visual representation of switching the ciphertext of message M encrypted by key 𝑆,to 

the ciphertext of message M encrypted by the Switch Key, key 	S′^̂⃗. 
 Text taken from source: Chillotti, I. (2022). TFHE Deep Dive Part I Ciphertext types. ZAMA.AI 

blog. https://www.zama.ai/post/tfhe-deep-dive-part-1  
 
 
Key switching is also used to transform a ciphertext encrypted under LWE, which allows for 
only symmetric encryption, to a ciphertext encrypted under Ring LWE, or RLWE, which 
encrypts a message asymmetrically to allow for utilization of public key encryption on top of 
the fully homomorphic algorithm.  The figure below shows a visual representation of 
converting a message encrypted under LWE (in blue) to a message encrypted under RLWE 
(yellow). 
 
 
 
 
 

https://www.zama.ai/post/tfhe-deep-dive-part-1
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Figure 5.6: A visual representation of key switching used to transform ciphertext encrypted under 

LWE to ciphertext encrypted under RLWE. 
Text taken from source: Chillotti, I. (2022). TFHE Deep Dive Part I Ciphertext types. ZAMA.AI blog. 

https://www.zama.ai/post/tfhe-deep-dive-part-1 
 
 
Finally, key switching can be used to modify the parameters of a ciphertext. 
 
In key switching, the “switching key” is a secret key generated by the CryptoContext. 
However, in Proxy Re-Encryption, the “re-encryption” is a protocol matching Gentry’s 
Recrypt function. 
 

6.2.1 Noise reduction via bootstrapping 
The input to the bootstrapping operation is an LWE ciphertext with noise, and the output is 
the same ciphertext with less noise to allow for correct decryption.  
 
Bootstrapping occurs in many steps. The goal of bootstrapping is to isolate ∆𝑚	 + 	𝑒.  
 
Bootstrapping takes in as input the LWE ciphertext c = Enc(m, 𝑆) where m is the message 
and 𝑆 is the secret key. By redundantly sampling the LWE ciphertext into a vector, the LWE 
ciphertext c is converted into a Ring LWE ciphertext c’ encrypted with new key 𝑆’. A Blind 
Rotation operation occurs in which the most significant bits of c’ are moved to the least 
significant position, flipping the ciphertext. Finally, a single coefficient (located at the most 
significant bit of the RLWE ciphertext) is extracted via a Sample Extraction protocol. This 
coefficient c’’ encodes m, but with less noise. Finally, a key switching operation converts c’’, 
encrypted with 𝑆’, back to ciphertext c, encrypted with 𝑆. 
 
This is visualized below, where blue represents an LWE ciphertext and yellow represents a 
RLWE ciphertext. 
 
 
 

https://www.zama.ai/post/tfhe-deep-dive-part-1
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Figure 5.7: A visual representation of key switching used to transform ciphertext encrypted under 

LWE to ciphertext encrypted under RLWE. 
Text taken from source: Chillotti, I. (2022). TFHE Deep Dive Part I Ciphertext types. ZAMA.AI blog. 

https://www.zama.ai/post/tfhe-deep-dive-part-1 
 
 
  

https://www.zama.ai/post/tfhe-deep-dive-part-1
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7 Results and Discussion 
Size of a serialized encrypted single bit under LWE encryption: 4 KB. 
 
Time complexity to search, get percent similarity, and search with wildcard (homolog 
search), where n is the length of the genome and m is the length of the pattern: O(nm). 
 
Experimental results were run on two machines. The 8-CPU machine was a 2020 MacBook 
Air with Apple M1 chip and 8 GB of RAM running macOS Monterey. The 20-CPU machine 
had 34 GB RAM, Intel® Xeon ® Silver 4210 CPU at 2.20 GHz, CPU MHz 2194.843, 
BogoMIPS 4389.68 running on a VMware hypervisor. Software for both machines identical 
and compiled for each environment.  
 
The plaintext genome used was a plasmid of yeast bacterial (S. cerevisiae (budding yeast)), 
growth strain DH5alpha, that is resistant to Ampicillin [2] . 
 
The plasmid has been split into three test conditions, “small”, “medium”, and “large.” The 
small condition contained a segment of 16 nucleotides, the medium segment contained 3571 
nucleotides, and the large continued the full plasmid which has 5574 nucleotides. 
 
Encryption occurs bit by bit, parallelized such that each thread encrypts one bit and performs 
one write operation into a pre-allocated matrix. Therefore, runtime scales linearly with the 
size of the genome and improves as the number of available threads increases. We can 
approximate that encrypting one nucleotide takes approximately 103 ms per nucleotide on an 
8-core machine, and approximately 76 ms per nucleotide on a 20-core machine. Therefore, 
significant hardware optimizations are necessary to encrypt and operate on an entire human 
genome. Borrowing from the ideas of modern machine learning, it is expected that modifying 
the software to run on GPUs is a necessary first step in bringing encrypted genome search to 
a runtime that can be viable in real-world scenarios. 
 
Figures 7.1 and 7.2 below show a comparison of the runtime of different operations on 
machines of increasing CPU capacity. The machines running Apple Silicon consistently 
outperform the Linux machines, even when the Intel machines have greater CPU capacity. 
This performance can be attributed to the inclusion of four high performance CPU cores on 
the Apple Silicon Chips. We can therefore see that by parallelizing each operation, we can 
take advantage of both increasingly fast hardware, and traditional hardware that can handle a 
greater number of threads. Typically, each intel CPU can handle two threads per CPU, but 
true thread count varies depending on the background processes running on each machine.  
 
The OpenML library was chosen due to its ability to adapt to both faster CPUs and a variable 
number of CPUs. The FlexFHE software exploits the ability of OpenML to split one central 
thread into multiple subthreads. OpenML calculates the maximum possible threads available 
on the machine that FlexFHE is running on, which is typically two threads per CPU. In the 
software, the matrix containing the one-hot encoded genome is maximally parallelized, 
meaning that each thread takes an i, j position, where i, j  represent each row, column index in 
the matrix. Encryption, decryption, and binary operations (AND, OR, XOR, NOT) are all an 
operation handled by a single thread. The thread then write to a pre-allocated matrix indexed 
by the same i,j pair. Therefore, the relative position of the row, column index is irrelevant; 
each thread simply remembers its own i,j and single bit operation, and then performs a single 
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write operation into its own i,j in the new pre-allocated “result” matrix. Because each thread 
can operate and performance a write operation independently of the other threads, thread 
synchronization is not needed at all for encryption and decryption operations and for binary 
logic operations. For operations in which a search or search-like operation is requested, each 
thread will perform an AND aggregation of the XNOR’d (or an OR aggregation of the 
XOR’d) comparison between the substring (the allele or  mutation) and the text (the genome). 
 
Therefore, we except to have the lowest runtime on operations that involve no aggregation—
and indeed we see overall lowest runtime on encryption and decryption operations. As the 
substring increases in size linearly, we expect a linear increase in runtime across all 
machines; this too can be seen in figure 7.2, which shows the runtime of the initial encryption 
of the genome, the pattern match between a short substring and the long genome, a wildcard 
search which allows for identifying mutations between a wildcard string and the long 
genome, and a percent match operation which returns the percent of matching nucleotides in 
between the genome and a contiguous substring (in testing, the second genome utilized was 
of similar length to the original genome, but this is not a requirement of this operation; 
percent match works regardless of the relative sizes of the two genomes to be compared). 
 
Figures 7.1 and 7.2 also show the performance of each machine, and show the performance 
of each machine across a long, medium length, and short genome segment. We can see that 
the runtime of all operations increases approximately linearly as the genome segment length 
increases. Since each operation occurs on a maximally-parallelized matrix, this is aligned 
with performance expectations. 
 
Looking at figure 7.2, we see a consistent relationship between each machine and its relative 
runtime for each operation; the machine performance speed order is fairly consistent across 
all operations and all genome sizes. we see the fastest runtime is exhibited by the Apple 
(ARM) machine with 10 cores. Next fastest is the Apple Silicon M1 chip with 8 cores, 4 of 
which are high efficiency cores. Next is the Intel machine running Linux with 20 high 
efficiency cores. We see that the performance of the 10 core Apple Silicon machine and the 8 
core Apple M1 chip machine tends to be similar across all operations and genome lengths. 
We then see the three Intel machines in a slightly slower consistent grouping. The 20 High 
Efficient Intel CPUs machine performs constantly faster than the remaining two machines 
without high efficiency cores, and for encryption operations the 20 HE CPUs machine 
performs similarly to the Apple 10 core and Apple M1 8 core machine. This leads us to 
understand that as hardware moves from traditional CPUs to high efficiency CPUs, software 
that is able to maximally parallelize will dramatically outperform tradition CPUs, regardless 
of the number of traditional CPUs available. For example, we see the Apple 8 Core machine 
which boasts 4 HE CPUs dramatically outperform the 20-core Intel machine without any HE 
cores.  
 
Amongst the Intel machines (running Linux OS), the 20 core machine outperforms the 8-core 
machine, with the 20 HE core machine being the fastest of the three.  
 
Interestingly, increasingly large RAM has minimal impact on the runtime of the FlexFHE 
system. We see the 8-core M1 chip with only 8 GB of RAM perform comparatively to the 
Apple 10-core machine with 64 GB of RAM. This is encouraging from a usability 
perspective, as machines that are RAM constrained can still operate the FlexFHE system 
effectively. For consumer electronics, it is often cheaper to buy better CPUs while increasing 
RAM space tends to be more expensive. Therefore, it is our hope that the parallelized system 
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provided by FlexFHE allows for organizations running in RAM constrained environments to 
access strong cryptographic security guarantees without needing to spend more money to 
access performance gains. 
 

 
Figure 7.1 Runtime of different operations on genome segments of different sizes, compared for different machines, in 
seconds 

 

 
Figure 7.2 Comparison of all operations implemented on genomes of different sizes, across different machines, in seconds 
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8 Future Work 
8.1 Implement IND-CCA1 LWE scheme 

By definition of homomorphism, no scheme which has homomorphic properties may achieve 
indistinguishability under adaptative ciphertext attacks, or IND-CCA2 security [34] .  
 
However, it is theoretically possible to create a homomorphic scheme that is IND-CCA1 
secure, or secure against non-adaptive chosen ciphertext attacks. Several generic 
constructions of IND-CCA1 FHE schemes have been suggested, but as of the time of this 
paper none have been implemented, and thus remains an open problem [34] . There are 
group-homomorphic schemes at have achieved IND-CCA1 security, such as the Cramer-
Shoup-Lite scheme [34] [26] ; this implies that IND-CCA1 fully homomorphic scheme exists 
and can be implemented. However, at the time of this paper, no such scheme has been 
implemented in software; and in the theoretical cryptography realm no such scheme has been 
concretely defined. 
 
Future work should focus on first the construction and then the implementation in software of 
an IND-CCA1 FHE scheme.  
 

8.2 Implement GPU threading 
Parallelization should be extended using an OpenCL or CUDA API to allow for increased 
number of sub-threads executing each operation, resulting in decreased runtime. The changes 
that must occur in the software is semantic modification, i.e., transforming functions into 
labeled kernel functions, removal of the OpenMP API and appropriate replacement, and 
appropriate compilation with necessary hardware. 
 

8.1 Modification for RNA variants 
To modify this code to work for RNA variants such as mRNA and tRNA, the only function 
that need be modified is the “one-hot encode” function.  
 
If you would like to implement the ability to encode only RNA, modify the condition in the 
switch statement identifying thymine (t) with one identifying uracil (u). 
 
If you would like to implement the ability to encode both RNA and DNA, create a 5 x <len of 
sequence> matrix (instead of a 4 x <len of sequence> matrix). This can be accomplished by 
adding a condition to check for uracil in the switch statement and appending another vector to 
the vector <of ciphertext vectors> that is populated by function. The fifth row will be 
populated with the indexes, if any, of uracil. Because the rest of the code does a simple 
pattern match, no other changes are necessary for the software to function as expected. 
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9 Appendix 
The complete software and ReadMe for this thesis is available open-source at: 
https://github.com/lattias/Thesis_project  
 
A  User Manual: Reproduce Performance and Timing Results 

Follow the steps below to reproduce the performance metrics and timing data in this report: 
 

A.1 Getting Started 
 

 

 

https://github.com/lattias/Thesis_project
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A 2. Executing timing and performance data only 

 To execute timing data only, and reproduce the results of this study in one pass, run the 
executable ./flexFHE: 
 
                                                  cd build  

./flexFHE 
 

A.3  Usage Steps Overview 
This section explains the overview of the pattern used to run FlexFHE, and an explanation of 
which functions run in which environment. For exact and simplified run steps, see appendix 
B. 
 

1. Encrypt the genome. A private symmetric key will automatically be generated for 
you. A file titled “encrypted_genome” will be populated in your local system. This 
file contains the encrypted genome. 

a. ./trusted 
i. You will need to populate the absolute path to your genome file 

ii. Note that each pattern is a sequence of nucleotides such as aattt,a 
wildcard pattern such as aaXXXttt, or an absolute path to 
another genome (or any sequence of nucleotides) to perform a percent 
match on. 
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2. Upload your encrypted genome files to the untrusted context (i.e., upload it to cloud 
or give it to Bob). Also, upload the script “untrusted” to the untrusted context. 
This script will allow certain operations to be run on your encrypted genome. 

3. In the untrusted environment, run operations on the encrypted genome. The following 
operations will be run: 

a. Substring search. To find a pattern within the genome, the substring_search 
function will run: 

i. Where <pattern> is a sequence of nucleotides such as aattt 
b. Percent match. To find the percent match between the encrypted genome and 

another genome (or another pattern) the percent_match function will run: 
i. The file containing the genome or pattern must be a plaintext file 

containing only the (atcg) letter representation of the second genome or 
the second nucleotide. The file should be all in lowercase and contain 
only the letters a t c g. 

c. Homologous pattern search. A homologous pattern is one in which you want 
some of the nucleotides to match, but not all. For example, if you search for 
the pattern “aaXXXttt”, the software will return to you patterns in the 
genome where the first two nucleotides are ‘A’, the next three nucleotides are 
wildcard (can be any A C T G nucleotide), and the last three nucleotides are 
‘T’.  The pattern_match_enc_homolog function will run: 

i. An example of a wildcard_pattern (homolog) is aaXXXttt 
4. Upload the encrypted files from the Untrusted Environment back into the trusted 

environment, along with Bob’s public key for re-encryption. The output will be a re-
encrypted set of ciphertexts 

5. Decrypt using Bob’s secret key and the re-encrypted results of the search functions 
 
 

A.3 Structuring your genome files 
Your genome files should contain the character nucleotide sequence of the genome in all 
lowercase, with external characters such as numbers, spaces, other letters, etc. The file should 
be a normal txt file, and not a rich text file. An example is shown below: 
 

 
Figure 9.1: An example of the proper format of an input genome 
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B  User Manual: Execute FlexFHE as a user, securely 
 
Follow the steps in this sections to execute FlexFHE securely. Detailed instructions can be 
found at https://github.com/lattias/Thesis_project. 
 

• Install OpenFHE 
• Clone the Thesis_project repository 
• Create a new build folder and build the project 

o rm -r build 
o mkdir build 
o cd build 
o cmake .. 
o make 

• In Alice’s secure environment, encrypt the genome 
o ./trust 

• In Bob’s untrusted environment, run calculations on the encrypted genome 
o ./untrust 

• In Alice’s trusted environment, verify the calcuations are correct by running: 
o ./trust_decr 

• In Bob’s untrusted environment, create a public/private key pair for Bob. 
o ./bob_key 

• In Alice’s secure environment, run the re-encryption protocol to re-encrypt the data 
o ./trust_reenc 

• In Bob’s untrusted environment, decrypt the results with Bob’s private key 
o ./untrust_decr 

 
Where To Place Genome, Pattern, and Homolog Files: 
 

• In trust.cpp, define the absolute paths to your local files. 
o set the variable infilename  to the absolute path of your genome. 
o set the variable pattern to your pattern 

§ The pattern  is a sequence of nucleotides such as aattt 
o  set the variable homo (short for homolog) to a wildcard pattern  

§ A wildcard pattern contains the character X such as aaXXXttt 
o set the variable percent_file_name to the absolute path of another 

genome (or any sequence of nucleotides) to perform a perform a percent 
match operation on. 

§ The results of a percent match operation will tell you the percent of 
matching nucleotides between the original genome sequence and 
another genome sequence. The longer the continuous matching 
sequence and the higher the percent match between the two sequences, 
the greater likelihood of familial relationship between the two 
genomes. 

  

https://github.com/lattias/Thesis_project
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