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Abstract
It is a frequently encountered problem that new knowledge arrives when making
decisions in a dynamic world. Bayesian networks and in�uence diagrams, two ma-
jor probabilistic graph models, are powerful representation and reasoning tools for
complex decision problems. Usually, domain experts cannot a�ord enough time and
knowledge to e�ectively assess and combine both qualitative and quantitative infor-
mation in these models. Existing approaches can solve only one of the two tasks
instead of both. Based on an extensive literature survey, we propose a four-step
algorithm to integrate multiple probabilistic graphic models, which can e�ectively
update existing models with newly acquired models. In this algorithm, the quali-
tative part of model integration is performed �rst, followed by quantitative combi-
nation. We illustrate our method with a comprehensive example in a real domain.
We also identify some factors that may in�uence the complexity of the integrated
model. Accordingly, we present three heuristic methods of target variable ordering
generation. Such methods show their feasibility through our experiments and are
good in di�erent situations. Furthermore, we discuss in�uence diagram combination
and present a utility-based method to combine probability distributions. Finally,
we provide some comments based on our experiments results.

Keywords:
Probabilistic graphic model, Bayesian network, In�uence diagram, Qualitative

combination, Quantitative combination
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Chapter 1

Introduction

1.1 Background

Many practical problems may include a large number of interrelated uncertainties.
Probabilistic graphic modeling techniques are widely used in various areas as tools
of abstracting uncertainties in the real world.

Over the past two decades, a large number of Arti�cial Intelligence (AI) re-
searchers have been making their e�orts on methods of learning parameters and
structure from data. Graphic modeling roots in statistics, incorporating many other
techniques as well, to exploit conditional independence properties of modeling, dis-
play, and computation.

Probabilistic graphical models are an intersection of probability theory and graph
theory. They are graphs in which nodes represent random variables and the absence
of arcs represents conditional independence assumptions.

De�nition 1.1 Probabilistic Graphic Model (PGM). A probabilistic graphic model
is a special knowledge base, which consists of 1) A set of variables; 2) Structural
dependence between variables; 3) Component probabilities to the model.

According to the di�erence on arc's direction, such graphic models can be divided
into three main groups: undirected graphs, directed graphs and mix graphs. Undi-
rected models found their applications in the physics and vision communities, while
directed models became more popular in AI and statistics communities. Directed

1



1.1. Background 2

edges represent probabilistic in�uences or causal mechanisms while undirected links
represent associations or correlations. There are also models that consist of both
directed and undirected arcs, and they are called chain graphs.

Bayesian networks and in�uence diagrams are two major probabilistic graphic
tools for knowledge representation and reasoning.

1.1.1 Bayesian Networks

Bayesian networks, also called belief networks, Bayesian belief networks, causal prob-
abilistic networks, or causal networks [Pearl, 1988] are directed acyclic graphs (DAG)
in which nodes represent random variables and arcs represent direct probabilistic
dependences among them.

Formally, a Bayesian Network (BN), B = (G, θ) over X1, ...,Xn is a BN structure
G, where each node X i is associated with a Conditional Probability Table (CPT)
PB(X i| Parents(X i)), which speci�es a distribution over X1, ...,Xn via the Chain
Rule for Bayesian networks:

PB(X1, ..., Xn) =
∏

PB(Xi|Parents(Xi)) (1.1)

As we can see from the above de�nition, conditional independencies can be read-
ily identi�ed from the graph and are used to drastically reduce the complexity of
inference.

Gene_6

ObesityDiabetes

Heart Disease

Figure 1.1: An example Bayesian network

Figure 1.1 captures a simple example of a BN. It illustrates that this compact
representation can e�ectively reveal dependency and conditional independence re-
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lationships among variables. The strengths of the links are quanti�ed by the nodes
conditional probability tables in the nodes. Bayes theorem is used to resolve uncer-
tainties in the network. They were �rst described by Judea Pearl in his book [Pearl,
1988].

The network models two disorders: Diabetes and Obesity , their common cause,
Gene_6, their common e�ect Heart Disease. Each node consists of two states indi-
cating the presence or the absence of a given �nding. Arcs denote direct probabilistic
relationships between pairs of nodes. Therefore, the arc between Gene_6 and Obe-
sity represents the fact that the presence of Gene_6 in one's body in�uences the
likelihood of being fat. Relations like this are quanti�ed numerically by means of
conditional probability distributions.

The joint probability distribution of the example model is represented by the
following equation:

Pr(G,D, F, H) = Pr(G) · Pr(D|G) · Pr(F |G,D) · Pr(H|G,D, F ) (1.2)

where G stands for Gene_6, D stands for Diabetes, and F for Fatness. If we take
into account conditional independence relationships among the modeled variables,
we can rewrite Equation (1.2) as follows:

Pr(G,D, F, H) = Pr(G) · Pr(D|G) · Pr(F |G) · Pr(H|D, F ) (1.3)

The third term of the right hand part of Equation (1.3) was simpli�ed because
D and F are conditionally independent given G. The fourth term was simpli�ed
because H is conditionally independent of G given its parents D and F .

The assumptions of conditional independence allow us to represent the joint
probability distribution more compactly. If a network consists of m binary nodes,
then the full joint probability distribution would require O(2m) space to represent,
but the factored form would require O(m2n) space to represent, where n is the
maximum number of parents of a node. Variables in a BN can be either discrete
or continuous. The most commonly used probability distribution in BNs is the
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Gaussian distribution.

1.1.2 In�uence Diagram

In�uence diagrams [Howard and E, 1984] are based on a graphical modeling lan-
guage that can represent decision situations. An in�uence diagram is a way of
describing the dependencies among variables and decisions. It can be used to visu-
alize the probabilistic dependencies in a decision model and to specify the states of
information for which independencies can be assumed to exist.

An in�uence diagram consists of a directed acyclic graph over chance nodes,
decision nodes and utility nodes with the following structural properties:

• There is a directed path comprising all decision nodes;

• The utility nodes have no children.

For the quantitative speci�cation, it is required that:

• The decision nodes and the chance nodes consist of a �nite set of mutually
exclusive states;

• Each chance node A is attached a conditional probability table P (A|pa(A)),
where pa(A) denotes all the parent nodes of node A;

• Each utility node U is attached a real-valued function over pa(U).

Stop Eating
Sugar

Heath Index

Chance of Being
Fat

Chance of Getting
Diabetes

Figure 1.2: An example in�uence diagram
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In an in�uence diagram, di�erent decision elements show up as di�erent shapes:
rectangles represent decisions, ovals represent chance events, and diamonds represent
the �nal consequence or payo� node.

A simple example of an in�uence diagram is shown in Figure 1.2 . The graph
is interpreted as follows: Chance of Getting Diabetes and Chance of Being Fat are
chance nodes, Stop Eating Sugar is a decision node, and Health Index is a value
node. The outcome of variable Chance of Being Fat is conditioned on the decision
on Stop Eating Sugar actually taken. The objective is to maximize the expected
value of Health Index, which is conditioned on both Chance of Getting Diabetes and
Chance of Being Fat.

In�uence diagrams are mathematically precise and they have been used for more
than twenty years as an aid for formulation of decision analysis problems. The major
advantage of the in�uence diagram is an unambiguous and compact representation
of probabilistic and informational dependencies. In�uence diagrams capture the
structure of a decision problem in a compact manner. Introducing new factors does
not contribute to visual exponential growth of information.

In an in�uence diagram, each additional factor to be considered requires only a
node and an arc. Hence in�uence diagrams can facilitate model construction for a
sophisticated decision problem, or the communication of the overall model structure
to other people.

A straightforward method to solve an in�uence diagram is to convert the in�u-
ence diagram into a corresponding decision tree, and to solve that tree. The most
common solution algorithm to in�uence diagrams can be found in [Shachter, 1984].

1.1.3 Knowledge Sources of Probabilistic Graphic Models

Probabilistic graphic models can be applied in a number of practical domains, for
example, medical diagnosis, planning, natural language processing, etc. These mod-
els can be constructed from di�erent knowledge sources in most application domains.
The knowledge sources can be expert opinions, literature, data sets or knowledge
bases. Probabilistic models can be obtained from one type of knowledge sources, or
a combination of di�erent types of knowledge sources.
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De�nition 1.2 Knowledge Source. From the perspective of arti�cial intelligence,
the source of knowledge usually refers to a knowledge base created from data, knowl-
edge base, literature or domain experts.

In this thesis, knowledge source means created probabilistic graph models created
from data, knowledge base, literature or domain experts.

Figure 1.3: Knowledge combination from di�erent sources

1.1.3.1 Experts

Direct manual construction of probabilistic graphic models by domain expert(s) is
a quick method of acquiring probabilistic graphic models. Domain experts are good
at the relationship among di�erent variables and the conditional probabilities are
assessed based on experts' knowledge. However, it is not easy in the case of large
networks as not all domain experts are well versed in probability theory and the
concept of conditional independence. Another challenge [Kahneman et al., 1988]
in direct elicitation of domain expert opinion is the possible biases in subjective
opinions from domain experts. Some researchers [Morgan and Henrion, 1992,Wang
and Druzdzel, 2000] presented various techniques, such as the use of lotteries, to
address these problems.

In spite of the above challenges, domain expert opinions are valuable especially
when data is absent or sparse.
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1.1.3.2 Literature

Materials from literature are records of domain research, experiment results or �nd-
ings. Therefore, a lot of related domain glossaries together with probabilistic infor-
mation are available in literature.

To derive probabilistic graphic models from literature, the challenge is to �nd
how related knowledge is encoded in the literature so that useful information can be
abstracted for model construction. Such a task sometimes needs additional domain
knowledge [Lau and Leong, 1999,Korver and Lucas, 1993].

Another challenge may prohibit direct use of information from literature. Some
reported �ndings in the literature are derived based on di�erent data sets, or under
di�erent experimental settings [Druzdzel et al., 1999], and hence are di�cult to be
combined or used together.

1.1.3.3 Data Set

Data usually contains highly valuable information. Large data collections are avail-
able in some data-rich application domains. To learn probabilistic graphic models
from data sets, the challenges include missing data, small data sets and selection
biases, etc.

There are essentially two approaches to learning the graphical structures from
data [Heckerman et al., 1994]. The �rst is based on constraint-based search [Pearl
and Verma, 1991,Spirtes et al., 1993] and the second on Bayesian search for graphs
with the highest posterior probability given the data [Cooper and Herskovits, 1992].
Once the graphical structure has been established, assessing the required probabili-
ties is quite straightforward and amounts to studying subsets of the data that satisfy
various conditions.

1.1.3.4 Knowledge Base

Knowledge base is a store of knowledge over a certain domain, which may include
some factual and heuristic knowledge (for example, some rules), represented in
machine-processable form [Leong, 1991]. Knowledge bases are widely used in expert
systems, being able to provide better support for reasoning than databases.
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1.2 Motivations

Bayesian networks and in�uence diagrams are good probabilistic graphical model-
ing language for representing and reasoning with decision problems. Real world
problems usually involve a large amount of variables, and the complex relationships
among variables. We may derive multiple decision models that are heterogeneous
in structure, or with di�erent parameters, even from the same data sets or experts
from the same domain.

In medicine, for some complex medical decision problems, usually more than
one experts are invited to provide their opinions, based on existing data or litera-
ture. These expert opinions, data or literature represent di�erent knowledge sources.
These knowledge sources may provide knowledge for the same issues. It is also quite
often that di�erent contributors are likely to have di�erent views based on their
expertise; therefore, di�erent sets of factors (i.e. variables) will be considered.

Consider the following example: we assume that a surgeon Jack plans to do a
head operation on his patient Rose. However, Jack is not con�dent of his knowledge
on nerve damni�cation and skin damni�cation. In order to make a sound decision,
Jack needs to acquire additional knowledge related to possible nerve damni�cation
and skin damni�cation in a head operation. Therefore, he seeks help from derma-
tology literature and neurology data set.

This example case on a forthcoming head operation is shown in Figure 4.1. Three
Bayesian networks are modeled from dermatology literature, a surgeon's domain
expertise (i.e., Jack) and neurology data set respectively. The variables operation
and death exist in all of the three networks. The �rst network and the second
network have another two common variables�skin damni�cation and fever. The
second network and the third network contain another two common variables�nerve
damni�cation and paralysis. Although there are some common variables between
any two networks, the structures are di�erent. For example, there is a direct arc
from skin damni�cation to fever in the second network, while there is no direct arc in
the �rst network. In the second network, there is no link from variable paralysis to
variable death, while there is a route from paralysis to death through lung syndrome.
This example is a simpli�ed version of real medical problems. In fact, real medical
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Figure 1.4: An example of knowledge combination in medical domain
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problems usually involve a large number of variables, complex relationships among
the variables, and numerous parameters.

In combining di�erent models to make a decision, one usually does not have
enough ability and time to draw a reasonable conclusion and correctly integrat-
ing these models. Our research aims to develop an e�ective approach to combine
knowledge from di�erent sources in decision modeling.

In a rapidly changing world, di�erent new fragments of knowledge or models may
arrive when there is already an existing model. The problem of model integration
is challenging. The di�erent models to be integrated can di�er in structure, or in
parameters, even if they are obtained from the same data or experts from the same
domain. This is due to the following reasons:

(1) The sources of di�erent models can be di�erent [Druzdzel and van der Gaag,
2000].

(2) Models may be constructed with di�erent graphic modeling techniques [Heck-
erman et al., 1994,Heckerma, 1999]. They can be learned from data or elicited from
domain experts.

A uni�ed model is always needed for the �nal decision or global view of a certain
problem. Our research aims to provide a solution to combine di�erent graphic
models that are either learn from data or elicited from domain experts. The sources
of di�erent models can be distinct, or the same. Integration of the various models
may involve combinations in both probability distributions and structure.

Speci�cally, the motivations of our research include:

1. Diversity and decentralized information sources. Nowadays, the information
explosion is accelerating, the knowledge arises from various background or
sources might be di�erent.

2. Combine opinions from specialists who are from di�erent subset of the whole
domain. It is easy to understand that nobody is an omni-faceted expert. Each
individual can only have limited part of knowledge over the world, or over
a certain domain. Di�erent contributors are likely to have di�erent views on
their domain of expertise. As a result, when we need to have a global overview
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of certain domain, it is necessary to combine knowledge from various sources.

3. Laborious and time-consuming process. With the emergence of a large amount
of information, it is laborious and time-consuming to manually combine all the
knowledge or complex models. Furthermore, the combination of models from
various sources requires substantial probabilistic reasoning techniques, which
is not familiar by everyone.

4. Combine correctly. Combination of probabilistic graphic models is not an
easy task. Since there are two kinds of representation of probabilistic graphic
model: qualitative representation (i.e. structure) and quantitative represen-
tation (i.e. parameters), the combination methods can also be distinguished
according to the order of qualitative combination and quantitative combina-
tion. Qualitative combination can make aggregated estimate over consensus
model's structure, while quantitative combination can provide parameters of
aggregated model. Two main challenges arise in the research on combining
models: how to preserve the conditional independence, the probability dis-
tributions, and avoid cyclic arcs. The �rst challenge concerns the structural
aspects of the combination task. The second challenge concerns the param-
eter combination. Table 1.1 summarizes 8 task categories when combining
Bayesian networks, in which Category 1 is the easiest one and Category 8
denote the most challenging situation. In combining in�uence diagrams, the
types of nodes and arcs will also be considered.

5. Combine e�ectively. Beyond correct combination, optimization is another aim.
For example, we hope to minimize speed of combination and the number of
arcs in the aggregated graph. Although there are many research e�orts on
solving the model combination problems, most of them only discuss either
probability distribution combination or qualitative combination only, but not
both tasks at the same time. Furthermore, the existing methods cannot be
easily scaled up, which means their methods can only combine two models at
one time. Therefore, we are interested in developing approaches that do not
have to restrict the number of BNs to be combined.
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Numeric Parameters Structures Number of Nodes
Category 1 Same Same Same
Category 2 Same Same Di�erent
Category 3 Same Di�erent Same
Category 4 Di�erent Same Same
Category 5 Same Di�erent Di�erent
Category 6 Di�erent Di�erent Same
Category 7 Di�erent Same Di�erent
Category 8 Di�erent Di�erent Di�erent

Table 1.1: Possible cases in merging BNs

Nevertheless, our aim is not at how to combine the raw information, but knowl-
edge, which we mean di�erent probabilistic graphic models from various information
sources.

1.3 Objectives

To �ll the gap among di�erent graphical model combination techniques, we propose
a consistent and scalable way to integrate partially or completely overlapping but
possibly heterogeneous models from di�erent information sources. The objectives of
our research include:

• To propose a generic framework for combining partially or completely over-
lapping graphic model from di�erent sources. Our basic goal is to accomplish
both qualitative and quantitative combination of graphic models.

• To combine more than two models at one time.

• To deliver robust theoretical support for each step in our methods.

• To build a graphic model combination system. The system architecture should
provide user-interactive execution environment while the detailed combination
part is transparent to users.

In summary, we will propose a generic method that can e�ectively combine di�erent
graphic models. We also aim to develop methods to generate the resulting graphical
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models. Finally, we need to ensure the correctness and scalability of our combination
method.

1.4 Research Approach

To reach these objectives, �rst we study some related existing techniques, and brie�y
analyse the advantages and limitations of these techniques.

We restrict our attention to the same type of input probabilistic networks; in
other words, the input probabilistic networks are either Bayesian networks or in�u-
ence diagrams, but not both.

In combining Bayesian networks, we explore Joint Probability Distribution (JPD)
factorization in Bayesian network, the ordering of variables, the Conditional Prob-
ability Table (CPT) encoded in models, the requirement of direction of edges, etc.

In combining in�uence diagrams, we extend our consideration to various types of
nodes and various types of arcs in in�uence diagram, as well as related restrictions
in the procedure of in�uence diagram aggregation.

Di�erent from traditional approaches that emphasize the use of CPT to model
conditional independence; we focus on using CPT to model unconditional indepen-
dence among variables. In this way, we can get homogenous structures of each
candidate graphic models (i.e. those graphic models to be combined), and e�ec-
tively add virtual arcs among independent nodes into intermediate networks when
necessary.

With identical structure of each candidate graphic models, our next step is to
combine probabilities encoded in graphic models. We believe that point probabil-
ity is not the only format to be encoded when the candidate graphic models are
Bayesian networks, because the main usage of BN is to provide reference or get
clear relationship among variables for complex problems. So we provide the user
with another choice, i.e. adopting Interval Bayesian Networks (IBN) [Ha and Had-
dawy, 1996] (i.e., the CPTs are no longer in the format of point probability, instead
in the format of interval probability distribution), as the resulting BN type after
combination.
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To e�ectively demonstrate that our methods are correct and reasonable, in this
thesis we also provide theoretical proofs and use case studies to evaluate our ap-
proaches.

In addition, we design and develop a software architecture of probabilistic graph-
ical model combination (the PGMC system), which is based on SMILE (Structure
Modeling, Inference and Learning Engine) C++ API under Windows environment
and GeNIe (Graphical Network Interface), developed by University of Pittsburgh 1

1.5 Application Domains

The problem of probabilistic model integration from various sources is prevalent, and
can be applied in various domains, such as medical diagnosis, stocks, business, air
tra�c control, military operation, and so on. Therefore, the research of knowledge
combination in this thesis should be a general system that supports a wide spectrum
of decision problems.

1.6 Organization of Thesis

We now give a brief description of the content of this thesis.
Chapter 1 mainly gives an introduction on the motivation and objectives of our

research work, and the structure of the whole thesis.
In Chapter 2, we provide a global overview of existing approaches of probabilistic

model combination and probability distribution combination.
In Chapter 3, we provide a formal problem formulation for probabilistic graphic

model combination and discuss the existing challenges.
In Chapter 4, we present our four-step approach to e�ectively combine of proba-

bilistic graphic models. This approach involves a series of key techniques including
arc reversal, variable ordering, etc. We further analyze some special properties of
in�uence diagrams, which are di�erent from Bayesian networks. Based on the at-
tributes of in�uence diagrams, we get special precondition for in�uence diagram

1More information about the GeNIe and SMILE can refer to http://www.sis.pitt.edu/~genie/ .
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combination. In addition, we present a utility-based method of parameter combina-
tion for in�uence diagrams.

In Chapter 5, we examine our case studies on over 30 heart disease models on
Bayesian network combination, and a body separation operation case from medical
domain on utility-based parameter combination in in�uence diagrams.

In Chapter 6, we conclude our work and our �ndings. We discuss the advantages
and limitations of our approaches. We also postulate to some further study directions
based on our research work in this thesis.



Chapter 2

Related Concepts and Technologies

A probabilistic graphic model consists of the qualitative part (i.e., structure) and
the quantitative part (i.e., parameter). This chapter brie�y surveys four major
approaches to structure combination of probabilistic graphic models and four major
approaches to parameter combination of probability distributions. This survey also
makes some analysis on their advantages and limitations.

2.1 Structure Combination

Multiple probabilistic graphic models that represent information or knowledge from
multiple sources can happen under di�erent situations. It can be the design of a
distributed system, or a team, which is initially unaware of other team member's
opinions or existence. It can also be some fusion of local networks into global
networks. Bayesian network combination is a problem that has been tried to solve
from more than 10 years ago [Matzkevich and Abramson, 1992]. The simplest way to
deal with multiple probabilistic graphic models is to stick to one network and discard
all others. Di�erent methods will result in di�erent answers to the combination of
probabilistic graphic models.

2.1.1 Multi-entity Bayesian Networks

Before we introduce Multi-entity Bayesian Networks (MEBN) [Laskey et al., 2001],
we need to mention BN fragments, which are the basic units in MEBN. The network

16
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fragment consists of a set of related variables together with knowledge about the
probabilistic relationships among the variables.

Multi-entity Bayesian network is a collection of BN fragments that satisfy con-
sistency criteria such that the collection speci�es a probability distribution over
attributes of and relationships among a collection of interrelated entities. A MEBN
implicitly encodes a probability distribution over an unbounded number of hypothe-
ses.

The main idea of MEBN is that the active selection of related knowledge base.
For any given problem, only a �nite subset of these hypotheses will be relevant. To
reason about speci�ed target hypotheses given evidence about a particular situa-
tion, an ordinary �nite Bayesian network, called a situation-speci�c network (SSN)
[Laskey and Levitt, 2002], is constructed from an MEBN knowledge base. The
SSN construction process is initiated when clusters of reports trigger �ring of a
suggestor. Trigger suggestors are rules that use to given situation to decide which
hypotheses need to be represented. SSN is ordinary �nite BN constructed from an
MEBN knowledge base, to reason about speci�c target hypothesis, with a particular
evidence.

Therefore, it is MEBN's advantage that it can pull from the entire knowledge base
on a certain target hypothesis, which allows a faster response to widely dispersed,
but related events.

Furthermore, MEBN logic extends ordinary Bayesian networks to provide �rst-
order expressive power, and extends �rst-order predicate calculus (FOPC) to provide
a means of specifying probability distributions over interpretations of �rst-order
theories.

However, MEBN has its own limitations. MEBN has to get a set of pre-de�ned
�rst order logic in order to quick search related knowledge base, which is not �t for
solving unexpected uncertain problems.

2.1.2 Multiply Sectioned Bayesian Networks

The formal statement for Multiply Sectioned Bayesian Networks (MSBN) [Xiang
et al., 1993, Xiang, 1995] is as follows. A MSBN M is a triplet (V, G, P ). V is
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the union domain from all agents. G is the structure, i.e. hypertree MSDAG. P is
the Joint Probability Distribution over G. P (X|pa(x)) is assigned to exactly one
occurrence of x and uniform potential to all other occurrences.

MSBN are presented to solve the problem of multi-agent probabilistic reasoning
without an exposition of its single-agent counterpart and build intelligent decision
support systems o�ered by multi-agent. Therefore, MSBN are a set of subnets. Each
subnets can be transformed into a junction tree to allow e�cient inference in each
sub-domain.

An example of MSBN is shown in Figure 2.1, containing two Bayesian networks
G1 and G2 as subnets (see Figure 2.1.(a)). The local graphs after moralization are
shown in Figure 2.1.(b). From the local graphs, every agent in a MSBN system
needs to compile its subnet into a junction tree representation for e�ective local
inference, as shown in Figure 2.1.(c). As no cluster in either junction tree contains
the d-sepset {f, g, h}, to �x this problem, a link {f, h} is added to each of the local
graphs in Figure 2.1.(b). The resulting junction trees are show at Figure 2.1.(d).

e

G
1

ba

f

g

h G2

c

i j

(a) The Structure of two subnets
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(d) Junction trees constructed
after adding link <f,h> to local
moral graphs

Figure 2.1: An example multiply sectioned Bayesian networks

Information channels called linkage between junction trees are created to al-
low propagation of evidence during attention shift. Figure 2.2 shows the graphical
structure for computing the e-message, i.e. the cluster tree L.
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Figure 2.2: The cluster tree for computing e-message

One of the advantages of MSBN is good at supporting multi-agent systems.
We can see an example of MSBN from Figure 2.1, from which we can see such
architecture is good at providing communication of multi-agent systems, as di�erent
subnets are sharing variables.

MSBN is also good at decomposing large networks into small sub-networks, and
then make inference. Therefore, it receives good feedback in digital circuit related
problems.

Now we come to discuss the limitations in MSBN. As the main idea of MSBN is
to extend the junction tree based inference algorithms into a coherent framework for
�exible modeling and e�ective inference in large domains, these junction tree based
algorithms are limited by the need to maintain an exact representation of clique
potentials.

Another limitation of MSBN is that new subnet is formed by expanding a sub-
graph. Therefore, the joining of new subnet may create cycles and the d-sepset
nodes have parents from one side or may fail halfway.

2.1.3 Topology Fusion of Bayesian Networks

Structure fusion of Bayesian networks has attracted a number of AI research e�orts
[Matzkevich and Abramson, 1992,Sagrado and Moral, 2003].

The use of graph union in order to aggregate Bayesian networks may generate
possible cycles, violating one of the model's topological restrictions. To solve this
problem, arc reversal is applied. However, the disadvantage of arc reversal lies in the
inclusion of great number of arcs that were not present in the network. Matzkevich
and Abramson prove that the task of minimizing the number of arcs in directed
acyclic graph obtained from the combination is NP-Hard [Matzkevich and Abram-
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son, 1993].
The second limitation for such works is that no parameter combination for

Bayesian networks has been discussed.
The third limitation of these works is that only two models can be combined

at one time. Besides the shortcoming of unscalability, the resulting model can also
in�uenced by the order of combination, if there are more than two models to be
combined.

2.1.4 Graphical Representation of Consensus Belief

Di�erent from the work in topological fusion of Bayesian networks, the work of
graphical representation of consensus belief extends well-known results from the ag-
gregation of joint distributions to the case of graphical model combination [Pennock
and Wellman, 1999] .

This piece of work focuses on how to combine multiple experts' opinions since
in many situations, more than one expert will be consulted. So if each one of the k
consulted experts holds a subjective belief expressed in the form of joint probability
distribution Pi, then a consensus joint probability distribution P is any function of
Pi,

P ≡ f(P1, ..., Pk)

where P itself is a legal joint probability distribution and f is the aggregation or
combination function. Pennock and Wellman [Pennock and Wellman, 1998] have de-
vised several procedures to build consensus Markov networks and consensus Bayesian
networks that are consistent with the logarithmic opinion pool

P (xj) = m ?

n∏
i=1

(Pi(xj))
wi (2.1)
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2.2 Probability Distribution Combination

We can classify combination methods [Genest and Zidek, 1986,Winkler and Clemen,
1992,Rantilla and Budescu, 1999] into behavioral approaches and mathematical ap-
proaches [Rantilla and Budescu, 1999, Downs et al., 1997]. Mathematical combi-
nation, which focuses more in computational side, uses certain properties to assign
equal weights or di�erent weights to the experts. For decades, a series of researchers
have been working hard on mathematic approaches of combination [Schmittlein
et al., 1990], and therefore quite a few methods are presented. Here we classi�ed
them into three categories: Weighted combination, Bayesian combination and fuzzy
arithmetic combination.

2.2.1 Behavior Approaches

Behavioral approach, also called psychological scaling [Cooke, 1991], is obtained
through a facilitated discussion among the experts to some agreeable common values
with perhaps a con�dence interval or outer quartile values. Some approaches such
as face-to-face group meetings, interaction by computer or sharing of information
[Rebecca, 1995] in other ways. Experts can formally discuss their assessments to
related events or variables, or informally talk about related issues. So the focus
of behavioral approach can be di�erent: sometimes on reaching agreement simply
by discussion, sometimes on promoting communication of experts or information
sharing among experts [Winkler, 1968].

The disadvantages of behavioral approach are also analyzed. For example, some
experts might have the desire to dominate the discussion so the importance of in-
formation are decided upon some most active experts, instead of being scienti�cally
decided, where some really important information can be neglected and new ideas
can be discouraged. Hogarth [Hogarth, 1977] presents a way to prevent the dys-
function, which utilize additional analyst or experts who have good experiences to
facilitate the order of discussion of experts.

Another famous but old approach to help make multi-experts decision-making
is the Delphi method, which requires indirect iteration [Dalkey, 1969, Turo� and
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Linstone, 2002]. Despite the di�erent variations of experts, experts make individual
judgment �rst and then exchange opinions anonymously. Each expert can revise
the probabilities and such process can be repeated. It is ideal that all experts make
consensus after a few round but unfortunately this seldom happen. After a number
of rounds, all experts �nal probabilities still need seek for help from mathematic
combination.

Note that the literature review in this part is not complete because the ap-
proaches are not deterministic and such research on the behavioral approach are
beyond scope in this work. More literature on the behavioral approaches can be
found in some behavioral psychology publications [Poulton, 1994].

2.2.2 Weighted Approaches

French [French, 1985] and Genest and Zidek [Genest and Zidek, 1986] provide sum-
maries over a variety of methods of weighted combining probabilities, which are also
called Axiomatic approach [Morris, 1983]. Given E experts with the ith expert pro-
viding a vector of n probability values, p1i, p2i, ..., pni, for sample space outcomes
A1, A2, ..., An, the E expert opinions can be combined using weight factors w1, w2,
..., wE, that sum up to one, using one of the following methods.

• Weighted arithmetic average. The weighted arithmetic mean for outcome
j can be computed as

∑E
i=1 wipji

The weighted arithmetic means are then normalized using their total to get the
1-norm probability for an outcome for each outcome as M1(j)∑n

k=1 M1(k)
.

• Weighted geometric average. The weighted geometric mean for outcome
j can be computed as

∏E
i=1(pji)

wi

The weighted geometric means are then normalized using their total to obtain the
0-norm probability for an outcome for each outcome as M0(j)∑n

k=1 M0(k)
.

• Generalized weighted average. The generalized weighted average for out-
come j can be computed as (

∑E
i=1 wipji)

1/r.
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The generalized weighted for averages are then normalized using their total to obtain
the r-norm probability for an outcome which each outcome as Mr(j)∑n

k=1 Mr(k)
.

where when r = 1, it is actually the weighted arithmetic average method and
when r = −1, it is the weighted harmonic average formula.

2.2.3 Bayesian Combination Methods

The special character of Bayesian approaches is that it needs evidence to update the
prior probabilities. So when we use the Bayesian combination method [Morris, 1977],
we regard expert opinions as 'observations', then use Bayes Theorem to update
the decision maker's prior distribution on the basis of these observations [French,
1990]. Many Bayesian models [Clemen and Winkler, 1999,Cooke, 1991,Ayyub, 2001,
Morris, 1977] have been proposed in the past decades. We selectively review three
methods of combination expert opinions in probability forms. We use p={p1,...,pn}
to represent expert i's expressed opinion in probability form that event θoccurs (i.e.
θ = 1).According to the posterior odds of the occurrence θ, q∗ = p∗/1− p∗.

• Independence Model. This model re�ect the situation that each expert
give independent opinions to the problem of assessing p∗. In this way more
experts means con�dence.

• Genest and Schervish's model. Genest and Schevish [Genest and Zidek,
1986] proposed a model-based on the assumption that the decision maker
can only evaluate certain aspects of the marginal distribution of expert i's
probability pi. The advantage and di�erence of this model over the previous
indepence model is that it permits mis-calibration of the pis .

• Normal Method. This model is from French [French, 1990] and Lind-
ley [Lindley, 1985] and Clemen and Winkler adopt this model to study mete-
orological forecasts [Clemen and Winkler, 1999,Winkler and Clemen, 1986].
This method has the notable advantage of capturing the dependence among
the experts' probabilities through the multivariate-normal likelihood functions.
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All the above methods obey the Bayesian paradigm but have di�erences among
them. As we can see di�erent methods are suitable for di�erent situations. Currently
there is no one best is the best method, that �ts all kinds of problems.

2.2.4 Interval Combination

Precise values are sometimes di�cult to get, or sometimes unnecessary. Interval
probability of an event can be speci�ed as an interval of possible values rather than
only as a precise one.

Dempster-Shafer approach [Dempster, 1968,Shafer, 1976] in uncertainty reason-
ing systems use a probability interval to estimate the need for more evidence. The
probability interval represents the di�erence between the probability given the cur-
rent evidence, and the maximum probability that could be achieved given more
evidence. The size of the probability interval gives a good indication of the need for
more evidence before making a decision. If the interval is large, then more evidence
is probably required. If the interval is small, one can be fairly con�dent in making
a decision.

The interval probabilities combination can borrow some ideas from the Dempster-
Shafter theory. Alternatively, interval probabilities combination can be very simple
and intuitive, just providing the interval from minimum probability to be combined
to the maximum probability to be combined.



Chapter 3

Problem Analysis

Before we introduce our method of probabilistic graphic model combination, we
�rstly elaborate the problem that we intend to solve and discuss the challenges.

3.1 Problem Formulation

We assume a �nite number of probabilistic graphic models M1, .., Mm. Mi = (Vi,
−→
Ei)

where i = 1, 2, ...m, and −→E = (a, b) denote directed edges between every pair of
nodes a and b within one probabilitic graphic model. The direction of edge is
from a to b, which we denote < a, b >. These m probabilistic graphic models can
satisfy ∅ ⊆ ⋂m

i=1 Vi and ∅ ⊆
⋂m

i=1

−→
Ei where ∅ denotes an empty set. These available

probabilistic graphic models to be combined are termed as candidate probabilistic
graphic models (if the models are BNmodels, they are candidate Bayesian networks).

To combine the k probabilistic graphic models, we aim to get a single resulting
probabilistic graphic model (in the case of BN model combination, it is resulting
Bayesian network ) Mresult = (Vresult,

−−−→
Eresult), where |Mresult| = 1, Mresult have to

remain to be a DAG, Vresult =
⋃m

i=1 Vi and φ ⊆ ⋂m
i=1

−→
Ei.

Note that it is possible that Eresult =
⋃m

i=1

−→
Ei is true only in some special cases.

The models to be combined can be described as in a 1) separate relationship 2)
partial overlapping relationship; and 3) completely overlapping relationship.

De�nition 3.1 Separate relationship. Any two of the k probabilistic graphic models
do not have any common node.

25
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M2GresultM1

G1 G2

CI1 CIresult CI2

Figure 3.1: Probabilistic graphic models combination

De�nition 3.2 Partial overlapping relationship. Any two of the k probabilistic
graphic models have at least one common node.

De�nition 3.3 Complete overlapping relationship. Every edge from one of the k

probabilistic graphic models has an equal mapping from every edge of another model
among the k probabilistic graphic models.

Figure 3.1 shows an example case of combination of two probabilistic graphic
models. M1 and M2 are the two candidate models to be combined. G1 and G2

are graphs that correspond to M1 and M2 respectively. As M1 implies G1, and G1

encodes the conditional independenceCI1 in M1, M1 is not only a valid probabilistic
graphic model, but also a perfect map of the underlying dependency. Therefore, the
problem that we are facing is to get the resulting Gresult where the underlying CIresult

(i.e., the conditional independence relationships in the resulting model) breaks the
least conditional independency from CI1 and CI2. In other words, we need to try
to get a minimum CIresult/{CI1 ∪ CI2} as possible as we can.

3.2 Precondition of Probabilistic Graphic Combi-
nation

Before the probabilistic graphic model combination can be conducted, two precon-
ditions have to be satis�ed, in order to guarantee that the model combination make
sense. Normally such process needs the knowledge engineer or domain expert's
inspection.
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3.2.1 Variable Consistency

The �rst precondition for probabilistic graphic model combination is variable con-
sistency, which make identical constraints over overlapping variables.

1. Variables with the same name model the same world entity. Since the models
are from di�erent sources, they might not be identical in all variables. We
need the domain expert's help to examine whether each variable with the same
name is representing the same physical thing. Figure 3.2 are an example of two
partially overlapping Bayesian networks to be combined, in which variables A

and C are overlapping nodes. For the sake of correct combination, the A in
Figure 3.2 (a) and the A in Figure 3.2 (b) have to denote same thing, for
example, Happy ; while the two C also have to represent same meaning, for
example, Laugh.

2. Variables with the same name have to be over the same domain. In other
words, those variables with same name must own same number of possible
values, and their values must be the same. For example, In Figure 3.2, possible
outcomes of variable A from Bayesian network 1 must be identical with the
possible outcome of variable A in Figure 3.2 (b), either binary, 3 possible state
etc. However, it is not enough for variable A in both models to be binary
only, the states of A in each model must be same too. For example, each A

in Figure 3.2 is a binary variable, and the two states are 'yes ' and 'no' at the
same time; or the two states can be 'in China' and 'in Singapore' at the same
time.

(a) Bayesian network 1 (b) Bayesian network 2

Figure 3.2: Two simple BNs to be combined
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3.2.2 Model Consistency

Model consistency among those candidate probabilistic graphic models is another
prerequisite. The possible model inconsistency problems may occur due to improper
knowledge modeling, or model learning from or evaluate based on di�erent popu-
lation set of data. Figure 3.3 shows an example of possible incorrect knowledge
modeling step. Assume there are two models on a certain internal disease D and
its most important symptom S. In the modeling stage, the residents focused on ob-
taining numerical parameters for their network. However, the second resident model
the knowledge based on data collected from patients in hospital (H = h), while the
�rst resident model the knowledge from the data from a general population data
set (not only those people who are hospitalized). Interested reader can �nd detailed
explanation on this problem from [Druzdzel and Diez, 2003].

(a) BN with incor-
rect modeling

(b) BN with correct
modeling

Figure 3.3: Improper Bayesian network modeling can result in problems

3.3 Challenges

Each probabilistic graphic model consists of two parts: the qualitative part and the
quantitative part. As in�uence diagram is a special case of Bayesian network, in the
description below, we use Bayesian network to illustrate the challenges.

The structure of a Bayesian network is a graphical, qualitative illustration of
the interactions among the set of variables that it models. The structure of the
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directed graph can mimic the causal structure of the modeled domain, although this
is not necessary. When the structure is causal, it gives a useful, modular insight into
the interactions among the variables and allows for prediction of e�ects of external
manipulation.

A Bayesian network also represents the quantitative relationships among the
modeled variables. Numerically, it represents the joint probability distribution
among them. This distribution is described e�ciently, exploring probabilistic in-
dependences among the modeled variables. Each node is described by a probability
distribution conditional on its direct predecessors. Nodes with no predecessors are
described by prior probability distributions.

There are four major challenges in this task:
The �rst challenge is in qualitative combination. How to avoid cycles after

combination of multiple Bayesian networks? Figure 3.4 and Figure 3.5 present two
example of possible situations which may incur cycle in combination. We call these
two situations Direct Con�ict cases and Indirect Con�ict cases, respectively.

For m candidate Bayesian networks B1,B2,...,Bm . Bj = (Vj,
−→
Ej)Bj ⊆

⋃m
1 Bi.

∃vx, vy, satisfy
vx ∈ Vj and vy ∈ Vj , i.e., both are nodes in Bj.
if
(i) < vx, vy >∈ −→Ej, i.e., there is a directed edge from vx to vy in Bj.
(ii) < vx, vy >/∈ {⋃m

i=1

−→
Ei\

−→
Ej}, i.e., the directed edge from vx to vy does not exist

in other candidate Bayesian networks.
(iii) < vy, vx >∈ {⋃m

i=1

−→
Ei\

−→
Ej}, i.e., the directed edge from vy to vx exist in at

least one of other candidate Bayesian networks.
if all of (i), (ii), (iii) are satis�ed in candidate Bayesian networks, this situation

is called direct con�ict, in other words, the direction of edge between two nodes are
di�erent, as shown in Figure 3.4.

(iv) < vx, vy >/∈ −→Ej, i.e., there is NOT a directed edge from vx to vy in Bj.
(v) {< vx, vx+1 >, ... < vx+c, vy−d > .., < vy−1, vy >} ⊆ −→

Ej, i.e., there exist an
link whose length is not less than 2 from vxto vy in Bj.

(vi) {< vy, vy+1 >, ... < vy+h, vx−i > .., < vx−1, vx >} ⊆ {⋃m
i=1

−→
Ei\

−→
Ej}, i.e., there
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exist links whose length is not less than 2 from vyto vx in at least one of Candidate
Bayesian networks except Bj.

if all of (iv), (v), (vi) are satis�ed, or all of (iv), (v), (iii) are satis�ed in the
Candidate Bayesian networks, this situation is called indirect con�ict situation.
Figure 3.5 shows an example of indirect con�ict.

A

B

A

B

A

B

(a) (b) (c)

Figure 3.4: Direct con�ict in DAG combination

(a) (b) (c)

A

B

A

B

C

D

C

D

A

C

Figure 3.5: Indirect con�ict in DAG combination

The second challenge is how to keep the minimal dependence relationship be-
tween any two nodes in the resulting Bayesian networks, because independence
relationships may change after combination. If we add one arc into a Bayesian
network, it is possible that some independent relationship among variables will be
broken [Geiger et al., 1989].

De�nition 3.4 Dependency map. A Directed Acyclic Graph G is said to be a
dependency map (D-map) of a dependency model M if

D(X,Y |Z)G ⇒ D(X, Y |Z)M

That is, all Conditional Independent statements derived from G hold in M.
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There is a number of dependency relationship in D-map . The di�cult point is
how to avoid introducing extra dependency relationship between arcs in the resulting
Bayesian network.

De�nition 3.5 Maximal Dependency map. A Directed Acyclic Graph is said to be
a maximal D-map of a dependency model M if it is a D-map of M, but it is not a
D-map of M when adding any extra link into it.

The third challenge is about the quantitative computation. Di�erent candidate
Bayesian networks may have di�erent structures, which means the internal Condi-
tional Probability Table (CPT) may be very di�erent, not only in numbers, but also
in the size of CPT. For example, the value of P (A) in Model 1 is di�erent from the
value of P (A) in Model 2. The CPT over node B in Model 1 is not only di�erent
from CPT over node B of Model 2 in numbers, but also in CPT size. as shown in
Figure 3.6. A P(A)

a1 0.7
a2 0.3

A

B
B \ A a1 a2

b1 0.4 0.1
b2 0.6 0.2

(a) Model 1

A P (A)
a1 0.1
a2 0.9 D P (D)

d1 0.2
d2 0.2
d3 0.6

B

A D

A a1 a2

B \ D d1 d2 d3 d1 d2 d3

b1 0.15 0.3 0.9 0.11 0.1 0.5
b2 0.85 0.7 0.1 0.89 0.9 0.5

(b) Model 2

Figure 3.6: CPT disagreement in two models

The fourth challenge in model integration is how to integrate more than two
models at the same time. In some large Bayesian network model learning problems,
knowledge engineering sometimes learn some small part of Bayesian networks and
then combine them into a global Bayesian network. We can imagine a possible case
that there are many small Bayesian networks to be combined. If all these models
can be combined at a time, some manual work or time can be saved. Unfortunately,
existing methods can only combine two models at a time. This is also a problem
that we attempt to solve.



Chapter 4

Probablistic Graphic Model
Combination

4.1 Structure Combination of Bayesian Networks

In this section, we will introduce the qualitative part of our approach of Bayesian
network model combination. Section 4.1.1 �rstly explains why Bayesian networks
can be re-organized, followed by the demonstration on how to adjust all the input
Bayesian networks into isomorphic topology in Section 4.1.2, in which de�nitions
related to target variable ordering are provided. Section 4.1.3 introduces the concept
of intermediate Bayesian networks to store the altered models in order to retain the
original structure and parameter of candidate Bayesian networks.

Our proposed approach for integration of multiple Bayesian networks consists of
four steps, as follows.

1. Reorganize original Bayesian networks;

2. Adjust variable ordering and edge direction;

3. Save amended models as Intermediate Bayesian networks; and

4. Combine CPT .

32



4.1. Structure Combination of Bayesian Networks 33

4.1.1 Re-organize Bayesian Networks

In order to demonstrate that Bayesian networks can be re-organized, our �rst
step is to introduce the inherent Joint Probability Distribution (JPD) factoriza-
tion properties of Bayesian networks, which theoretically supports the feasibility of
re-organization of Bayesian networks.

Joint probability distribution is the probability distribution over all unknown
quantities in which a probability is assigned to each possible combination of values.
Let X and Y be two disjoint subsets of variables such that p(y) > 0. Then, the
conditional probability distribution (CPD) of X given Y = y is given by

p(X = x|Y = y) = p(x|y) =
p(x, y)

p(y)
(4.1)

Equation 4.1 implies that the JPD of X and Y can be written as

p(x, y) = p(y)p(x|y) (4.2)

One particular case of Equation 4.2 is obtained when X is a single variable and
Y is a subset of variables. In this case, Equation 4.2 becomes

p(xi|x1, . . . , xk) =
p(xi, x1, . . . , xk)

p(x1, . . . , xk)
(4.3)

=
p(xi, x1, . . . , xk)∑
xi

p(xi, x1, . . . , xk)
(4.4)

which is the CPD of the ith variable, Xi, given a subset of variables {X1, . . . , Xk}.
The sum in the dominator of Equation 4.4 is taken over all possible values of Xi.

Building probabilistic models relates to a speci�cation of the joint probability
distribution. Unfortunately, a direct speci�cation of a JPD requires a huge number
of parameters. For example, for k binary variables, the most general JPD involves
2k parameters. However, in practice many subsets of variables are independent or
conditionally independent. Hence, imposing some global or special cases of indepen-
dence assumptions can decrease the number of parameters needed.

With the powerful combination of probability and graph theories, it is possible to
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represent joint probability distributions over a set of variables in a Bayesian network
in the following way:

P (x1, x2, ..., xn) =
n∏

i=1

P (xi|π) (4.5)

where xi represents the instantiation of the variable Xi and πi represents the
instantiation of the parents of Xi.

Any JPD of a set of random variables can be de�ned in terms of a set of smaller
Conditional Probability Distribution (CPD)s.

Example Consider a case of four variables {X1, ..., X4} partitioned as Y1 = {X1},
Y2 = {X2}, Y3 = {X3}, Y4 = {X4}. We can get the following equivalent chain
rule factorizations of the JPD:

p(x1, ..., x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3) (4.6)

and

p(x1, ..., x4) = p(x1|x2, x3, x4)p(x2|x3, x4)p(x3|x4)p(x4) (4.7)

This implies that the JPD can be expressed as a product of four CPDs. Note
that chain rule factorizations are NOT unique because one can apply the chain rule
to di�erent partitions of {X1, . . . , X4} and obtain di�erent chain rule factorizations.
For example the following are two di�erent but equivalent chain rule factorizations
associated with the same JPD, obtained from di�erent partitions of {X1, . . . , X4}.
For example:

The partition Y1 = {X1}, Y2 = {X2, X3},and Y3 = {X4} gives

p(x1, . . . , x4) = p(x1)p(x2, x3|x1)p(x4|x1, x2, x3) (4.8)

The partition Y1 = {X1, X4} and Y2 = {X2, X3} gives

p(x1, . . . , x4) = p(x1, x4)p(x2, x3|x1, x4) (4.9)
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Therefore, without change of JPD of the whole model, a Bayesian network model
can be re-organized into di�erent Bayesian networks with di�erent structure.

4.1.2 Adjust Variable Ordering to Maintain DAG

In the previous section, we explain that the variable ordering in a Bayesian network
can be altered without modi�cation of JPD of the original models. In this section,
we will discuss some de�nitions related to generation of target variable ordering for
the resulting Bayesian networks.

The basic relationship among nodes is parent-children pairs, where one node can
have more than one children, and one node may have more than one parent nodes.
Therefore, ancestral ordering is an intuitive description as de�ned below [Castillo
et al., 1997].

De�nition 4.1 Ancestral Ordering. Let G = (V, E) be a Directed Acyclic Graph.
Then an ancestral ordering of the vertices in V exists if and only if G is a DAG.
A more natural description of Ancestral Ordering is that every node comes after its
parents.

4.1.2.1 Order Value Computation for Variables

De�nition 4.2 Order Value. For every node v ∈ V in DAG D (Note that both
Bayesian networks and in�uence diagrams are DAGs), their Ordervalue(v) is de-
�ned with the value assigned by the longest path from a rooted node to them.

Thus a recursive function is de�ned, Ordervalue(v) = 0 i� Parent(v) = φ,
Ordervalue(v) = max(Ordervalue(Parent(v))) + 1 when Parent(v) 6= φ. The de-
tailed algorithms about assigning order value to each node in one Bayesian networks
are shown in Algorithm 4.1 and Algorithm 4.2, which have been implemented in our
system. The aim of Algorithm 4.1 is to get all the root nodes and assign order value
to these root nodes while Algorithm 4.2 is to assign order value to those non-root
nodes.

In this way, if every arc in a DAG is always from a node with lower order value
to another node that with higher order value, no cycles can exist. Therefore, the
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DAG structure can be maintained.

Algorithm 4.1 AssignOrder
Require: B = (V,E)
1: k = |V |;
2: for i = 1 to k do
3: if Parent(vi) = φ then
4: RootNodes.push(vi)
5: end if
6: end for
7: for i = 1 to |RootNodes| do
8: AssignOrderFromRoot(RootNodes[i])
9: end for

Algorithm 4.2 AssignOrderFromNode(RootNode)
Require: B = (V,E)
Ensure: OrderValue is de�ned on all descendant nodes of RootNode
1: let ChildNodes = {v|v is a child of RootNode}
2: for j = 1 to |ChildNodes| do
3: if OrderV alue(ChildNodes[j]) < OrderV alue(RootNodes[i]) + 1 then
4: OrderV alue(ChildNodes[j]) = OrderV alue(RootNodes[i]) + 1
5: AssignOrderFromNode(ChildNodes[j])
6: end if
7: end for

De�nition 4.3 Variable Ordering. λ is the sequence of Ordervalue(v) for all node
v ∈ V in DAG D.

Lemma Every arc in Bayesian networks are from nodes with lower ordervalue to
nodes with higher ordervalue.

Proof :
Given k Bayesian networks B1,...,Bk , λ1,...,λk are the variable ordering of B1,...,Bk

respectively.
We assume there exists one arc <s1,s2 > in Bi, Bi ∈ {B1, ..., Bk}, in which

ordervalue(s1) ≥ ordervalue(s2) (4.10)

is satis�ed.
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According to the de�nition of ordervalue in Bayesian networks, <s1,s2 > denotes
an arc starting from s1, and ends at s2. Therefore we can get

ordervalue(s2) = max(Ordervalue(Parent(s2) + 1) > ordervalue(s1) (4.11)

which is con�ict with 4.10. Therefore, every arc in Bayesian networks is from
nodes with lower ordervalue to nodes with higher ordervalue.

2

With this lemma, we may easily guarantee that there is no cycle in the resulting
Bayesian networks if all arcs in the resulting Bayesian networks are from nodes
with lower ordervalue to nodes with higher ordervalue. Now we come to discuss the
variable ordering in resulting Bayesian network.

De�nition 4.4 Target Variable Ordering. In probabilistic model combination prob-
lems, the variable ordering λresult is the sequence of Ordervalue(v) for all nodes
v ∈ Vresult in DAG Dresult. λresult are not necessarily the same as one of any can-
didate models although it is allowed.

Selection of target variable ordering for the resulting Bayesian network is a key
step in BN models combination. The process of selecting target variable ordering
is indeed a procedure of assigning Ordervalueresult(v) to v ∈ Bcandidate , i.e., each
node will have only one target order value in each candidate model so that for each
Bcandidate, there is only one target ordering λresult. We will continue to discuss the
type of target ordering in Section 4.1.2.2 and how to generate it automatically in
Section 4.3.

4.1.2.2 Two Types of Variable Ordering

De�nition 4.5 Linear Ordering. A graph is linearly ordered for Vs i� ∀Vi,Vi ∈
{Vs} ∪ anc(V ),∃Vj, Vj ∈ pa(Vi),∃Vk, Vk ∈ pa(Vi),⇒ (Vj = Vk) ∨ (Vj ∈ pa(Vk)) ∨
(Vk ∈pa(Vj)) where anc(V ) denotes all ancester nodes of node V and pa(V ) denotes
all the parent nodes of node V .
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Candidate BN1 Candidate BN2 Candidate BN3

Ordervalue(A) 1 1
Ordervalue(B) 1 0 2
Ordervalue(C) 2
Ordervalue(D) 1
Ordervalue(E) 0
Ordervalue(F ) 0
Ordervalue(M) 0
Ordervalue(N) 0

Table 4.1: An example of order value in Baysian networks

In a Bayesian network with linear variable ordering, each node is not allowed to
have more than one parents but can have more than one children. If D is a DAG that
are connected and linear ordering network, Ordervalue(vi) = Ordervalue(vj) i�
vi = vj , and λk is a limited non-monotonic natural number sequence, i.e. {0,1,...n}.

In Figure 4.1.(a) λBN1 is an example of linear variable ordering. The order value
for each variable Figure 4.1 is listed in Table 4.1. In model of BN1, Ordervalue(E) =

0 because E does not have any parent nodes, while Ordervalue(B) = 1 because the
longest path from top of the network is 1. However, λBN1 is not an example of linear
ordering. In BN2, D ∈ BN2, B ∈ pa(D) and F ∈ pa(D), but B 6= F .

From Figure 4.1, we can see that not every Bayesian network can satisfy the
linear ordering de�nition. Therefore, we may relax the criteria of target ordering,
from linear ordering to hierarchical variable ordering, as de�ned below.

De�nition 4.6 Hierarchical Variable Ordering. A graph is hierarchically ordered
for Vs if ∀Vi,Vi ∈ {Vs} ∪ anc(V ), where anc(V ) denotes all the ancestor nodes of
node V , ∃Vj, Vj ∈ pa(Vi),∃Vk, Vk ∈ pa(Vi), (Vj ∈ pa(Vk)) ∨ (Vk ∈pa(Vj) does not
necessarily means (Vj = Vk).

In Figure 4.2, where there exist di�erent node A,D, C where Ordervalue(A) =

Ordervalue(D) = Ordervalue(C) and (A 6= D) ∧ (A 6= C) ∧ (D 6= C). To ensure
there is not cycle in the network, the arcs are only allowed from nodes with lower
ordervalue to nodes with higher ordervalue.

The de�nition of linear ordering provides a way of judging property of ordering
from existing models. On the contrary, the following de�nition of linear target
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E

B C

E P(E)
true 0.8
false 0.2

E
true false

state0 0.15 0.6
state1 0.85 0.4

E
true fase

state0 state1 state0 state1

c1 0.1 0.7 0.26 0.9
c2 0.9 0.3 0.74 0.1

(a) Candidate BN 1

P(B)
state0 0.01
state1 0.99

P(F)
f1 0.8
f2 0.2

B
state0 state1

a1 0.7 0.6
a2 0.3 0.4

B
state0 state1

f1 f2 f1 f2

state0 0.8 0.35 0.19 0.55
state1 0.2 0.65 0.81 0.45

B A

D F

(b) Candidate BN 2

P(M)
m1 0.2
m2 0.8

P(N)
n1 0.7
n2 0.3

m1 m2

a1 0.1 0.6
a2 0.9 0.4

a1 a2

n1 n2 n1 n2

state0 0.3 0.4 0.5 0.8
state1 0.7 0.6 0.5 0.2

M N

A B

(c) Candidate BN 3

Figure 4.1: Example of three candidate Bayesian networks
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Level 0 (Order Value=0)

Level 1 (Order Value=1)

Level 2 (Order Value=2)

Level 3 (Order Value=3)

Figure 4.2: Example of ordering hierarchy of nodes in a BN

ordering o�ers a method of judging the ordering from the ordervalue of each node.

De�nition 4.7 Linear Target Ordering. λresult is the target ordering for more than
two DAGs D1,...,Dk where k ≥ 2. If λresult is a limited non-monotonic ascending
sequence of natural number, then λresult is a linear target ordering.

De�nition 4.8 Hierarchical Target Ordering. λresult is the target ordering for more
than two DAGs D1,...,Dk where k ≥ 2. If λresult is a limited sequence of natural
number, in which λi = λj when i 6= j, then λresult is a hierarchical target ordering.

4.1.2.3 Arc Reversal to Adjust Variable Ordering

In this section, we will continue to discuss how to set the directed edges consistently
with respect to the original candidate Bayesian networks. Based on the de�nition
of ordervalue in Section 4.1.2.1, our next step is to explain why and when the
operation of Arc Reversal is needed.

Arc reversal is needed here so that variable ordering in these networks are consis-
tent with target variable ordering with preservation of JPD, but with some structural
changes [Shachter, 1984]. The three candidate Bayesian networks after arc reversal
can been seen in Figure 4.4.

Arc reversal is an important technique for Bayesian networks and in�uence dia-
grams. It has signi�cance in the evaluation of Bayesian network through stochastic
simulation [Fung and Chang, 1989, Kanazawa et al., 1995]. The reversal of the
arc between two nodes in a Bayesian network means that the direction of arc will
be reversed so that the BN can be re-constructed while the original probabilistic
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distributions remain the same [Cheuk and Boutilier, 1997].
In our research, we use the arc reversal operation to reconstruct candidate

Bayesian networks so that variable ordering in these networks is consistent with
the target variable ordering. The de�nition of consistency in variable ordering is
provided below.

De�nition 4.9 Consistency in Variable Ordering. Given two Bayesian networks
B1 = (V1,

−→
E1) and B2 = (V2,

−→
E2), λ1 and λ2 are variable ordering in B1 and B2

respectively. Given any two variables < Vi, Vj >∈ B1, we denote λ1 is consistent with
λ2 i� [Ordervalue1(Vi)−Ordervalue1(Vj)]·[Ordervalue2(Vi)−Ordervalue2(Vj)]> 0.

Based on the circumscription of consistency in variable ordering, we may notice
that the arc reversal operation is only necessary in some situations, as we conclude
as following.

Lemma1 Given a pair of nodes (Vi, Vj), if (1) the arc < Vi, Vj >∈ Bi, i = 1, . . . , k

where Biis a Candidate Bayesian Network. and (2) [Ordervalue(Vi)−Ordervalue(Vj)]·
[Ordervaluetarget(Vi) − Ordervaluetarget(Vj)]< 0, i.e. the variable ordering
λi in Bi is not consistent with λtarget. We need to adjust λi to λ”

i so that
[Ordervalue(Vi)−Ordervalue(Vj)]·[Ordervaluetarget(Vi)−Ordervaluetarget(Vj)]>

0 is satis�ed, in other words, λ”
i is consistent with λtarget.

The key nodes in an arc reversal operation are the two nodes in the to-be-reversed
arc, and the parent nodes of the two nodes. As we could see from Figure 4.3 (a),
node A and node B is a parent-children pair, where A is the parent node and
B is the children node. We denote the set of parent nodes of A as Parentold(A)

before arc reversal. After the arc reversal, the set of parent nodes of A is de-
noted as Parentnew(A). The parent nodes of node A and B before arc rever-
sal, i.e. Parentold(A) ∪ Parentold(B), can be divided into three categories: 1)
U = Parentold(A)\Parentold(B); 2) V = Parentold(A) ∩ Parentold(B); 3) W =

Parentold(B)\ Parentold(A).
Suppose the target arc to be reversed is the arc (A, B), we want to get a result of

another topology which B is the parent node of A. In order to make the conditional
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(a) Before Arc Reversal

U

W

V

BA

(b) After Arc Reversal

Figure 4.3: General structure of arc reversal

independence are correctly encoded, we must add parents of both A and B, so
every variable in set U are parents of node B, and every variable in set W are
parents of node A . At the same time, A and B will keep their original parents
as well [Shachter, 1984]. The topology of the resulting network is shown at Figure
4.3 (b). The parent nodes of node A and B after arc reversal, i.e., Parentnew(A) =

B∪U∪V ∪W = Parentold(A)∪Parentold(B)∪B; while Parentnew(B) = U∪V ∪W =

Parentold(A) ∪ Parent(B)\A.
The Algorithm 4.3, which has been implemented in our system, describes the

detailed steps of adjusting original candidate Bayesian networks into new Bayesian
network so that λnew is consistent with target ordering λtarget.

Node BNCandidate1 BNCandidate2 BNCandiate3 UserSpeci�ed Target Ordering
Ordervalue(A) 1 1 1
Ordervalue(B) 1 0 2 2
Ordervalue(C) 2 3
Ordervalue(D) 1 4
Ordervalue(E) 0 5
Ordervalue(F) 0 6
Ordervalue(M) 0 7
Ordervalue(N) 0 8

Table 4.2: Order values in candidate Bayesian networks and target ordering

Figure 4.1 shows an example of three candidate Bayesian networks to be com-
bined. We assume there is a target ordering that speci�ed by user, as shown in
Table 4.2.

We notice that in candidate BN1, we have ordervalue(B) > ordervalue(E )
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Algorithm 4.3 ArcReversal
Require: A number of Bayesian NetworksB1, . . . , Bk, (k ≥ 2);

Bi = (Vi, Ei), where i ∈ [1 . . . k];
OrderValue(v), where v ∈ V

1: for i = 1 to k do
2: Get NewOrder(v) for v ∈ Vi

3: Init a heap ReverseArcSet
4: for e = 〈vm, vn〉 ∈ Ei and NewOrder(vm) > NewOrder(vn) do
5: ReverseArcSet ← e
6: end for
7: end for
8: while ReverseArcSet 6= φ do
9: pop mine=〈vm,vn〉∈ReverseArcSet e from REV

10: for v ∈ Parent(vm) do
11: if !(v ∈ Parent(vn)) then
12: Add Arc 〈v, vn〉 to Bi

13: if NewOrder(v) > NewOrder(vn) then
14: ReverseArcSet ← 〈v, vn〉
15: end if
16: end if
17: end for
18: for v ∈ Parent(vn) do
19: if !(v ∈ Parent(vm)) then
20: Add Arc 〈v, s〉 to Bi

21: if NewOrder(v) > NewOrder(vm) then
22: ReverseArcSet ← 〈v, vm〉
23: end if
24: end if
25: end for
26: end while

and ordervalue(C ) > ordervalue(E ); however, in the target ordering, there are
ordervaluetarget(B) < ordervaluetarget(E ) and ordervaluetarget(C ) < ordervaluetarget(E )
. Therefore we need to reverse the arcs < E, B >, < E,C > of candidate BN1

in order to be consistent with target ordering. The same is applied to candidate
BN2 and candidate BN3. There are two arcs need to be reversed in candidate
BN2: < B,A >, < F, D >; and two arcs need to be reversed in candidate BN3:
< M, A >, < N, B >. Figure 4.4 shows the result after arc reversal in the three
candidate Bayesian networks.
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(c) Reconstruct Candi-
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Figure 4.4: Reconstruction resulting of candidate BN using arc reversal

4.1.3 Intermediate Bayesian Networks

The �rst reason to adopt Intermediate Bayesian Networks is that we may preserve
both structure and parameters of original candidate Bayesian networks. Thus all
the changes or adjust acts are made on Intermediate Bayesian networks only. The
de�nition of Intermediate Bayesian networks is as below.

De�nition 4.10 Intermediate Bayesian Networks. Given k candidate Bayesian
networks to be combined, B1, · · · , Bk. We copy both qualitative part and quanti-
tative part of these candidate Bayesian networks, B1.1, · · · , Bk.1, where (i), (ii),(iii)
are all satis�ed. (i) |{B1, · · · , Bk}|=|{B1.1, · · · , Bk.1}|; (ii) (V1.1 = V1)

∧
...

∧
(Vk.1 =

Vk)= true; (iii) (
−−→
E1.1 =

−→
E1)

∧
...

∧
(
−−→
Ek.1 =

−→
Ek)= true.

Given a speci�c target variable ordering, it is still not enough to derive the
structure of models. For example, in Figure 4.4, although the variable ordering in
every network is consistent with target ordering, their topologies are still di�erent.
< A, N > is in BNCandidate3 after arc reversal but is NOT in BNCandidate1.

In order to solve this problem, we propose the ideas of virtual nodes and virtual
arcs, so that every candidate Bayesian network can have the same topology. An
example of the virtual node concept is shown in Figure 4.5.

De�nition 4.11 Virtual Node. Given k Bayesian networks (B1, · · · , Bk) to be com-
bined. ∀vj ∈ Vj, if vj 6∈

⋂k
i=1 Vi, virtual node vj is added to those networks in which

vj 6∈ Vi without changing JPD of Bi and λi , so that vj ∈
⋂k

i=1 Vi.

With all nodes ready, we now introduce virtual arcs, as shown in Figure 4.6.
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Figure 4.5: Example of virtual nodes
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Figure 4.6: Example of virtual arcs

De�nition 4.12 Virtual Arc. Given k Bayesian networks (B1, · · · , Bk) to be com-
bined. ∀−→ej ∈ −→

Ej, if −→ej 6∈
⋂k

i=1

−→
Ei, virtual edge −→ej is added to those networks in

which −→ej 6∈ −→Ei without changing JPD of Bi and λi , so that −→ej ∈
⋂k

i=1

−→
Ei.

The computation of intermediate Bayesian networks with virtual nodes and vir-
tual arcs will be discussed in next section.

4.2 Quantitative Combination of Bayesian Networks

From the Section 4.1, m candidate Bayesian networks to be combined, we can get
m Intermediate Bayesian networks with consensus structure, thus completing the



4.2. Quantitative Combination of Bayesian Networks 46

qualitative combination procedure. In this way, the internal conditional probability
tables for same node in each Intermediate Bayesian networks are of the same size.
The only di�erence is in the probability distributions.

4.2.1 CPT Computation in Arc Reversal

The structure change after arc reversal operation may refer to Figure 4.3. The
computation of arc reversal was discussed in [Shachter, 1984].

P(B)
state0 0.01
state1 0.99

P(F)
f1 0.8
f2 0.2

B
state0 state1

a1 0.7 0.6
a2 0.3 0.4

B
state0 state1

f1 f2 f1 f2

state0 0.8 0.35 0.19 0.55
state1 0.2 0.65 0.81 0.45

B A

D F

(a) Before arc reversal

P(B)
state0 0.01
state1 0.99

B
state0 state1

a1 0.7 0.6
a2 0.3 0.4

B
state0 state1

state0 0.71 0.262
state1 0.29 0.738

B A

D F

B state0 state1

D state0 state1 state0 state1

f1 0.901408 0.551724 0.580153 0.878049
f2 0.0985916 0.448276 0.419847 0.121951

(b) After arc reversal

Figure 4.7: Example of arc reversal

In the following description, we denote the arc to be reversed as < F, D >, i.e.,
before the arc reversal, the starting node is F and the ending node is D.

The computation begins from probability distributions over node D:



4.2. Quantitative Combination of Bayesian Networks 47

P (D|PanewD) (4.12)

= P (D|{PaoldF
⋃

PaoldD \ F}) (4.13)

=
∑

F

P (D, F |F,B) (4.14)

=
∑

F

P (D, F |PanewD) (4.15)

=
∑

F

P (D|F, B)P (F |B) (4.16)

=
∑

F

P (D|F, B)P (F ) (4.17)

A computation example, which is corresponding to Figure 4.7, is as follows,

P (d|¬b) = P (d|¬b)P (f) (4.18)

= P (d|¬b, f)P (f) + P (d|¬b,¬f)P (¬f) (4.19)

= 0.19 ∗ 0.8 + 0.55 ∗ 0.2 (4.20)

= 0.262 (4.21)

After conditional probability distributions over B are obtained, the conditional
probability distribution of F is now ready to be computed.

P (F |PanewF ) (4.22)

= P (F |{PaoldF
⋃

D \ F ) (4.23)

=
P (D,F |B)

P (D|B)
(4.24)

=
P (D|F, B) ∗ P (F |B)

P (D|B)
(4.25)

=
P (D|B, F )P (F )

P (D|B)
(4.26)

An real computation example is as follows,
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M
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m2 0.96 0.64

a1 0.5505
a2 0.4495
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B state0 state1

D state0 state1 state0 state1

f1 0.901408 0.551724 0.580153 0.878049
f2 0.0985916 0.448276 0.419847 0.121951

state0 state1

state0 0.71 0.262
state1 0.29 0.738

B state0 state1

c1 0.18 0.721053
c2 0.82 0.278947

c1 c2 c1 c2

true 0.277778 0.54878 0.868613 0.962264
false 0.722222 0.45122 0.131367 0.0377359

(a) Intermediate BN1

Figure 4.8: Intermediate Bayesian network 1

P (f |¬b,¬d) =
P (¬d|¬b, f)P (f)

P (¬d|¬b)
(4.27)

=
0.81 ∗ 0.8

0.738
(4.28)

= 0.878049 (4.29)

4.2.2 CPT Combination

The three intermediate Bayesian networks after the qualitative combination, with
detailed CPT, are shown in Figure 4.8 through 4.10 respectively.

4.2.2.1 Average or Weighted Combination

Average combination for m probability distributions p1,, . . . , pm means that the com-
bination result is the mean of these probability distributions.

pcombined = (
m∑

i=1

pi)/m (4.30)

The weighted combination of CPT is shown in Algorithm 4.4. WeightBN is
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(a) Intermedia BN2

Figure 4.9: Intermediate Bayesian network 2
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a1 0.5
a2 0.5

P(B) a1 a2

state0 0.33 0.59
state1 0.67 0.41
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n1 0.636364 0.731343 0.59332 0.853659
n2 0.363636 0.268657 0.49678 0.146341

B state0 state1
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f1 0.901408 0.551724 0.580153 0.878049
f2 0.0985916 0.448276 0.419847 0.121951
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state1 0.29 0.738
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(a) Intermediate BN3

Figure 4.10: Intermediate Bayesian network 3
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Algorithm 4.4 Computation of Weighted CPT Combination
Require: A number of Bayesian Networks B1, . . . , Bk, (k ≥ 2);

Bi = (Vi, Ei), where i ∈ [1 . . . k];
Require: Target variable ordering λresult;
1: Using WeightBN to assign a weight value to each Bi, denote as wi, such that∑

wi = 1.
2: Using algorithm ArcReversal to adjust each Bi to a new BN{i.e. Intermediate

BN} Bi.1 = (Vi.1, Ei.1) such that there is no con�ict between λi.1 and λresult and
keep JPD consistency.

3: Generate a new BN as the result BN Bresult = (Vresult, Eresult) where Vresult =⋃k
i.1=1 Vi.1 and Eresult =

⋃k
i.1=1 Ei.1

4: for each variable v that v 6∈ Vi and v ∈ Vi.1 do
5: let CPT (v)=

∑k
i=1 wi.1¦CPTi.1(v)∑

wi.1
where wi.1 = 0 if v 6∈ Bi.1, else wi.1 = wi.

6: end for

a piece of programs that allow user to manually assign weight to each candidate
Bayesian network. The weight assigned to each model can re�ect the con�dence of
every candidate probabilistic graphic model.

As we can see, both average combination and weighted combination of proba-
bilities are simple and conceptually straightforward methods, nevertheless they are
robust and surprisingly powerful [Ng and Abramson, 1992].

M

N

E

A B
C

D

F

a1 0.5505
a2 0.4495

P(B) a1 a2

state0 0.193882 0.279173
state1 0.806118 0.720827

c1 c2 c1 c2

true 0.277778 0.54878 0.868613 0.962264
false 0.722222 0.45122 0.131367 0.0377359

A a1 a2

m1 0.04 0.36
m2 0.96 0.64

A a1 a2

B state0 state1 state0 state1

n1 0.636364 0.731343 0.59332 0.853659
n2 0.363636 0.268657 0.49678 0.146341

B state0 state1

D state0 state1 state0 state1

f1 0.901408 0.551724 0.580153 0.878049
f2 0.0985916 0.448276 0.419847 0.121951

B state0 state1

state0 0.71 0.262
state1 0.29 0.738

B state0 state1

c1 0.18 0.721053
c2 0.82 0.278947

Figure 4.11: Resulting Bayesian network with weighted combination

The resulting Bayesian network from the three intermediate Bayesian networks
is shown in Figure 4.11.
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4.2.2.2 Interval Bayesian Networks

As the combined model can be saved as a reference for the user, it does not neces-
sarily indeed precise probabilities. In fact, imprecise probabilities have been applied
in a number of areas. In this section, we �rst introduce interval probabilities and
then we discuss the concept of interval Bayesian networks.

For CPT combination problems, we may have two ways to approach it. The
�rst one is to get CPT with point probabilities. Another approach is to get interval
CPT, which means that CPTs are full of interval probabilities.

The concept of interval Bayesian networks is introduced by [Ha and Haddawy,
1996]. Interval Bayesian networks are a generalization of Bayesian networks where
we allow the probabilities to be interval-values. An Interval Bayesian network rep-
resents a set of Bayesian networks, each of which is obtained from an intermediate
Bayesian network by instantiation, a process that replaces each interval probability
with a consistent point probability, where consistency means that the points must
be in their corresponding intervals, and obey the axioms of probability.

For a certain event i, if we use p(xi) to denote the probability of event i, then
we let p∗(xi) and p∗(xi) denote the lower bound and upper bound, for p(xi).

We now give a geometric interpretation of these probabilities and their bounds.
The Cartesian product of the intervals [p∗(xi), p

∗(xi)],i = 1, ..., n, gives us a hyper-
rectangle in the n-dimensional space Rn. The ith dimension of this space represents
the value of p(xi). Within this box, only points where coordinates add up to 1 are
probability distributions. Thus we have a convex set of probability distribution in
Rn restricted by in equalities

p∗(xi) ≤ p(xi) ≤ p∗(xi).i = 1, . . . , n (4.31)

and

n∑
i=1

p(xi) = 1 (4.32)

Algorithm 4.5 describe how to combine CPTs from intermediate Bayesian net-
works into a resulting interval Bayesian network.
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Algorithm 4.5 Computation of Interval CPT Combination
Require: A number of Bayesian Networks B1, . . . , Bk, (k ≥ 2);

Bi = (Vi, Ei), where i ∈ [1 . . . k];
Require: Target variable ordering λresult;
1: Using WeightBN to assign a weight values to each Bi, denote as wi, such that∑

wi = 1.
2: Using algorithm ArcReversal to adjust each Bi to a new BN{i.e. Intermediate

BN} Bi.1 = (Vi.1, Ei.1) such that there is no con�ict between λi.1 and λresult and
keep JPD consistency.

3: Generate a new BN as the result BN Bresult = (Vresult, Eresult) where Vresult =⋃k
i.1=1 Vi.1 and Eresult =

⋃k
i.1=1 Ei.1

4: for each variable v that v 6∈ Vi and v ∈ Vi.1 do
5: let CPT (v)=(min(CPTi.1(v),max(CPTi.1(v)).
6: end for

M

N

E

A B
C

D

F

a1 (0.5,0.63)
a2 (0.399,0.5)

A a1 a2

state0 (0.0116473,0.33) (0.0075188,0.59)
state1 (0.988353,0.67) (0.99248,0.41)

Figure 4.12: Example of resulting Interval Bayesian network

The resulting Bayesian network from the three intermediate Bayesian networks
can be seen in Figure 4.11, where we only denote CPTs of node A and node B.

4.3 Heuristic Methods for Target Variable Ordering
Generation

Di�erent target variable ordering will result in di�erent resulting models with di�er-
ent structure and parameters. In our research, we notice that there are some factors,
which will in�uence the generation of target variable ordering:

• The original order values of each variable in the original candidate Bayesian
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networks;

• The number of parents of each variable;

• The size of each candidate Bayesian network.

Based on the above factors, we present three heuristic methods for target variable
ordering generation, which we will introduce in this section, along with an example
of Bayesian network combination based on the three candidate Bayesian networks
in Figure 4.1. Such heuristic methods aim to reduce the complexity of the resulting
model and save the time of combination.

4.3.1 Target Ordering based on Original Order Values

Algorithm 4.6 Order value based Target Variable Ordering Generation in BNs
Combination
Require: B1, . . . , Bk, k ≥ 2 and Bi = (V, E), i = 1 . . . k
1: for i = 1 to k do
2: ∀v in Bi, Store OrderV alue(v);
3: end for
4: Vresult = ∪k

i=1Vi{push all nodes from candidate BNs into Vresult};
5: NodesNum = |Vresult|;
6: initiate an array
7: AllNodes[NodeNum] = [NodeID, OrderV alue,NewOrderV alue];
8: for i = 1 to NodeNum do
9: for j = 1 to k do

10: v=AllNode(NumNode);
11: Sumv=

∑k
j=1 OrderV alue(vk) ;{sum the node's ordervalue in all candidate

BNs}
NodeAppear[NodeNum]++;{count how many models that this node exist}

12: end for
13: end for
14: for i = 1 to NodeNum do
15: AverageOrder[NodeNum] = Sumv

NodeAppear
;

16: end for
17: sort AverageOrder[NodeNum] according to averagedordervalue and nodeID

{for two nodes with same average ordervalue, sort according to nodeID }
18: Assign NewOrdervalue to each Node after sorting

Algorithm 4.6 describes a method of automated target variable ordering generation�
Order value based Target Variable Ordering Generation method. In this algorithm,
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we �rstly compute the average value for each node from all candidate Bayesian net-
works. The target ordervalue of each node is assgined according to its average value
of original ordervalue from all candidate Bayesian networks.

The lower average value that a node can get, the lower target ordervalue it will
be assigned. In order to prove the correctness of this point, the following proof is
provided.

Proof :
Given k Bayesian networks B1, .., Bk, k ≥ 2, Bi = (Vi,

−→
Ei), a, b ∈ ⋃k

i=1 Bi, and
we denote ai(i = 1, .., k) as node a in Bi(i = 1, .., k). bi(i = 1, .., k) as node b appear
in Bi (i = 1, .., k). We assume that ai appears in the same number n of Bayesian
networks as bi.

(1) When
∑k

i=1 Ordervalue(a) =
∑k

i=1 Ordervalue(b),
AverageOrdervalue(a)=

∑k
i=1 Ordervalue(a)

n
=

∑k
i=1 Ordervalue(b)

n
= AverageOrdervalue(b).

Therefore only according to Ordervalue, we cannot decide the order between
Ordervaluetarget(a) and Ordervaluetarget(b). (In Algorithm 4.6 we will continue to
check the nodeID of a and b, if nodeID(a) ≥ nodeID(b), then we let Ordervaluetarget(a)

≥ Ordervaluetarget(b), and vice versa.
(2) When

∑k
i=1 Ordervalue(a) ≥ ∑k

i=1 Ordervalue(b),
AverageOrdervalue(a) =

∑k
i=1 Ordervalue(a)

n
≥

∑k
i=1 Ordervalue(b)

n
= AverageOrdervalue(b).

if ∀ai, bi, Ordervalue(ai) ≥ Ordervalue(bi), no doubt we will let Ordervaluetarget(a)

≥ Ordervaluetarget(b).
But what will happen if ∃ai, bi,

[Ordervalue(ai) ≥ Ordervalue(bi)]
∧

[Ordervalue(ai)≤ Ordervalue(bi) ?
We assume for in k − 1 Bayesian networks, Ordervalue(ai) ≤ Ordervalue(bi),

and only in 1 Bayesian networks, Ordervalue(ai) ≥ Ordervalue(bi), as listed below:
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Ordervalue(a1) ≤ Ordervalue(b1) (4.33)

Ordervalue(a2) ≤ Ordervalue(b2) (4.34)

... (4.35)

Ordervalue(ak−1) ≤ Ordervalue(bk−1) (4.36)

Ordervalue(ak) ≥ Ordervalue(bk) (4.37)

Given the inequations above, we let |b1 − a1| = ∆1, |b2 − a2| = ∆2, ..., |bk−1 −
ak−1| = ∆k−1, |ak − ak| = ∆k. In order to satisfy all the above inequations,
we must have ∆k ≥ ∆1 + ∆2 + .. + ∆k. Suppose we let Ordervaluetarget(a)

≤ Ordervaluetarget(b), then at least ∆k arcs need to be added in adjusting Bk

to intermediate Bayesian networks Bk.1. This violates our principle of adding least
number of arcs in the combination procedure. So we have to let Ordervaluetarget(a)

≥ Ordervaluetarget(b).
2

According to Algorithm 4.6, the generated target variable ordering of the three
candidate Bayesian networks in Figure 4.1 is shown in Table 4.3. Note that TargetOrder(A)
is equal to TargetOrder(D). In this situation, we can compare their node IDs stored
in the network, or seek help from domain experts.

Node CandidateBN1 CandidateBN2 CandidateBN3 Average Target Order
Ordervalue(A) 1 1 1 2*
Ordervalue(B) 1 0 2 2

3 1
Ordervalue(C) 2 2 3
Ordervalue(D) 1 1 2*
Ordervalue(E) 0 0 0
Ordervalue(F) 0
Ordervalue(M) 0 0 0
Ordervalue(N) 0 0 0

Table 4.3: An example for order value based target variable ordering generation
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A B C

M N E

FD

Figure 4.13: Example of resulting Bayesian networks according to order value based
target variable ordering

4.3.2 Target Ordering based on Number of Parents and Net-
work Size

Algorithm 4.7 Target Variable Ordering Generation based on Number of Parents
and Network Size
Require: B1, . . . , Bk, k ≥ 2 and Bi = (V, E), i = 1 . . . k
1: for i = 1 to k do
2: ∀v in Bi,

Store NumParentsi(v);
Store NetSizei(v); {NetSizei(v) denotes the size of network that node v is
in};
tempV aluei[v] = NumParentsi(NodeNum)∗NetSizei(NodeNum);

3: end for
4: Vresult = ∪k

i=1Vi{push all nodes from candidate BNs into Vresult};
5: NodesNum = |Vresult|;
6: initiate an array
7: AllNodes[NodeNum] = [NodeID, OrderV alue,NewOrderV alue];
8: for i = 1 to NodeNum do
9: TargetOrder[NodeNum]=

∑
tempV aluei[NodeNum];

10: end for
11: sort NodeNum according to TargetOrder[NodeNum] and nodeID {for two

nodes with same TargetOrder[NodeNum], sort according to nodeID }
12: Assign NewOrdervalue to each Node according to the position of each node

after sorting

The key idea in Algorithm 4.7 is to generate target variable ordering according to
linear computation over 1) the number of parent nodes of each variable in candidate
Bayesian networks and 2) the number of nodes for each candidate Bayesian network.

We use the node A as an example to illustrate the computation procedure. The
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weighted sum of node A is 1 ∗ 4 + 1 ∗ 4 = 8, combining the value of number of
parents in each candidate Bayesian network that node A appears and the size of
each candidate Bayesian network that node A appears.

Node CandidateBN1 CandidateBN2 CandidateBN3 Weighted sum Target Order
Num_Parent(A) 1 1 8 2*
Num_Parent(B) 1 0 2 11 3
Num_Parent(C) 2 6 1
Num_Parent(D) 2 8 2*
Num_Parent(E) 0 0 0
Num_Parent(F) 0 0 0
Num_Parent(M) 0 0 0
Num_Parent(N) 0 0 0
Num of Nodes 3 4 4

Table 4.4: Example of target ordering based on number of parents & size of networks

A B C

M N E

FD

Figure 4.14: Example of resulting Bayesian network according to num of parents
and network size

4.3.3 Target Ordering based on Edge Matrix

In this method, we consider the relative di�erence in order value between every
pair of nodes in the candidate Bayesian networks. We construct the edge matrix, by
storing the di�erence in order value for each variable in candidate Bayesian networks.
Thus there are k edge matrices if there are k candidate Bayesian networks. To get
the target variable ordering, we need to get a �nal edge matrix after computation
over these k candidate Bayesian networks. According to the �nal edge matrix, we
may get the relative di�erence in order value of between each pair of nodes in the
resulting Bayesian networks.
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Ending Node\Starting Node E B C
E 0 -1 -2
B 1 0 -1
C 2 1 0

(a) Candidate BN1

Ending Node\Starting Node A B D F
A 0 1 0 1
B -1 0 -1 0
D 0 1 0 1
F -1 0 -1 0
(b) Candidate BN2

Ending Node\Starting Node A B M N
A 0 -1 1 1
B 1 0 2 1
M -1 -2 0 1
N -1 -1 -1 0
(c) Candidate BN3

Table 4.5: Example of edge matrices of candidate Bayesian networks

Ending Node\Starting Node A B C D E F M N
A 0 0∗ 0 0 0 1 1 1
B 0 -1 -1 1 0 2 1
C 0 0 0 1 0 0
D 0 0 0 0 0
E 0 0 0 0
F 0 0 0
M 0 1
N 0

Table 4.6: Resulting edge matrix according to edge matrix based target ordering
algorithm
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Table 4.5 shows the edge matrices from the three candidate Bayesian networks
from Figure 4.1. Table 4.6 is the resulting edge matrix with simple addition from
the three edge matrix from Figure 4.5.

The relative di�erence in Table 4.6 can also be shown in the following format:

Ordervaluetarget(A)−Ordervaluetarget(F ) = 1 (4.38)

Ordervaluetarget(A)−Ordervaluetarget(M) = 1 (4.39)

Ordervaluetarget(A)−Ordervaluetarget(N) = 1 (4.40)

Ordervaluetarget(B)−Ordervaluetarget(C) = −1 (4.41)

Ordervaluetarget(B)−Ordervaluetarget(D) = −1 (4.42)

Ordervaluetarget(B)−Ordervaluetarget(E) = 1 (4.43)

Ordervaluetarget(B)−Ordervaluetarget(M) = 2 (4.44)

Ordervaluetarget(B)−Ordervaluetarget(N) = 1 (4.45)

Ordervaluetarget(C)−Ordervaluetarget(F ) = 1 (4.46)

Ordervaluetarget(M)−Ordervaluetarget(N) = 1 (4.47)

In the resulting edge matrix, we may get a consistent list of relative order value
di�erence between each pair of nodes in the resulting Bayesian network, so that we
can sort the variables according to the resulting edge matrix. The target ordering
generated from the resulting edge matrix are not guaranteed to be linear. In fact, in
most situations, it is a hierarchical variable ordering. The target variable ordering
corresponding to the resulting edge matrix can be seen in Figure 4.15. According
to this target variable ordering, in Candidate BN3, arcs need to be reversed include
< A, B >, < N, B >. In fact, there are 3 arcs that are reversed in the process:
< A,B >, < M, B >, < M,B >, < N, B > The resulting Bayesian network is
shown in Figure 4.16.
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level1:

level2:

level3:

level4:

level5:

N

F M

A E

B

C D

Figure 4.15: Target variable ordering in the resulting edge matrix

A B C

M N E

FD

Figure 4.16: Resulting BN according to edge matrix based target ordering

4.4 Extension to In�uence Diagram Combination

It might be di�cult to make decisions based on di�erent models. When we want
to extend our objective from just knowledge representation to decision analysis, we
extend our research issues from Bayesian networks to in�uence diagrams, in which
decision nodes and utility nodes are added, and those nodes corresponding to BN
variables are now called chance nodes. A prevailing and intuitive way is weighted
combination. However, it is a big problem in how to decide the weight of signi�cance
for each model from di�erent sources. We propose a new approach that determines
the weights based on Expected Utility (EU). In this section, we �rst give a formal
de�nition of an in�uence diagram, and then develop the notations needed to explain
the in�uence diagram combination algorithm.

An in�uence diagram [Howard and E, 1984] is a network consisting of a direct
graph G = (N,A) and associated node sets and functions. It contains three types
of nodes in the set N , partitioned into sets V , C and D. There is at most one value
node v ∈ V , drawn as a rounded rectangle, which represents the objective to be
maximized in expectation. There are zero or more chance nodes in the set C, shown
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as circles, representing random variables (or uncertain quantities). Finally, there
may be zero more decision nodes in the set D, drawn as squares, choices available to
the decision maker. The arcs A in the graph have di�erent meanings, based on the
target. Arcs into utility and chance nodes are conditional and represent probabilistic
dependence. They do not imply causality or time precedence. Arcs into decision
nodes are informational and imply time precedence. Any uncertainties or decisions
at the tails of such arcs have been resolved before the decision at the head of the
arc to be made.

4.4.1 Three Types of Nodes in In�uence Diagram

After an in�uence diagram is de�ned, a number of concepts and objects will be
introduced in this section.

(a) Chance Node (b) Decision Node (c) Value Node (d) Deterministic
Node

Figure 4.17: Various types of nodes in in�uence diagram

• Chance Node

A chance node contains a set of mutually exclusive and collectively exhaustive out-
comes. Mutually exclusive means that only one of the outcomes can happen. Col-
lectively exhaustive means that no other possibilities exist; one of the speci�ed out-
comes has to occur. In an investment decision, the outcomes can be either succeed
or fail, but not both.

Chance node can be classi�ed into two types of nodes: deterministic node and
non-deterministic node.

A deterministic node is a special chance node that represents a variable whose
value is a deterministic function of its parents. A deterministic function is an alge-
braic expression and di�ers from probabilistic function in that if the values of the
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parents are known, the value of the deterministic function is known with certainty.
A deterministic node is denoted by a double-oval.

• Decision Node

Decision nodes are denoted by square or rectangle nodes. A decision node is one
that is within the control of the decision maker. A decision variable is represented
by a square/rectangular node in an in�uence diagram. In each decision node, we
store a list of possible alternatives associated with the decision variable in which
only one of the alternatives can be chosen by decision maker. For example, in the
capital investment decision, the decision maker can either invest or not, but not
both.

Arcs into decision nodes indicate time precedence, which the information at the
source of the arc is available at the time the decision is made. It is not possible to
reverse an arc into or out of a decision node.

• Value Node

A value node is a node designated by the decision maker to be quantity whose certain
equivalent is to be optimized (maximized). Every in�uence diagram representing a
valid decision model must have a value node. It indicates the set of nodes whose
outcomes have direct impact on the preference of the decision maker.

A value node contains a table that represents the utility of all possible outcomes.
The parents of the value node indicate the events and decisions that a�ect the utility
directly. The parents of the value node depend on the utility model used for the
analysis. Only one value node is allowed in a standard in�uence diagram. It is a
sink node, which means it must not have any out going arc; only incoming arcs are
allowed.

4.4.2 Four Types of Arcs in In�uence Diagram

Similar to Bayesian networks, in�uence diagrams do not allow cycles. In Bayesian
networks, arcs always represent in�uence or causal relationships. Di�erent from
Bayesian networks, arcs in in�uence diagrams can represent either relevance or se-
quence. The context of the arcs indicates the meaning.
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(a) Relevance Arc

(b) Information Arc

(c) ChronologicalArc

(d) Value Arc 1 (In�uence Arc)

(e) Value Arc 2

Figure 4.18: Four types of arcs

• Relevance Arc

A relevance arc is an arc from one chance node to another chance node. It indicates
that there may be dependence, indicating that predecessor is relevant for assessing
the chances associated with the uncertain event.

• Information Arc

An information arc (into a decision node) indicates that the information must be
available at the time of the decision. Arcs that point to decision nodes represent
information available at the time that the decision is made knowing the outcome of
predecessor node.
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Arc from a chance node into a decision node indicates that information about
the outcome of the chance node is known exactly when the decision is being carried
out; in other words, from decision maker's point of view, all uncertainty associated
with a chance event is resolved and the outcome known when the decision is made.

Informational arcs cannot be reversed. An information arc indicates that the
information must be available at the time of the decision.

• Chronologic Arc

An arc from one decision node to another decision node indicates the chronological
order in which the decisions are being carried out.

• Value Arc

A value arc is an arc from an uncertain or decision node into the value node. It
indicates that outcome or decision a�ects the value directly. An arc from a decision
node to a chance node are called in�uence arc, indicating that the choice taken by
the decision maker will a�ect (or in�uence the likelihood for the outcome of the
uncertain variable). In�uence arc denotes that the decision is relevant for assessing
the chances associated with the event in the chance node.

For example, the chance that a person will become a manager depends to some
extent on the choice of his university education.

The fundamental idea of decision theory is that an agent is rational if and only
if it chooses the action that yields the highest expected utility, averaged over all the
possible outcomes of the action. This is called the principle of Maximum Expected
Utility (MEU) [Russell and Norvig, 2002].

4.4.3 Qualitative Combination with Constraints

After introducing the components of an in�uence diagram, we now talk about the
creation of in�uence diagram. We can draw the in�uence diagram with variables
ordered according to the time when they will be observed. One of the advantages
of the in�uence diagram, however, is that it can be drawn with the variable ordered
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such that probabilities can be assessed most easily. This order of conditioning is
called the assessment ordering.

As in�uence diagram is a modeling tool for decision analysis, such orderings
cannot be changed without assistance of the decision analyst or domain experts.
Therefore, only ordering between a pair of chance node can be adjusted when there
is an arc between this pair of chance node, i.e., arc reversal is only possible between
two chance nodes in an in�uence diagram, which shares a common information state
and have no other directed path between them.

The structure change is same as we described in Section 4.1, the two chance nodes
must inherit each other's conditional predecessors before reversal of an arc between
them. Bayes Theorem is invoked, and to determine the probability distribution after
arc reversal.

Algorithm 4.8 Target Variable Ordering Generation in in�uence diagram
Require: A number of in�uence diagrams ID1, · · · , IDk,(k ≥ 2); IDi = (Vi, Ei),

where i ∈ [1 . . . k];
Require: Target variable ordering λresult;
1: Using WeightBN to assign a weight values to each IDi, denote as wi, such that∑

wi = 1.
2: Find the arcs need to be reversed, push them into ArcList();
3: for i = 1 to |ArcList()| do
4: if ArcList(i).startNode.Nodetype = chanceNode then
5: if ArcList(i).endNode.Nodetype = chanceNode then
6: Using algorithm ArcReversal to reverse ArcList(i);
7: end if
8: end if
9: end for

4.4.4 Quantitative Combination

Decision theory introduces a measure of preference, known as utility. Utility the-
ory was proposed by Bernoulli [Bernoulli, 1738] to describe how people think and
behave (e.g., when they make the St. Petersberg Paradox choice), but many of
the subsequent versions (including von Neumann & Morgenstern's) were initially
proposed as normative, optimally rational models that might or might not describe
actual behavior. Utility is a function mapping the attributes of the possible out-
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comes of a decision process to the set of real numbers. Utility is determined up
to a linear transformation, i.e., a decision maker's preference over di�erent decision
alternatives is invariant to multiplying the utility by a non-negative number and
adding a constant. This implies that utility has neither a meaningful zero point, nor
a meaningful scale.

In fact, many social scientists outside of psychology believe that utility theory
provides a good description of behavior [Edwards, 1992]. Utility is by assumption
subjective: various decision makers facing the same choice may choose di�erently
because of their di�erent preference structure and di�erent utility functions. A
utility function for any decision problem needs to be obtained from a decision maker.
The process of obtaining a utility function from a decision maker is known as utility
elicitation.

Here are some useful de�nitions.

• Certain Equivalent : The amount of a commodity under conditions of certainty,
which is deemed by the decision maker to be equivalent in value to a given
lottery.

• Lottery : A set of uncertain outcomes paired with their respective probabilities.

• Utility : A subjective measure of value.

• Utility Function. We de�ne the quantity ui(i = 1, ..., k) as the utility of out-
come Ai and the function that returns the values uigiven Ai as a utility func-
tion, i.e. u(Ai) = ui .

• Expected Utility. The quantities
∑k

i=1 piu(Ai) and
∑k

i=1 qiu(Ai) are known as
the Expected Utilities for lotteries L1 and L2respectively.

• Maximum Expected Utility. When there are more than 2 lotteries, the decision
maker must prefer the one with Maximum Expected Utility, i.e.

arg max
1

k∑
i=1

pj
iu(Ai)
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Figure 4.19: Utility based parameter combination method

4.4.4.1 Utility based Parameter Combination

From the series of de�nitions above, we can see that the values of expected utility
and maximum expected utility depend on pi. The basic idea of our method of
utility-based weight computation is shown in Figure 4.19. Firstly, at each time we
focus on only one knowledge source, solving the decision model and get the expected
utility of each knowledge source, then we get the weight of each knowledge source
according to their expected utility. The combination of parameters are weighted
combination.

Given two di�erent knowledge sources S1 and S2 , their parameter set O1 =

(p11, .., p1i) and O2 = (p21, .., p2i). If p1k is always larger than p2i, the expected
utility according to O1 will be larger than the expected utility based on O2. So we
interestingly �nd that the dependency between Oi and expected utility can reveal
the attitude of each knowledge source.

De�nition 4.13 Local Dominance. Given more than one knowledge sources S =

{S1, .., Sm}, they provide their �opinions� Oi in the same quantity. Knowledge
source SA and SB represent any two knowledge sources from the knowledge sources
set S. Knowledge source SA holds the opinion OA={oA1,...,oAm} and knowledge
source SB holds the opinion OB={oB1,...,oBm} . If oAi (1 <= i <= m) is larger
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than oBi (1 <= i <= m), we say that oAi dominate oBi and knowledge source SA

has the local dominance over knowledge source SB in event (i.e., decision variable)
i. It also means that knowledge source SA is more optimistic than knowledge source
SB in variable i.

De�nition 4.14 Global Dominance. Given more than one knowledge sources S =

{S1, .., Sm}and their �opinions� Oi in the same quantity. Knowledge source SA and
knowledge source SB represent any two knowledge sources from the knowledge sources
set S. Knowledge source SA holds the opinion OA={oA1,...,oAm} and knowledge
source SB holds the opinion OB={oB1,...,oBm} and the expected utilities from OA,
and OB are EUA and EUB. If EUA is larger than EUB, we say that EUA dominate
EUB and knowledge source SA has the global dominance over knowledge source SB

based on their opinions OA and OB. It also means that knowledge source SA is more
optimistic than knowledge source SB in general degree.

Local dominance can reveal the attitude of knowledge sources toward each de-
cision variables while global dominance denotes the overall attitude of knowledge
source.

The method of combination based our utility-based weight is described in Algo-
rithm 4.9.

According to step 4 and step 5 of Algorithm 4.9, we can know that SEUmax is the
most optimistic one while SEUmin

is the most pessimistic one. After identi�cation
of the property of each knowledge source, next step is to decide the weights of
each knowledge source. Because the extremeness of SEUmax and SEUmin

, in step 9
through step 13, we pick up the two knowledge sources in the two end of the ordered
knowledge sources set and give less weight to both of these two knowledge sources.

Our utility-based weight method has the advantage of representing the possible
lower bound and upper bound of possibility of all decision variables. In addition, it
can help the decision maker to realize the optimistic or pessimistic property of each
knowledge source.
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Algorithm 4.9 Utility-based Weight Computation for each Knowledge source
Require: A number of knowledge sources KS = (S1, ..., Sm)
Require: A number of probabilistic opinions from knowledge sources O =

(O1, ..., Om) where Ok = (p1, ..., pn), k = 1, .., m {Ok is the probability distri-
bution from the knowledge source toward the probability that 's event happen.}

Require: A probabilistic decision model M
1: for i = 1 to m do
2: Solve the decision model M with Ok;
3: Save EUk;
4: EUmax=max(EUk);
5: EUmin=min(EUk);
6: EUsum=EUsum + EUk;
7: end for
8: Sort KS by EUk in descending order;
9: EUextrem=(EUmax + EUmin)/2;

10: EUinbetween=EUsum-EUmax - EUmin;
11: for i = 1 to k do
12: if (i = 1) OR (i = k) then
13: Wi= EUextrem

EUextrem+EUinbetween
×1

2
;

14: else
15: Wi= EUi

EUextrem+EUinbetween
;

16: end if
17: end for

4.5 Implementation

Our research includes both general probabilistic graphic model combination and
some extensive work in utility-based weighted parameter combination. The general
probabilistic graphic model combination methods are implemented in our Probabilis-
tic Graphic Model Combination (PGMC) system, which is developed using C++,
based on SMILE 1 and SMILE .NET, which is the .NET implementation of SMILE.
As a nice graphical interface for de�ning belief networks with discrete variables,
GeNIe 2 is the tool that allow user to view or manually manipulate the probabilistic
graphic model(s).

As Figure 4.20 presents, the PGMC system allows more than one probabilistic
graphic model as inputs, and the output of the system is a resulting model. A

1Standard Modeling, Inference and Learning Engine (SMILE) is a platform independent library
of C++ classes for reasoning in graphical probabilistic models, such as Bayesian networks and
in�uence diagrams.

2More information about the GeNIe and SMILE can refer to http://www.sis.pitt.edu/~genie/ .
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standard probabilistic graphic model can be saved in di�erent format. The ideal
formats of input probabilistic graphic models are those can be opened and visualized
GeNIe, including *.dsl, *.xdsl.

PGMC System (Probabilistic
Graphic Model Combination)

SMILE
SMILE.NET

GeNIe

Output PGM

PGM1 PGMn

Engineer
Knowledge Domain

Expert

Figure 4.20: System overview

The implementation of utility-based weighted parameter combination is shown
in Figure 4.21, which we call it as CoExperts Framework. This framework works to-
gether with some other previous research work together. In Figure 4.21, we assume
that the decision maker is a clinical doctor, each knowledge source is an domain
expert or specialist. The PROBE framework [Lau and Leong, 1999] is a existing
framework for probabilities elicitation from experts and model solving. The Dy-
naMoL [Leong and Cao, 1998] is a dynamic decision modeling language that can
solve the resulting decision model from CoExperts Framework.

4.6 Complexity Analysis

This section analyzes the computational cost for general probabilistic model combi-
nation and the utility-based in�uence diagram combination.

As we discussed in section 4.4.3, the combination of in�uence diagrams has more
constraints in structure than Bayesian network. Therefore, we only analyze the
qualitative combination of Bayesian networks because in�uence diagram combina-
tion is much simpler than Bayesian network combination. The four steps of qual-
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Figure 4.21: Utility-based weighted parameter combination

itative combination of Bayesian networks require three times of traverse operation
over each candidate Bayesian network. We use the breadth-�rst search to traverse
each Bayesian network, where the computation complexity is O(|v| + |e|). As our
target problem is to combine limited number of probabilistic graphic models, not
any amount of models, even we make the traverse operation over every candidate
Bayesian network, the complexity increase linearly as the number of candidate mod-
els increase.

The problem of getting the optimal variable ordering generation has been inves-
tigated and is found to be a NP-hard problem [Matzkevich and Abramson, 1993].
In our research, we use three heuristic methods to get the target variable ordering.
The costs in these three heuristic methods only lie in the computation of traversing
each candidate models.

Another special operation in Bayesian network combination is the arc reversal
step. Under the situation of Bayesian network combination within limited number of
variables, for each arc < a, b > in a BN model withm nodes, max(NumParents(a)+

NumParents(b)) = m−2. Therefore, after arc reversal, the arcs to be added are at
most m− 2. In the worst case, the CPT size of node a can increase from 20 to 2m−1

if all of the m − 2 nodes plus node b become parents of node a after arc reversal.
The complexity of arc reversal operation is O(2m−1).

In our utility-based weighted parameter combination method, the computation
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cost comes from the procedure of getting the weight for each knowledge source. In
order to get the weight of each knowledge source (for example, k knowledge sources),
we solve the same model k times, with di�erent parameters. As the model structure
is �xed, we may assume that the overhead of solving the model one time is O(S).
Therefore the computation cost of our method is O(kS).



Chapter 5

Case Study based Evaluation

5.1 Experimental Results on Bayesian Network Com-
bination

This section introduces the experiments designed to show the feasibility and the
performance of the four-step probabilistic graphic model combination algorithm, to-
gether with the three heuristic target variable ordering generation methods described
in Chapter 4.

5.1.1 Introduction to Heart Disease Models

In our case study, a number of Bayesian network models are used in our experiments,
which are from the Heart Disease Project in Medical Computing Lab in National
University of Singapore. The purpose of this project is to understand the interactions
of physical and genetic factors concerning a person's risk of developing Coronary
Artery Disease (CAD).

These heart disease models are learnt using Probabilistic Networks Library (PNL)
software 1 (Of July 2004 release) from the HEART dataset. The HEART dataset
has been used in [Tham et al., 2003] previously, to study the prediction of Coronary
Artery Disease (CAD) using neural networks. The number of human subject pro�les

1PNL is a full function, free, open source, graphical models library released under a BSD style
license, which is part of the collection of Intel's Open Source Libraries.

73
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has since grown from 704 to 2,949 in total. Of these subjects 1,462, or 49.6%, were
diagnosed to have coronary artery disease at the time of data collection, and the
other subjects were healthy. Each medical pro�le of a subject consists of the CAD
status of the subject (0 for healthy and 1 for diseased), 10 non-genetic risk factors,
and 30 candidate gene markers, or gene polymorphisms. There are no missing values
in this data set.

The 10 non-genetic, or physical risk factors, and their possible outcomes are
shown in Table 5.1.

1. SM-smoker (a) 1-none
(b) 2-ex-smoker
(c) 3-smoker

2. HY-hypertension (a) 1 - no
(b) 2 - yes

3. DM - diabetic (a) 1 - no
(b) 2 - yes

4. FHY - family history of hypertension (up to grandparent) (a) 1 - no
(b) 2 - yes

5. FDM - family history of diabetic (a) 1 - no
(b) 2 - yes

6. FCAD - family history of cardiac disease (a) 1 - no
(b) 2 - yes

7. RACE (a) 1 - Chinese
(b) 2 - Malay
(c) 3 - Indian
(d) 4 - others

8. SEX (a) 1 - male
(b) 2 - female

9. AGE
10. CBMI - body mass index

Table 5.1: Ten Non-genetic factors

The age and BMI are discretized according to intervals as following,

• age: 0 ~ 10, 11 ~ 20, 21 ~ 30 and so on, the last group is 81 ~ 90.

• BMI: less than 15, 15 ~ 20, 20 ~ 25, 25 ~ 30, 30 ~ 35, 35 ~ 40, > 40

In addition to these physical attributes, 30 genetic attributes are also recorded.
The names of the genetic attributes are G1 to G30 (without G20, G24). Each
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attribute denotes a candidate gene marker that may a�ect the patient's chance of
developing CAD. The possible outcomes of these gene markers denote the genotypes,
or polymorphisms at that particular gene, often a substitution of a carbon base (e.g.
T substituting C) at certain positions of the gene. In this data set, each gene marker
has 3 possible polymorphisms.

We use these models in our case study because all of these models are learnt from
the same data set (i.e. Heart Disease dataset). Therefore, the BN learning results
from di�erent approaches or di�erent BN software can satisfy the requirements of
our graphic model combination approach very well: 1) each variable with the same
name among di�erent models denotes same meaning; 2) the states of variables with
the same name is identical in di�erent networks; 3) the structure of these models
are di�erent.

We have over 30 Bayesian networks. The �st experimental set contains three
candidate Bayesian networks , each of which is with 5 node, three candidate Bayesian
networks of 6-nodes which are in Figure C.4, three Bayesian networks of 7 nodes,
8 nodes, 10 nodes, 12 nodes that are in Figure C.7, Figure C.10, Figure C.11 and
Figure C.12 respectively.

5.1.2 Experimental Setting and Measurement Criteria

The experiments were run on a PC with Windows 2000, AMD Athlon Processor
1.2G, 320M RAM.

The measurement criteria in our case study include:

• Number of arcs added in the resulting Bayesian network.

• Running time of combination, excluding the time of target variable ordering
generation. The measurement unit of running time is counted in second(s).

• Number of arcs that are reversed in the combination procedure.

The candidate Bayesian networks are generated randomly.
For simplicity, we use Method 1, Method 2, and Method 3 to represent the

proposed target variable ordering generation methods.
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• Method 1: target ordering based on original target order value;

• Method 2: target ordering based on number of parents and network size;

• Method 3: target ordering based on edge matrix.

5.1.3 Comparison of Three Target Orderings Generation Meth-
ods

As we described in chapter 3, provided the same candidate Bayesian networks to be
combined, the resulting Bayesian networks may be di�erent according to di�erent
target ordering of variables in the resulting Bayesian networks. Here we would like to
use a number of experiments to investigate how di�erent target ordering of variables
in resulting Bayesian networks in�uence the combination result. In the following
tables, TO = Target Ordering, CBN = Candidate Bayesian Network.

Our �rst experiment is the combination over �ve candidate Bayesian networks,
among which each Bayesian network is in the size of 5 variables, as shown in Figure
C.1.
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CBN5.1 CBN5.2 CBN5.3 TOmethod1

Order(CAD) 1 2 0 2
Order(Race) 2 1 3 3
Order(CBMI) 0 0
Order(SEX) 0 1 1
Order(HY) 3 3
Order(SM) 2 2
Order(G7) 0 0
Order(G13) 0 0
Order(G26) 0 0
Order(G30) 2 3

(a) Variable ordering generation with method 1

CBN5.1 CBN5.2 CBN5.3 TOmethod2

NumParent(CAD) 1 2 0 3
NumParent(Race) 2 1 3 4
NumParent(CBMI) 0 0
NumParent(SEX) 0 1 1
NumParent(HY) 3 2
NumParent(SM) 2 2
NumParent(G7) 0 0
NumParent(G13) 0 0
NumParent(G26) 0 0
NumParent(G30) 2 1

(b) Variable ordering generation with method 2

Table 5.2: Variable ordering in combining three 5-node BNs with method 1 and
method 2
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End\Start CAD Race CBMI G13 G26
CAD 0 1 -1 -1 -1
Race 0 -2 -2 -2
CBMI 0 0 0
G13 0 0
G26 0

End\Start CAD Race SEX HY G30
CAD 0 -1 -2 1 0
Race 0 -1 2 -1
SEX 0 3 2
HY 0 -1
G30 0

(a) Edge matrix of CBN5.1 (b) Edge matrix of CBN5.2

End\Start CAD Race SEX SM G7
CAD 0 3 1 2 0
Race 0 -2 -1 -3
SEX 0 1 -1
SM 0 -2
G7 0

(c) Edge matrix of CBN5.3

End\Start CAD Race CBMI SEX HY SM G7 G13 G26 G30
CAD 0 3 -1 -1 1 2 0 -1 -1 0
Race 0 -2 -3 2 -1 -3 -2 -2 -1
CBMI 0 0 0 0 0 0 0 0
SEX 0 3 1 -1 0 0 2
HY 0 0 0 0 0 -1
SM 0 -2 0 0 0
G7 0 0 0 0
G13 0 0 0
G26 0 0
G30 0

(d) Edge matrix of resulting Bayesian network

CAD Race CBMI SEX HY SM G7 G13 G26 G30
TOmethod3 2 4 1 1 5 3 0 1 1 0

(e) Target variable ordering with method 3

Table 5.3: Variable ordering in 5-node candidate BNs with method 3
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Ordervaluetarget(Race)−Ordervaluetarget(CAD) = 3 (5.1)

Ordervaluetarget(CBMI)−Ordervaluetarget(CAD) = −1 (5.2)

Ordervaluetarget(SEX)−Ordervaluetarget(CAD) = −1 (5.3)

Ordervaluetarget(HY )−Ordervaluetarget(CAD) = 1 (5.4)

Ordervaluetarget(SM)−Ordervaluetarget(CAD) = 2 (5.5)

Ordervaluetarget(G13)−Ordervaluetarget(CAD) = −1 (5.6)

Ordervaluetarget(G26)−Ordervaluetarget(CAD) = −1 (5.7)

Ordervaluetarget(CBMI)−Ordervaluetarget(RACE) = −2 (5.8)

Ordervaluetarget(SEX)−Ordervaluetarget(RACE) = −3 (5.9)

Ordervaluetarget(HY )−Ordervaluetarget(RACE) = 2 (5.10)

Ordervaluetarget(SM)−Ordervaluetarget(RACE) = −1 (5.11)

Ordervaluetarget(G7)−Ordervaluetarget(RACE) = −3 (5.12)

Ordervaluetarget(G13)−Ordervaluetarget(RACE) = −2 (5.13)

Ordervaluetarget(G26)−Ordervaluetarget(RACE) = −2 (5.14)

Ordervaluetarget(G30)−Ordervaluetarget(RACE) = −1 (5.15)

Ordervaluetarget(HY )−Ordervaluetarget(SEX) = 3 (5.16)

Ordervaluetarget(SM)−Ordervaluetarget(SEX) = 1 (5.17)

Ordervaluetarget(G7)−Ordervaluetarget(SEX) = −1 (5.18)

Ordervaluetarget(G30)−Ordervaluetarget(SEX) = 2 (5.19)

Ordervaluetarget(G30)−Ordervaluetarget(HY ) = −1 (5.20)

Ordervaluetarget(G7)−Ordervaluetarget(SM) = −2 (5.21)
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Using method 1, only one arc < Race, CAD > need to be reversed in CBN5.2

and only one arc < CAD, SEX > need to be reversed in CBN5.3. The combination
time is 0.10 seconds.

Using method 2, arcs need to be reversed in CBN5.2 include {< RACE, CAD >

,< RACE, G30 >,< CAD, HY >}, in which in fact {< CAD, G30 >,< HY, G30 >

} are reversed too. Arcs need to be reversed in CBN5.3 include {< CAD, SEX >

,< CAD,SM >}. The combination time is 0.711 seconds.
The combination time of three 5-node Candidate Bayesian networks is 0.651

seconds with method 3. In CBN5.2, two arcs are required to be reversed: {<
RACE, CAD >,< RACE,G30 >}, which actually incur another two arcs to be
reversed: {< SEX, G30 >,< CAD, G30 >}. In CBN5.3 there are one arc to be
reversed: < CAD, SEX >.

We also use a random target varible ordering to test how the resulting model
can be. The random target varible orderig is {HY = 0, G30 = 0, RACE = 1,
SM = 2, CAD = 2, CBMI = 3, SEX = 4, G26 = 5, G13 = 6, G7 =

7}. Under such a target ordering, in CBN5.1, there are 7 arcs to be reversed:
{< CBMI, CAD >, < G13, RACE >, < G26, CAD >,< CBMI,RACE ><

G26, RACE >,< CAD, RACE >< RACE,HY >}; in CBN5.2, there are 5 arcs to
be reversed: {< SEX,SM >,< SM, RACE >, < G7, RACE >, < CAD, RACE ><

G7, SM >}. It looks a bit strange that the combination time under this ran-
dom target variable ordering is only 0.5 seconds. It may because only arcs in
CBN5.1 and CBN5.2 are reversed. In CBN5.1 and CBN5.2 , the variable sets of
{G26, CBMI, RACE,CAD} and {SEX,RACE, CAD,HY } are almost fully con-
nected already. Therefore the arc reversal operation will need less computation.
However, Method 2 and Method 3 both require arc reversal operated on CBN5.3.

In the degree of broken of original conditional independence, any of our heuristic
method have better performance than the random target variable ordering.

As we can see from Table 5.7, the performance of method 2 is worst. Size of the
network is considered in method 2, however, the three candidate Bayesian networks
are with equal size (each with 5 nodes), which should be the reason of why method 2
perform worst. Therefore, we cannot draw the conclusion that method 2 is the worst
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Num_ArcReversed Num_ArcAdded Combination Time
Method 1 2 -3 0.10
Method 2 7 0 0.711
Method 3 5 -1 0.651

Random Target Ordering 12 4 0.5

Table 5.4: Combination using 3 methods in three 5-node BN combination

method yet. In addition, we will try another experiment on some BN combination
over candidate BNs with di�erent network size.

Our second experiment is the combination based on three candidate Bayesian
networks, of which each network is of 6-node size.

Using method 1 over combination of 6-node Bayesian networks, there is one
arc (< CBMI, CAD >) , three arcs (< RACE, CAD >,< RACE,G30 >,<

SEX, CAD >) and two arcs (< CBMI, SEX >, < SM, RACE >) need to be
reversed in CBN6.1, CBN6.2 and CBN6.3 respectively. The combination time is
1.953 seconds.
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CBN6.1 CBN6.2 CBN6.3 TOmethod1

ordervalue(CAD) 1 2 0 1
ordervalue(Race) 2 1 5 4
ordervalue(CBMI) 0 2 3
ordervalue(SEX) 0 3 2
ordervalue(HY) 3 5
ordervalue(SM) 4 6
ordervalue(Age) 1 1
ordervalue(G13) 0 0
ordervalue(G14) 1 1
ordervalue(G26) 0 0 0
ordervalue(G30) 2 3

(a) Variable ordering generation with method 1

CBN6.1 CBN6.2 CBN6.3 TOmethod2

NumParent(CAD) 2 3 0 4
NumParent(Race) 5 2 4 5
NumParent(CBMI) 0 1 1
NumParent(SEX) 0 3 3
NumParent(HY) 2 2
NumParent(SM) 2 2
NumParent(Age) 1 1
NumParent(G13) 0 0
NumParent(G14) 1 1
NumParent(G26) 0 0 0
NumParent(G30) 1 1

(b) Variable ordering generation with method 2

Table 5.5: Variable ordering in 6-node candidate Bayesian networks



5.1. Experimental Results on Bayesian Network Combination 83

End\Start CAD Race CBMI G13 G14 G26
CAD 0 1 -1 -1 0 -1
Race 0 -2 -2 -1 -2
CBMI 0 0 1 0
G13 0 1 0
G14 0 -1
G26 0

End\Start CAD Race SEX HY G26 G30
CAD 0 -1 -2 1 -2 0
Race 0 -1 2 -1 1
SEX 0 2 0 2
HY 0 -3 -1
G26 0 2
G30 0

(a) Edge matrix of CBN6.1 (b) Edge matrix of CBN6.2

End\Start CAD Race SEX SM AGE CBMI
CAD 0 5 3 4 1 2
Race 0 -2 -1 -4 -3
SEX 0 1 -2 -1
SM 0 -3 -2
AGE 0 1
CBMI 0

(c) Edge matrix of CBN6.3

End\Start CAD Race CBMI SEX HY SM AGE G13 G14 G26 G30
CAD 0 5 1 1 1 4 1 -1 0 -3 0
Race 0 -5 -3 2 -1 -4 -2 -1 -3 1
CBMI 0 1 0 2 -1 0 1 0 0
SEX 0 2 1 -2 0 0 0 2
HY 0 0 0 0 0 -3 -1
SM 0 -3 0 0 0 0
AGE 0 0 0 0 0
G13 0 1 0 0
G14 0 -1 0
G26 0 2
G30 0

(d) Edge matrix of resulting Bayesian network

CAD Race CBMI SEX HY SM AGE G13 G14 G26 G30
TOmethod3 3 9 5 4 11 7 6 2 8 1 10

(e) Target variable ordering with method 3

Table 5.6: Variable ordering in 6-node candidate BNs with method 3
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Using method 2 over combination of 6-node Bayesian networks, there are four
arcs (< RACE, CAD >,< RACE,G30 >,< SEX, HY >, < CAD,HY >) to be
reversed in CBN6.2, which led to another three arcs (< CAD, G30 >,< SEX, G30 >

,< HY, G30 >) in CBN6.2 to be reversed too. In CBN6.3, there are four arcs
(< CAD, AGE >, < CAD,SEX >, < CAD,SM >, < SEX, SM >) are reversed.
The combination time with method 3 is 5.999 seconds.

The combination of method 3 over three 6-node Bayesian networks has incur
one arc (< CBMI,CAD >), two arcs (< RACE, CAD >, < SEX, CAD >) and
three arcs (< AGE, CBMI >, < AGE, SEX >, < CBMI, SEX >) to be reversed
during the combination. The combination time is 1.813 second.

Num_ArcReversed Num_ArcAdded Combination Time (Sec)
Method 1 6 5 1.953
Method 2 10 5 5.999
Method 3 6 3 1.813

Random Target Ordering 16 8 3.84

Table 5.7: Comparison of 3 methods in three6-node BN combination

In additiona, we use a random target varible ordering to test how the result-
ing model can be. The random target varible orderig is {HY = 0, G30 = 1,
RACE = 4, SM = 2, CAD = 5, CBMI = 7, SEX = 3, G26 = 0, G13 = 0,
Age = 1, G14 = 1 }. Under such a target ordering, in CBN6.1, there are 3 arcs
to be reversed: {< CBMI, CAD >, < CBMI, RACE >,< CAD, RACE >}; in
CBN6.2, there are 5 arcs to be reversed: {< SEX, HY >,< RACE, G30 >,<

RACE, HY >,< SEX,HY >, < CAD, HY >}; in CBN6.3, there are 8 arcs to be
reversed:{< CAD, AGE >, < CBMI, SEX >,< SEX, SM >, < CAD,RACE >

,< CAD,SEX >,< CBMI, RACE >,< CAD, SM >, < CBMI, CAD >}.The
combination time under this random target variable ordering is 3.84 seconds. In the
degree of broken of original conditional independence, any of our heuristic method
have better performance than the random target variable ordering.
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5.1.4 Comparison of Di�erent Size Bayesian Network Com-
bination

In this section, we mainly describe some experiments based on combination over
candidate Bayesian networks in di�erent size. Three groups of candidate Bayesian
networks are compared in their combination. We use |var| to denote the number of
variables and use |arc| to indicate the number of arcs in a Bayesian network.

The �rst group consists of three di�erent size Bayesian networks, in which the
�rst candidate Bayesian network is of �ve variables and six arcs, the second candidate
Bayesian network is of eight variables and thirteen arcs, and the third candidate
Bayesian network is of twelve variables and seventeen arcs.

The second group consists of three size Bayesian networks, in which each Bayesian
network is of seven variables but with di�erent number of arcs. The �rst can-
didate Bayesian network is with ten arcs. The second candidate Bayesian net-
work is with nine arcs and the third candidate Bayesian network is with eleven
arcs. Using method 1 over combination of 7-node Bayesian networks, there is
three arcs (< RACE,CAD >,< RACE, G30 >,< SEX, CAD >) and two arcs
(< CAD,AGE >, < SM,RACE >) need to be reversed in CBN7.2 and CBN7.3

respectively. The combination time is 162.754 seconds. Using method 2 over com-
bination of 7-node Bayesian networks, there are two arcs (< RACE, CAD >, <

RACE, G30 >) are required to be reversed in CBN7.2, which incur another two arcs
(< CAD,G30 >,< SEX, G30 >) in CBN7.2 to be reversed too. In CBN7.3, there
are four arcs (< CAD, AGE >, < CAD, SEX >, < CAD,SM >,< SEX, SM >)
are reversed. The combination time with method 3 is 350.143 seconds. Using method
3, order7.1(CBMI)− order7.1(CAD) = 2 and order7.3(CBMI)− order7.3(CAD) =

−2, therefore we randomly let TOmethod3(CAD) > TOmethod3(CBMI). There are
one arc (< CBMI,CAD >), two arcs (< RACE, CAD >, < SEX, CAD >) and
three arcs (< AGE, CBMI >, < AGE, SEX >,< AGE,RACE >) are reversed
in CBN7.1, CBN7.2 and CBN7.3 respectively. The combination time is only 15.222
seconds! Method 1 and method 2 do not consider number of parents of each node, it
is possible that arc reversal acts are operated at some nodes that have many parent
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nodes. This may be the explanation of the large amount of combination time.
The third group consists of three di�erent size Bayesian networks, in which the

�rst candidate Bayesian network is of �ve variables and six arcs, the second candi-
date Bayesian network is of seven variables and nine arcs, and the third candidate
Bayesian network is of ten variables and seventeen arcs.

The experimental results show that each of our heuristic target variable gener-
ation method can result in less arcs in the resulting model. Method 2 can provide
better performance than Method 1 towards di�erent size Bayesian network combi-
nation, and sometimes better than Method 3.

CBN_1 CBN_2 CBN_3 ResultBN Combination Time (sec)
|Var | |Arc| |Var | |Arc| |Var | |Arc| |Var | |Arc|

Method 1 5 6 8 13 12 16 12 17 11.998
Method 2 5 6 8 13 12 16 12 14 3.53
Method 3 5 6 8 13 12 16 12 16 11.73

Random Target Ordering 5 6 8 13 12 16 12 21 12.933

Method 1 7 10 7 9 7 11 14 31 162.754
Method 2 7 10 7 9 7 11 14 38 350.143
Method 3 7 10 7 9 7 11 14 29 15.222

Random Target Ordering 7 10 7 9 7 11 14 39 353.101

Method 1 5 6 7 9 10 18 12 22 15.781
Method 2 5 6 7 9 10 18 12 19 3.64
Method 3 5 6 7 9 10 18 12 20 13.392

Random Target Ordering 5 6 7 9 10 18 12 25 16.939

Table 5.8: Comparison of di�erent size Bayesian networks combination

5.2 Experimental Results on Utility based Param-
eter Combination

This section is devoted to the description of experiment settings, experiment result
and analysis based on the utility-based combination of probability distributions from
multiple in�uence diagrams.
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5.2.1 Experiment Setting

Patients: Twins with conjoined body part from breast to navel: Tom and Smith.

Situation: Tom and Smith have two complete set of organs but now Smith su�ered
from Cancer A while Tom did not, the operation to separate them is to secure
the chance of Tom's survival against di�usion of cancer cell from Smith's body
to Tom's. However, whether they share veins, arteries or nerves can only
be known in the operation, so we need probability distributions on possible
probabilities to predict Tom's chance of survive the surgery.

InformationSources: Five Sources E1, . . . , E5.

DecisionMaker: Doctor Alex who will be the primary Surgeon of this operation
if the operation will be implemented.

Alternatives: Do the surgery operation to separate their body so as each person
has his own body.

Objective: Maximize their chance of survival of .

Risk attitude: Risk neutral.

Known: The twins decide the importance of Tom's survival is 3 times more than
Smith's. They are 20 year old. Without operation, they are expected to live
another 4 years and 0 year, respectively. If they can survive the operation,
Tom and Smith can survive for additional 50 years and 1 year respectively.

Experiment1: Getting utility based weights of each knowledge source.

Experiment2: Solve the decision model based on arithmetic combination of prob-
ability distributions with equal weight of each knowledge source and with
utility-based weight of each knowledge source respectively, make comparisons.

Experiment3: Solve the decision model based on geometric combination of prob-
ability distributions with equal weight of each knowledge source and with
utility-based weight of each knowledge source respectively, make comparisons.
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Factors Variables Possible Values
Do they share nerves SN {Yes, No}
Do they share artery SA {Yes, No}
Do they share vein SV {Yes, No}

Table 5.9: Some factors in�uence the decision

Chance of Smit’s

Chance of Tom’s
survival

DO the surgery operation?

Do they Share nerves?

Do they share artery?

Do they share veins?

survival

Table 5.10: The model of body seperation surgery

Experiment4: Adding a new knowledge source (knowledge source 6) into the
knowledge sources set. Make comparisons.

Organ separation operation no doubt will have quite a number of factors to be
considered. For simplicity, we only select 3 factors (whether the twins share nerves,
whether the twins share artery, whether the twins share vein) that have in�uence
on the decision which is listed in Table 5.9. The model is shown in Figure 5.10.

Also we assume we get corresponding probabilities from knowledge source 1 on
three variables on the three factors which displayed in Table 5.11, and probabilities
from the opinion of knowledge source 2 (Table 5.12), knowledge source 3 (Table5.13),
knowledge source 4 (Table 5.14) and knowledge source 5 (Table 5.15).

When solving the decision model based on each knowledge source, we get the
5 expected utility corresponding to each of the 5 knowledge sources, as shown in
Table 5.16.
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ShareNerve ShareArtery ShareVein Survival_Tom Survival_Smith
P (SN = Y )=0.7 P (SA = Y )=0.6 P (SV = Y )=0.9

Y Y Y 0.1 0.1
Y Y N 0.2 0.2
Y N Y 0.35 0.35
Y N N 0.4 0.4
N Y Y 0.15 0.15
N Y N 0.18 0.18
N N Y 0.6 0.6
N N N 0.9 0.9

Table 5.11: Opinion of knowledge source 1

ShareNerve ShareArtery ShareVein Survival_Tom Survival_Smith
P (SN = Y )=0.7 P (SA = Y )=0.6 P (SV = Y )=0.9

Y Y Y 0.1 0.09
Y Y N 0.21 0.2
Y N Y 0.4 0.35
Y N N 0.5 0.45
N Y Y 0.2 0.15
N Y N 0.18 0.1
N N Y 0.65 0.6
N N N 0.95 0.9

Table 5.12: Opinion of knowledge source 2

ShareNerve ShareArtery ShareVein Survival_Tom Survival_Smith
P (SN = Y )=0.7 P (SA = Y )=0.6 P (SV = Y )=0.9

Y Y Y 0.3 0.25
Y Y N 0.3 0.3
Y N Y 0.45 0.4
Y N N 0.55 0.5
N Y Y 0.29 0.26
N Y N 0.25 0.2
N N Y 0.6 0.6
N N N 1 0.95

Table 5.13: Opinion of knowledge source 3
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ShareNerve ShareArtery ShareVein Survival_Tom Survival_Smith
P (SN = Y )=0.8 P (SA = Y )=0.6 P (SV = Y )=0.95

Y Y Y 0.09 0.06
Y Y N 0.2 0.15
Y N Y 0.3 0.23
Y N N 0.4 0.35
N Y Y 0.29 0.26
N Y N 0.1 0.1
N N Y 0.55 0.5
N N N 0.85 0.8

Table 5.14: Opinion of knowledge source 4

ShareNerve ShareArtery ShareVein Survival_Tom Survival_Smith
P (SN = Y )=0.8 P (SA = Y )=0.7 P (SV = Y )=0.85

Y Y Y 0.15 0.15
Y Y N 0.25 0.25
Y N Y 0.4 0.35
Y N N 0.5 0.45
N Y Y 0.36 0.3
N Y N 0.3 0.25
N N Y 0.6 0.5
N N N 0.89 0.89

Table 5.15: Opinion of knowledge source 5
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Expert1 Expert2 Expert3 Expert4 Expert5
Expect Utility 12.68574 14.17792 19.49782 11.73 13.86482
P (SN = Y ) 0.7 0.7 0.7 0.8 0.8
P (SA = Y ) 0.6 0.6 0.6 0.6 0.7
P (SV = Y ) 0.9 0.9 0.9 0.95 0.85

θ1t 0.1 0.1 0.3 0.09 0.15
θ1s 0.1 0.09 0.25 0.06 0.15
θ2t 0.2 0.21 0.3 0.2 0.25
θ2s 0.2 0.2 0.3 0.15 0.25
θ3t 0.35 0.4 0.45 0.3 0.4
θ3s 0.35 0.35 0.4 0.23 0.35
θ4t 0.4 0.5 0.55 0.4 0.5
θ4s 0.4 0.45 0.5 0.35 0.45
θ5t 0.15 0.2 0.29 0.29 0.36
θ5s 0.15 0.15 0.26 0.26 0.3
θ6t 0.18 0.18 0.25 0.1 0.3
θ6s 0.18 0.1 0.2 0.1 0.25
θ7t 0.6 0.65 0.6 0.55 0.6
θ7s 0.6 0.6 0.6 0.5 0.5
θ8t 0.9 0.95 1 0.85 0.89
θ8s 0.9 0.9 0.95 0.8 0.89

Table 5.16: Expected utilities corresponding to probability distributions from 5
knowledge sources

5.2.2 Comparison of Weights of All Sources under 3 Methods

From the information provided from the experiment settings, we can �rst compare
the probability distributions from 5 knowledge sources. From �gure 5.1, we can
see that the line representing probability distributions from knowledge sources 3
is located above most other lines which corresponding to other knowledge sources,
although it has some cross points with the line corresponding to probability distri-
butions from knowledge sources 2. As we de�ned in Section 4.4.4.1, the quantity
of probability on decision variables means the local dominance so we can say that
Probability distributions from knowledge sources 3 locally dominate most other
knowledge sources. Contrary to knowledge source 3, knowledge source 4 is locally
dominated by most other knowledge sources.
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Figure 5.1: Comparison of probability distributions from 5 knowledge sources

Figure 5.2: Comparison of expected utilities from probability distributions from 5
knowledge sources
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Now we continue to check whether Expert3 has the global dominance over other
experts through checking expected utilities of each experts, as shown in Figure 5.2.
As we expected, Expert3 got the highest expected utility (19.49782) and Expert4
got the lowest expected utility (11.73).

Expert1 Expert2 Expert3 Expert4 Expert5
Expected Utility 12.68574 14.17792 19.49782 11.73 13.86482
Weightaverage 0.2 0.2 0.2 0.2 0.2

WeightNeuralAttitude 0.228 0.254 0.135 0.135 0.246
WeightOptimisticAttitude 0.176298 0.1970968 0.270968 0.163016 0.192684

Table 5.17: Comparison of weights to 5 experts using di�erent methods

After the calculation of expected utilities of all experts, we use three methods to
get three di�erent kinds of weights for the �ve experts.

The �rst method assigns equal weight (0.2) to each expert, and then summarizes
the product of weight and each expert opinion.

Figure 5.3: Comparison of weights of all experts in three methods

In addition, we provide a 'Utility based Weight with Optimistic Attitude' method
to compute weights for all experts. This method assigns weight to each expert pro-
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portional to their corresponding utilities, so Expert3 get the most weight (0.270968)
while Expert4 is allocated the least weight (0.163016). Because this method is prej-
udicial on expert who holding optimal assessment, we name it as 'Utility based
Weight with Optimistic Attitude' method.

The third method is exact the method we de�ned in Algorithm 4.9, which assigns
less weights to both extreme high and extreme low experts.

We compare the weights of the 5 experts using three methods in Figure 5.3 where
we already sort experts in descending order according to their expected utilities.

5.2.3 Comparison of Arithmetic Combined Probability Dis-
tribution

After make comparison of di�erent methods of computing weights, in this section
we will further compare combined expert opinions using arithmetic combination
method with the three di�erent weights from Section 5.2.2.

The value of combined expert opinions are listed in Table 5.18. Because all
values are probabilities and the di�erence of combined value from di�erent weights
are very small, so we use logarithmic scale to plot Figure 5.4, from which we can see
the line denoting the combined opinions with utility-based weights with optimistic
attitude stay at the most above location.
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Weightaverage WeightNeuralAttitude WeightOptimisticAttitude

P (SN = Y ) 0.74 0.7383 0.73556995
P (SA = Y ) 0.62 0.6248 0.619268389
P (SV = Y ) 0.9 0.89435 0.898516586

θ1t 0.148 0.13805 0.162197542
θ1s 0.13 0.12471 0.141788347
θ2t 0.232 0.22844 0.238701298
θ2s 0.22 0.21915 0.228580166
θ3t 0.38 0.38185 0.388431923
θ3s 0.336 0.34055 0.343986503
θ4t 0.47 0.47045 0.479617031
θ4s 0.43 0.43185 0.438431923
θ5t 0.258 0.25258 0.261073012
θ5s 0.224 0.2169 0.226640728
θ6t 0.202 0.20841 0.209048545
θ6s 0.166 0.16894 0.170103163
θ7t 0.6 0.60595 0.601700977
θ7s 0.56 0.5617 0.56443005
θ8t 0.918 0.91697 0.92687089
θ8s 0.888 0.89077 0.895319976

Table 5.18: Comparison of arithmetically combined value of expert opinions

Figure 5.4: Comparison of arithmetically combined opinions with three kinds of
weights
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5.2.4 Comparison of Geometric Combined Probability Dis-
tribution

Now we use geometric combination approach to combine expert opinions with the
three kinds of weights get from Section 5.2.2. In this section we discard the method
of 'utility-based weight with optimal attitude' of determining weight and only keep
our reasonable weight calculation method from Co-Experts framework to make com-
parison with combined opinions based on equal weights and the original 5 expert
opinions. In the result of geometric combination(see Table 5.5), we can see the dif-
ference is more distinctive among most lines, but the di�erence between combined
opinions based on equal weight and utility-based combined opinions are still very
�ne.

Figure 5.5: Geometric combinationed expert opinions with three kinds of weights

5.2.5 Comparison of Two Approaches of Combination

In this part, we compare the four kinds of combined expert opinions, which adopting
two kinds of methods of determining the weights and two approach of combination.
We can see that the geometric combination values are generally less than arithmetic



5.2. Experimental Results on Utility based Parameter Combination 97

combination values. Nevertheless, within arithmetic combination, the di�erence in
combined opinions from the two methods of determining weights is more apparent.

Figure 5.6: Comparison of two combination approaches

5.2.6 Result of Adding one more Knowledge Source

Figure 5.7: Weights of the 6 experts
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We conduct one more experiment to test the e�ect of combination after adding new
expert. The new expert to be added (Expert6) happened to have the same expected
utility as Expert4 although their opinions on each decision variables are not same(as
shown in Figure 5.8). Therefore, we can randomly select either Expert4 or Expert6
as the expert with lowest expected utility. The corresponding weight of the 6 experts
can be seen in Figure 5.7.

Figure 5.8: The 6 expert opinions
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Figure 5.9: Combination result of the 6 expert opinions

Figure 5.9 shows the combined expert opinions. Interestingly we �nd that the
line of geometric combination with equal weights locates at the lowest position
among the four lines and the arithmetic combination with equal weights locates at
the most upper position. Using our utility-based weight method, either geometric
combination or arithmetic combination performs very well because they are between
the upper and lower lines.

Finally we make comparison of combined opinions based on 5 experts and com-
bined opinions based on 6 experts. We can see that geometric combination based
on equal weights decreases a lot. The possible reason for this phenomenon might be
the weight of Expert6 (0.2) is higher than the weight of Expert6 in our utility-based
weight method (0.113).
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Figure 5.10: 5 experts vs 6 experts..



Chapter 6

Conclusion and Future Work

6.1 Summary

Bayesian networks and in�uence diagrams are powerful graphic representation tools
for uncertainty management and decision making, respectively. They are especially
helpful when the problems have a high degree of condition independence, when
compact representation of extremely large models are needed, when communication
of the probabilistic relationships is important, or when the analysis requires extensive
Bayesian updating.

Research over graphical representation of single knowledge source receives many
applications of modeling uncertainty. In this thesis, we mainly examine the problem
of combining several graphical models at one time, to form a single resulting model
mathematically. We make two intuitively reasonable assumptions: 1) Variables with
the same name have to denote the same meaning. 2) Variables with the same name
have to possess the same number of possible values, and their values must be the
same.

The �rst part of our research focus on multiple Bayesian networks combination
problem. We separate the task into two subtasks: qualitative combination and
quantitative combination.

Qualitative combination of Bayesian networks is the �rst task. We theoretically
demonstrate that Bayesian networks can be reconstructed because JPD is factoriz-
able with di�erent partition of variables. A basic idea of our method is to get a target
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variable ordering for resulting Bayesian networks so that the direction of arcs in the
resulting Bayesian networks are only allowed when it is from nodes with lower order
value to nodes with higher order value. With target variable ordering, we introduce
the arc reversal operation, which can adjust the order value of variables within one
probabilistic model. Our method also aims to reach consensus topology for each
input Bayesian network, so that the quantitative combination step can be clear and
easy. Therefore, we present the concept of Intermediate Bayesian networks, so that
all modi�cation steps, including arc reversal, �lling of virtual nodes and virtual arcs,
are operated over Intermediate Bayesian networks and the structure and parameters
of original Bayesian networks can be preserved.

The target variable ordering can be speci�ed by user, for example, domain ex-
perts. However, we propose three heuristic methods of target variable ordering gen-
eration, which is very helpful when domain experts are absent. The three methods
are not guarantee to be optimal solution as it is a NP-hard problem.

In the quantitative combination of Bayesian networks, we discussed computa-
tion in steps of reaching consensus model, including arc reversal, virtual nodes and
virtual arcs. A key step in quantitative combination is CPT combination. Tra-
ditional CPTs are �lled with point probability distributions. We argue that the
CPT in resulting Bayesian network after combination can be �lled with either point
probability distribution or interval probability.

The second part of our research focuses on the multiple in�uence diagrams com-
bination problem. In�uence diagrams are di�erent from Bayesian networks in types
of arcs, types of nodes, and some other constraints in both the structure and the pa-
rameters. Upon our investigation on these special properties of in�uence diagrams,
we conclude that only arcs between chance nodes are allowed to be reversed.

In the quantitative combination of in�uence diagrams, we propose a utility-
based probability distribution combination method, to avoid extremeness of di�erent
knowledge sources, because utility is a criterion that can re�ect risk attitude of the
decision maker.
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6.1.1 Advantages

1. Model Combination. Our main contribution in this work is to extend exist-
ing research of combining probability distributions to the case of aggregating
probabilistic graphic models.

2. No cycle in resulting models. The resulting model after combination with our
methods is established according to a certain target variable ordering. All the
arcs are only permitted when they are from nodes with low ordervalue to nodes
with high ordervalue. In this way, no cycle will be generated in the procedure
of combination.

3. Completeness. Previous research work only focuses on either structure combi-
nation of Bayesian networks, or probability distribution. Solution to accom-
plish both tasks at one time is not available yet. Our research covers both
structure combination and parameter combination for two types of probabilis-
tic graph models, i.e. Bayesian networks and in�uence diagrams.

4. Scalability. Our methods are able to guarantee that more than two probabilis-
tic models of the same type (i.e., either multiple Bayesian networks or multiple
in�uence diagrams) can be combined at the same time.

5. Robust property. The result of combination will not be in�uenced by the order
of combination.

6.1.2 Limitation

One of the disadvantages of our approaches results from the inherent property of
the arc reversal operation. Arc reversal often signi�cantly increases the number of
parents of the nodes that the two nodes in the arc are involved. Since the size of
CPT may increase exponentially with the number of parents, the resulting CPTs can
become very large and require a prohibitive amount of computation to construct.
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6.1.3 Discussion

1. Target ordering is important in probabilistic graphic model combination. In
Chapter 5, we tested our three proposed target ordering generation methods
over some heart disease models. The experimental results show that the target
ordering in probabilistic model combination can result in di�erent resulting
probabilistic graphic models, with di�erent structure or di�erent parameters.

2. According to the experiment results, we also �nd that the three proposed
target ordering generation methods are good in di�erent situations. The com-
putation of Method 1 is intuitive and simple but the performance are always
not as good as the other two heuristic methods. Method 2 (target ordering
based on number of parents and network size) has good performance in combi-
nation over candidate models with di�erent network size. When the candidate
probabilistic graphic models are of the same or nearly the same size, both
Method 1 (target ordering based on original target order value) and Method 3
(target ordering based on edge matrix) have good performance. Method 3 has
better performance over the other two methods especially in combining larger
or more complex candidate probabilistic graphic models. But any of the three
proposed heuristic target variable ordering generation methods is better than
some random target variable ordering, according to the degree of breaking
conditional independence of the original candidate Bayesian networks.

6.2 Future Work

Our future work, agenda include the following:

1. Our current work requires examination of input models to guarantee that there
are no incompatible variables or cycles. Improvements can be made so that
the system can reject incompatible incoming information, or sound alarm when
incoming information is incompatible.

2. Although we proposed three heuristic methods of automatical target variable
ordering generation, the methods can be still improved.
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3. Our methods are applied in general probabilistic graphic models. Future re-
search may examine causal discovery and structuring in certain domains and
develop domain speci�ed probabilistic graph models combination method.

4. In our research, we only consider static probabilistic networks. In other words,
all of the candidate Bayesian networks to be combined are static probabilistic
graph models. Extension to temporal probabilistic models should be interest-
ing. The work that we have done in this thesis can provide meaningful support
for the combination of temporal models.

5. The resulting models in both Bayesian network combination and in�uence
diagram combination can be with either point probability distributions or in-
terval probabilities. Reasoning based on Interval Bayesian networks or Interval
in�uence diagrams can be quite challenging, and very interesting as well.
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Appendix A

Glossary

BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bayesian network
CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Conditional independence
CAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coronary Artery Disease
CBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Candidate Bayesian network
CPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conditional probability distribution
DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directed acyclic graph
EU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expected utility
G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Graph
GeNIe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphical Network Interface
IBN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interval Bayesian network
ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In�uence diagram
JPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Joint probability distribution
M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Model
MEU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum expected utility
MEBN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Multi-entity Bayesian network
MSBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiply sectioned Bayesian networks
PGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probabilistic graphical model
PGMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probabilitic graphical model combination
PNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probabilistic Networks Library
SMILE. . . . . . . . . . . . . . . . . . . . .Standard Modeling, Inference and Learning Engine
TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Target Ordering
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List of Notation

anc(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ancestor nodes of node A

pa(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . parent nodes of node A

X\Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X minus Y (set di�erence)
∩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set intersection
∪ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Set union
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Appendix C

Experimental Data

C.1 The Heart Disease Bayesian Network Models

To evaluate di�erent methods proposed in our project, we use over 30 probabilistic
models that are learned from some Heart Disease data sets [Tham et al., 2003],
which include the medical pro�les of 2900 human subjects. Of these, almost half of
them were healthy at the time of data collection. For each human subject, there
are values for 41 attributes, including both genotype (i.e., genetic attributes with
respect to the gene concerned) and phenotype (i.e., non genetic or environmental
attributes). Since all outcome models are learned from the same data set, the BN
learning results from di�erent approaches or di�erent BN software can satisfy the
requirement of our graphical model combination approach very well: 1) each variable
with same name among di�erent models denotes the same meaning; 2) the structure
of these models are quite di�erent.
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(a) Candidate BN 5.1

(b) Candidate BN 5.2

(c) Candidate BN 5.3

Figure C.1: Three 5-node candidate Bayesian networks
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(a) With Method 1

(b) With Method 2

(c) With method 3

Figure C.2: Resulting Bayesian networks with 3 methods in combination of three
5-node CBN
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Figure C.3: Resulting BN with a random target variable ordering in combination of
three 5-node CBN

(a) Candidate BN 6.1

(b) Candidate BN 6.2

(c) Candidate BN 6.3

Figure C.4: Three 6-node candidate Bayesian networks
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(a) With Method 1

(b) With Method 2

(c) Method 3

Figure C.5: Resulting Bayesian networks with 3 methods in combination of three
6-node CBN
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Figure C.6: Resulting BN with a random target variable ordering in combination of
three 6-node CBN

(a) Candidate BN 7.1

(b) Candidate BN 7.2

(c) Candidate BN 7.3

Figure C.7: Three 7-node candidate Bayesian networks
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CBN7.1 BN7.2 BN7.3 TOmethod1

ordervalue(CAD) 2 2 0 2
ordervalue(Age) 1 1
ordervalue(Race) 3 1 5 5
ordervalue(CBMI) 0 2 1
ordervalue(SEX) 0 3 3
ordervalue(SM) 4 6
ordervalue(DM) 0 0
ordervalue(G3) 0 0
ordervalue(G6) 0 0
ordervalue(G13) 0 0
ordervalue(G17) 1 1
ordervalue(G18) 0 0
ordervalue(G26) 0 0 0
ordervalue(G30) 2 4

CBN7.1 BN7.2 BN7.3 TOmethod2

NumParent(CAD) 3 4 0 4
NumParent(Age) 1 1
NumParent(Race) 6 3 5 5
NumParent(CBMI) 0 1 1
NumParent(SEX) 0 3 3
NumParent(SM) 2 2
NumParent(DM) 0 0
NumParent(G3) 0 0
NumParent(G6) 0 0
NumParent(G13) 0 0
NumParent(G17) 1 1
NumParent(G18) 0 0
NumParent(G26) 0 0 0
NumParent(G30) 2 2

Table C.1: Variable ordering in 7-node candidate Bayesian networks
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End\Start CAD RACE G13 CBMI G17 G18 G26
CAD 0 1 -2 -2 -1 -2 -2
RACE 0 -3 -3 -2 -3 -3
G13 0 0 1 0 0
CBMI 0 1 0 0
G17 0 -1 -1
G18 0 0
G26 0

(a) Edge matrix of CBN7.1

End\Start CAD Race SEX DM G3 G26 G30
CAD 0 -1 -2 -2 -2 -2 0
Race 0 -1 -1 -1 -1 1
SEX 0 0 0 0 2
DM 0 0 0 2
G3 0 0 2
G26 0 2
G30 0

(b) Edge matrix of CBN7.2

End\Start CAD Race SEX SM AGE CBMI G6
CAD 0 5 3 4 1 2 0
Race 0 -2 -1 -4 -3 -5
SEX 0 1 -2 -1 -3
SM 0 -3 -2 -4
AGE 0 1 -1
CBMI 0 -2
G6 0

(c) Edge matrix of CBN7.3

End\Start CAD Race CBMI SEX SM DM AGE G3 G6 G13 G17 G18 G26 G30
CAD 0 5 0∗ 1 4 -2 1 -2 0 -2 -1 -2 -4 0
Race 0 -6 -3 -1 -1 -4 -1 -5 -3 -2 -3 -4 1
CBMI 0 1 2 0 -1 0 -2 0 1 0 0 0
SEX 0 1 0 -2 0 -3 0 0 0 0 2
SM 0 0 -3 0 -4 0 0 0 0 0
DM 0 0 0 0 0 0 0 0 2
AGE 0 0 -1 0 0 0 0 0
G3 0 0 0 0 0 0 2
G6 0 0 0 0 0 0
G13 0 1 0 0 0
G17 0 -1 -1 0
G18 0 0 0
G26 0 2
G30 0

(d) Edge matrix of resulting Bayesian network

CAD Race CBMI SEX SM DM AGE G3 G6 G13 G17 G18 G26 G30
TOmethod3 5 10 7 8 9 4 11 2 6 3 4 3 1 12

(e) Target variable ordering with method 3

Table C.2: Variable ordering in 7-node candidate BNs with method 3
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(a) With Method 1

(b) With Method 2

(c) With Method 3

Figure C.8: Resulting Bayesian networks with 3 methods in combining of three
7-node CBN
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CBN8.1 CBN8.2 CBN8.3 TOmethod1

CAD 1 2 0 1
RACE 3 1 5 5
CBMI 0 2 2
SEX 0 3 3
HY 3 5
SM 4 6
DM 0 0
AGE 1 2
G6 1 2
G7 0 0
G13 0 0
G15 2 4
G16 1 2
G17 0 0
G26 0 0 0
G30 2 4
G31 0 0

CBN8.1 CBN8.2 CBN8.3 TOmethod2

CAD 3 4 0 4
RACE 7 3 6 5
CBMI 0 2 2
SEX 0 3 3
HY 3 3
SM 2 2
DM 0 0
AGE 1 1
G6 1 1
G7 0 0
G13 0 0
G15 2 2
G16 1 1
G17 0 0
G26 0 0 0
G30 3 3
G31 0 0

Table C.3: Variable ordering in 8-node candidate Bayesian networks

(a) With Method 1

(b) With Method 2

Figure C.9: Resulting Bayesian networks with 3 methods in combining three 8-node
CBN
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(a) Candidate BN 8.1

(b) Candidate BN 8.2

(c) Candidate BN 8.3

Figure C.10: Three 8-node candidate Bayesian networks
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(a) Candidate BN 10.1

(b) Candidate BN 10.2

(c) Candidate BN 10.3

Figure C.11: Three 10-node candidate Bayesian networks
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(a) Candidate BN 12.1

(b) Candidate BN 12.2

(c) Candidate BN 13.3

Figure C.12: Three 12-node candidate Bayesian networks
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C.2 Probability Distributions from Di�erent Knowl-
edge Sources

In order to describe clearly we use

• θ1tto denote the probability of survival of Tom under the condition of {ShareN-
erve=Y, ShareArtery=Y, ShareVein=Y},

• θ1sdenotes the probability of survival of Smith under the condition of {ShareN-
erve=Y, ShareArtery=Y, ShareVein=Y}.

• θ2t denote the probability of survival of Tom under the condition of {ShareN-
erve=Y, ShareArtery=Y, ShareVein=N};

• θ2s denote the probability of survival of Smith under the condition of {ShareN-
erve=Y, ShareArtery=Y, ShareVein=N};

• θ3t denote the probability of survival of Tom under the condition of {ShareN-
erve=Y, ShareArtery=N, ShareVein=Y};

• θ3s denote the probability of survival of Smith under the condition of {ShareN-
erve=Y, ShareArtery=N, ShareVein=Y};

• θ3t denote the probability of survival of Tom under the condition of {ShareN-
erve=Y, ShareArtery=N, ShareVein=Y};

• θ3s denote the probability of survival of Smith under the condition of {ShareN-
erve=Y, ShareArtery=N, ShareVein=Y};

• θ4t denote the probability of survival of Tom under the condition of {ShareN-
erve=Y, ShareArtery=N, ShareVein=N};

• θ4s denote the probability of survival of Smith under the condition of {ShareN-
erve=Y, ShareArtery=N, ShareVein=N};

• θ5t denote the probability of survival of Tom under the condition of {ShareN-
erve=N, ShareArtery=Y, ShareVein=Y};
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• θ5s denote the probability of survival of Smith under the condition of {ShareN-
erve=N, ShareArtery=Y, ShareVein=Y};

• θ6t denote the probability of survival of Tom under the condition of {ShareN-
erve=N, ShareArtery=Y, ShareVein=N};

• θ6s denote the probability of survival of Smith under the condition of {ShareN-
erve=N, ShareArtery=Y, ShareVein=N};

• θ7t denote the probability of survival of Tom under the condition of {ShareN-
erve=N, ShareArtery=N, ShareVein=Y};

• θ7s denote the probability of survival of Smith under the condition of {ShareN-
erve=N, ShareArtery=N, ShareVein=Y};

• θ8t denote the probability of survival of Tom under the condition of {ShareN-
erve=N, ShareArtery=N, ShareVein=N};

• θ8s denote the probability of survival of Smith under the condition of {ShareN-
erve=N, ShareArtery=N, ShareVein=N};


