2,371 research outputs found

    Towards a Deep Unified Framework for Nuclear Reactor Perturbation Analysis

    Get PDF
    In this paper, we take the first steps towards a novel unified framework for the analysis of perturbations in both the Time and Frequency domains. The identification of type and source of such perturbations is fundamental for monitoring reactor cores and guarantee safety while running at nominal conditions. A 3D Convolutional Neural Network (3D-CNN) was employed to analyse perturbations happening in the frequency domain, such as an absorber of variable strength or propagating perturbation. Recurrent neural networks (RNN), specifically Long Short-Term Memory (LSTM) networks were used to study signal sequences related to perturbations induced in the time domain, including the vibrations of fuel assemblies and the fluctuations of thermal-hydraulic parameters at the inlet of the reactor coolant loops. 512 dimensional representations were extracted from the 3D-CNN and LSTM architectures, and used as input to a fused multi-sigmoid classification layer to recognise the perturbation type. If the perturbation is in the frequency domain, a separate fully-connected layer utilises said representations to regress the coordinates of its source. The results showed that the perturbation type can be recognised with high accuracy in all cases, and frequency domain scenario sources can be localised with high precision

    Development of machine learning techniques and evaluation of analysis results

    Get PDF
    CORTEX - Research and Innovation Action (RIA) This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 754316.Publisher PD

    Deep learning techniques for in-core perturbation identification and localization of time-series nuclear plant measurements

    Get PDF
    The research conducted has been made possible through funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316 for the “CORe Monitoring Techniques And EXperimental Validation And Demonstration (CORTEX)” Horizon 2020 project, 2017-2021.Peer reviewedPublisher PD

    Neutron Noise-based Anomaly Classification and Localization using Machine Learning

    Get PDF
    A methodology is proposed in this paper allowing the classification of anomalies and subsequently their possible localization in nuclear reactor cores during operation. The method relies on the monitoring of the neutron noise recorded by in-core neutron detectors located at very few discrete locations throughout the core. In order to unfold from the detectors readings the necessary information, a 3-dimensional Convolutional Neural Network is used, with the training and validation of the network based on simulated data. In the reported work, the approach was also tested on simulated data. The simulations were carried out in the frequency domain using the CORE SIM+ diffusion-based two-group core simulator. The different scenarios correspond to the following cases: a generic “absorber of variable strength”, axially travelling perturbations at the velocity of the coolant flow (due to e.g. fluctuations of the coolant temperature at the inlet of the core), fuel assembly vibrations, control rod vibrations, and core barrel vibrations. In all those cases, various frequencies were considered and, when relevant, different locations of the perturbations and different vibration modes were taken into account. The machine learning approach was able to correctly identify the different scenarios with a maximum error of 0.11%. Moreover, the error in localizing anomalies had a mean squared error of 0.3072 in mesh size, corresponding to less than 4 cm. The proposed methodology was also demonstrated to be insensitive to parasitic noise and will be tested on actual plant data in the near future

    Detection and Localisation of Multiple In-core Perturbations with Neutron Noise-based Self-Supervised Domain Adaptation

    Get PDF
    The research conducted was made possible through funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316 (CORTEX project).Peer reviewedPreprin

    Detection and localisation of multiple in-core perturbations with neutron noise-based self-supervised domain adaptation

    Get PDF
    The use of non-intrusive techniques for monitoring nuclear reactors is becoming more vital as western fleets age. As a consequence, the necessity to detect more frequently occurring operational anomalies is of upmost interest. Here, noise diagnostics — the analysis of small stationary deviations of local neutron flux around its time-averaged value — is employed aiming to unfold from detector readings the nature and location of driving perturbations. Given that in-core instrumentation of western-type light-water reactors are scarce in number of detectors, rendering formal inversion of the reactor transfer function impossible, we propose to utilise advancements in Machine Learning and Deep Learning for the task of unfolding. This work presents an approach to such a task doing so in the presence of multiple and simultaneously occurring perturbations or anomalies. A voxel-wise semantic segmentation network is proposed to determine the nature and sourcelocation of multiple and simultaneously occurring perturbations in the frequency domain. A diffusion-based core simulation tool has been employed to provide simulated training data for two reactors. Additionally, we work towards the application of the aforementioned approach to real measurements, introducing a self-supervised domain adaptation procedure to align the representation distributions of simulated and real plant measurements

    A finite element method for neutron noise analysis in hexagonal reactors

    Get PDF
    [EN] The early detection of anomalies through the analysis of the neutron noise recorded by in-core and ex-core instrumentation gives the possibility to take proper actions before such problems lead to safety concerns or impact plant availability. The study of the neutron fluctuations permits detecting and differentiate anomalies depending on their type and possibly to characterize and localize such anomalies. This method is non-intrusive and does not require any external perturbation of the system. To effectively use the neutron noise for reactor diagnostics it is essential to accurately model the effects of the anomalies on the neutron field. This paper deals with the development and validation of a neutron noise simulator for reactors with different geometries. The neutron noise is obtained by solving the frequency-domain two-group neutron diffusion equation in the first order approximation. In order to solve this partial differential equation a code based on a high order finite element method is developed. The novelty of this simulator resides on the possibility of dealing with rectangular meshes in any kind of geometry, thus allowing for complex domains and any location of the perturbation. The finite element method also permits automatic refinements in the cell size (h-adaptability) and in its polynomial degree (p-adaptability) that lead to a fast convergence. In order to show the possibilities of the neutron noise simulator developed a perturbation in a hexagonal two-dimensional reactor is investigated in this paper.This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316. Also, this work has been partially supported by Spanish Ministerio de Economía y Competitividad under project BES-2015-072901 and financed with the help of a Primeros Proyectos de Investigacin (PAID-06-18), Vicerrectorado de Investigación, Innovación y Transferencia of the Universitat Politecnica de València (UPV).Vidal-Ferràndiz, A.; Ginestar Peiro, D.; Carreño, A.; Verdú Martín, GJ.; Demazière, C. (2021). A finite element method for neutron noise analysis in hexagonal reactors. EPJ Web of Conferences (Online). 247:1-8. https://doi.org/10.1051/epjconf/202124721007S1824
    corecore