187 research outputs found

    An Agent-Based Intrusion Detection System for Local Area Networks

    Full text link
    Since it is impossible to predict and identify all the vulnerabilities of a network beforehand, and penetration into a system by malicious intruders cannot always be prevented, intrusion detection systems (IDSs) are essential entities to ensure the security of a networked system. To be effective in carrying out their functions, the IDSs need to be accurate, adaptive, and extensible. Given these stringent requirements and the high level of vulnerabilities of the current days' networks, the design of an IDS has become a very challenging task. Although, an extensive research has been done on intrusion detection in a distributed environment, distributed IDSs suffer from a number of drawbacks e.g., high rates of false positives, low detection efficiency etc. In this paper, the design of a distributed IDS is proposed that consists of a group of autonomous and cooperating agents. In addition to its ability to detect attacks, the system is capable of identifying and isolating compromised nodes in the network thereby introducing fault-tolerance in its operations. The experiments conducted on the system have shown that it has a high detection efficiency and low false positives compared to some of the currently existing systems.Comment: 13 pages, 5 figures, 2 table

    Testing and improving local adaptive importance sampling in LJF local-JT in multiply sectioned Bayesian networks

    Get PDF
    Multiply Sectioned Bayesian Network (MSBN) provides a model for probabilistic reasoning in multi-agent systems. The exact inference is costly and difficult to be applied in the context of MSBNs. So the approximate inference is used as an alternative. Recently, for reasoning in MSBNs, LJF-based Local Adaptive Importance Sampler (LLAIS) has been developed for approximate reasoning in MSBNs. However, the prototype of LLAIS is tested on Alarm Network (37 nodes). But further testing on larger networks has not been reported. In this thesis, LLAIS algorithm is tested on three large networks namely Hailfinder (56 nodes), Win95pts (76 nodes) and PathFinder (109 nodes), to measure for its reliability and scalability. The experiments done show that LLAIS without parameters tuned shows good convergence for Hailfinder and Win95pts but not for Pathfinder network. However, when the parameters are tuned the algorithm shows considerable improvement in its accuracy for all the three networks tested

    Efficient Probabilistic Inference Algorithms for Cooperative Multiagent Systems

    Get PDF
    Probabilistic reasoning methods, Bayesian networks (BNs) in particular, have emerged as an effective and central tool for reasoning under uncertainty. In a multi-agent environment, agents equipped with local knowledge often need to collaborate and reason about a larger uncertainty domain. Multiply sectioned Bayesian networks (MSBNs) provide a solution for the probabilistic reasoning of cooperative agents in such a setting. In this thesis, we first aim to improve the efficiency of current MSBN exact inference algorithms. We show that by exploiting the calculation schema and the semantic meaning of inter-agent messages, we can significantly reduce an agent\u27s local computational cost as well as the inter-agent communication overhead. Our novel technical contributions include 1) a new message passing architecture based on an MSBN linked junction tree forest (LJF); 2) a suite of algorithms extended from our work in BNs to provide the semantic analysis of inter-agent messages; 3) a fast marginal calibration algorithm, designed for an LJF that guarantees exact results with a minimum local and global cost. We then investigate how to incorporate approximation techniques in the MSBN framework. We present a novel local adaptive importance sampler (LLAIS) designed to apply localized stochastic sampling while maintaining the LJF structure. The LLAIS sampler provides accurate estimations for local posterior beliefs and promotes efficient calculation of inter-agent messages. We also address the problem of online monitoring for cooperative agents. As the MSBN model is restricted to static domains, we introduce an MA-DBN model based on a combination of the MSBN and dynamic Bayesian network (DBN) models. We show that effective multi-agent online monitoring with bounded error is possible in an MA-DBN through a new secondary inference structure and a factorized representation of forward messages

    Time constraint agents? coordination and learning in cooperative multi-agent system

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Automated combination of probabilistic graphic models from multiple knowledge sources

    Get PDF
    Master'sMASTER OF SCIENC

    Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas

    Get PDF
    Joint registration of a stack of 2D histological sections to recover 3D structure ("3D histology reconstruction") finds application in areas such as atlas building and validation of in vivo imaging. Straightforward pairwise registration of neighbouring sections yields smooth reconstructions but has well-known problems such as "banana effect" (straightening of curved structures) and "z-shift" (drift). While these problems can be alleviated with an external, linearly aligned reference (e.g., Magnetic Resonance (MR) images), registration is often inaccurate due to contrast differences and the strong nonlinear distortion of the tissue, including artefacts such as folds and tears. In this paper, we present a probabilistic model of spatial deformation that yields reconstructions for multiple histological stains that that are jointly smooth, robust to outliers, and follow the reference shape. The model relies on a spanning tree of latent transforms connecting all the sections and slices of the reference volume, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images. Bayesian inference is used to compute the most likely latent transforms given a set of pairwise registrations between image pairs within and across modalities. We consider two likelihood models: Gaussian (ℓ2 norm, which can be minimised in closed form) and Laplacian (ℓ1 norm, minimised with linear programming). Results on synthetic deformations on multiple MR modalities, show that our method can accurately and robustly register multiple contrasts even in the presence of outliers. The framework is used for accurate 3D reconstruction of two stains (Nissl and parvalbumin) from the Allen human brain atlas, showing its benefits on real data with severe distortions. Moreover, we also provide the registration of the reconstructed volume to MNI space, bridging the gaps between two of the most widely used atlases in histology and MRI. The 3D reconstructed volumes and atlas registration can be downloaded from https://openneuro.org/datasets/ds003590. The code is freely available at https://github.com/acasamitjana/3dhirest

    Monitoring of hybrid manufacturing using acoustic emission sensor

    Get PDF
    The approach of hybrid manufacturing addressed in this research uses two manufacturing processes, one process builds a metal part using laser metal deposition, and the other process finishes the part using a milling machining. The ability to produce complete functioning parts in a short time with minimal cost and energy consumption has made hybrid manufacturing popular in many industries for parts repair and rapid prototyping. Monitoring of hybrid manufacturing processes has become popular because it increases the quality and accuracy of the parts produced and reduces both costs and production time. The goal of this work is to monitor the entire hybrid manufacturing process. During the laser metal deposition, the acoustic emission sensor will monitor the defect formation. The acoustic emission sensor will monitor the depth of cut during milling machining. There are three tasks in this study. The first task addresses depth-of-cut detection and tool-workpiece engagement using an acoustic emission monitoring system during milling machining for a deposited material. The second task, defects monitoring system was proposed to detect and classify defects in real time using an acoustic emission (AE) sensor and an unsupervised pattern recognition analysis (K-means clustering) in conjunction with a principal component analysis (PCA). In the third task, a study was conducted to investigate the ability of AE to detect and identify defects during laser metal deposition using a Logistic Regression Model (LR) and an Artificial Neural Network (ANN) --Abstract, page iv

    Robust joint registration of multiple stains and MRI for multimodal 3D histology reconstruction: Application to the Allen human brain atlas

    Get PDF
    International audienceJoint registration of a stack of 2D histological sections to recover 3D structure ("3D histology reconstruction") finds application in areas such as atlas building and validation of in vivo imaging. Straighforward pairwise registration of neighbouring sections yields smooth reconstructions but has well-known problems such as "banana effect" (straightening of curved structures) and "z-shift" (drift). While these problems can be alleviated with an external, linearly aligned reference (e.g., Magnetic Resonance (MR) images), registration is often inaccurate due to contrast differences and the strong nonlinear distortion of the tissue, including artefacts such as folds and tears. In this paper, we present a probabilistic model of spatial deformation that yields reconstructions for multiple histological stains that that are jointly smooth, robust to outliers, and follow the reference shape. The model relies on a spanning tree of latent transforms connecting all the sections and slices of the reference volume, and assumes that the registration between any pair of images can be see as a noisy version of the composition of (possibly inverted) latent transforms connecting the two images. Bayesian inference is used to compute the most likely latent transforms given a set of pairwise registrations between image pairs within and across modalities. We consider two likelihood models: Gaussian (2 norm, which can be minimised in closed form) and Laplacian (1 norm, minimised with linear programming). Results on synthetic deformations on multiple MR modalities, show that our method can accurately and robustly register multiple contrasts even in the presence of outliers. The framework is used for accurate 3D reconstruction of two stains (Nissl and parvalbumin) from the Allen human brain atlas, showing its benefits on real data with severe distortions. Moreover, we also provide the registration of the reconstructed volume to MNI space, bridging the gaps between two of the most widely used atlases in histology and MRI. The 3D reconstructed volumes and atlas registration can be downloaded from https://openneuro.org/datasets/ds003590. The code is freely available at https://github.com/acasamitjana/3dhirest

    Context-sensitive network: A probabilistic context language for adaptive reasoning

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore