
Towards a Deep Unified Framework for Nuclear
Reactor Perturbation Analysis

Fabio De Sousa Ribeiro*
and Francesco Calivá*
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Abstract—In this paper, we take the first steps towards
a novel unified framework for the analysis of perturbations
in both the Time and Frequency domains. The identification
of type and source of such perturbations is fundamental for
monitoring reactor cores and guarantee safety while running at
nominal conditions. A 3D Convolutional Neural Network (3D-
CNN) was employed to analyse perturbations happening in the
frequency domain, such as an absorber of variable strength or
propagating perturbation. Recurrent neural networks (RNN),
specifically Long Short-Term Memory (LSTM) networks were
used to study signal sequences related to perturbations induced
in the time domain, including the vibrations of fuel assemblies
and the fluctuations of thermal-hydraulic parameters at the inlet
of the reactor coolant loops. 512 dimensional representations were
extracted from the 3D-CNN and LSTM architectures, and used as
input to a fused multi-sigmoid classification layer to recognise the
perturbation type. If the perturbation is in the frequency domain,
a separate fully-connected layer utilises said representations to
regress the coordinates of its source. The results showed that the
perturbation type can be recognised with high accuracy in all
cases, and frequency domain scenario sources can be localised
with high precision.

Index Terms—deep learning, 3D convolutional neural net-
works, recurrent neural networks, long short-term memory, multi
label classification, regression, signal processing, nuclear reactors,
unfolding, anomaly detection.

I. INTRODUCTION

For over half a century, the nuclear industry has primarily
focused on the technological evolution of reliable nuclear
power plants for the production of electricity. By monitoring
nuclear reactors while running at nominal conditions, it is
possible to gather valuable insight for early detection of
anomalies. Various types of fluctuations can be caused by the
turbulent nature of flow in the core, mechanical vibrations
within the reactor, coolant boiling and stochastic character of
nuclear reactions, among other factors. These fluctuations are
often referred to as neutron noise δX(r, t), which is measured
as in (1), where X(r, t) represents the signal and X0(r, t)
its trend. Both are a function of two variables: r the spatial
coordinate within the core, and t time.

δX(r, t) = X(r, t)−X0(r, t) (1)

With detailed descriptions of reactor geometry, physical per-
turbations and probabilities of neutron interactions within the

Fig. 1. Illustrative radial view of the nuclear reactor core model utilised in
Simulate-3K. Each letter and number pairing denotes an in- or ex-core signal
detector, and each grid square represents a fuel assembly. The red central zone
represents a 5 × 5 cluster of fuel assemblies that vibrates synchronously in
the x direction. The calculated neutron noise distribution was utilised in our
deep learning based analysis of perturbations in the Time Domain.

core – by assuming a particular reactor transfer function (i.e.
Green’s function) – one can simulate how fluctuations affect
the neutron flux in the time or frequency domain. Different
types of perturbations can then be applied in order to estimate
and study the induced neutron noise, as to solve the forward
problem. Intuitively, the backward problem, also known as
unfolding, consists of localising the perturbation origin and
can only be carried out if the reactor transfer function is
inverted. Solving the unfolding problem is therefore non-trivial
as measurements of the induced neutron noise are not available
at every position inside the reactor core, due to a limited
number of in- and ex-core sensors available. In this work,
a novel method to unfold nuclear reactor signals pertaining to
the localisation of different types of perturbations is proposed.
This is achieved by extending and improving previous research
on the application of deep learning techniques to detect
anomalies in nuclear reactors [1].
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Fig. 2. Examples of induced neutron noise types. From Left to Right, the responses to Localised, Propagating type 1 and 2 perturbations are illustrated.

II. RELATED WORK

Fault detection in nuclear reactors has been the focus of a
few recent studies. [2] proposed a pattern recognition frame-
work to detect anomalies based on symbolic dynamic filtering
of time series data. [3] predicted critical heat flux by ways of
Adaptive Neuro-Fuzzy Inference Systems (ANFIS). [4] mon-
itored sensors by utilising auto-associative kernel regression
and sequential probability ratio tests. [5] collected reactors
parameters and implemented an artificial neural network (NN)
based system to diagnose transients. [6] proposed a nuclear
reactor fault detector based on the combination of principal
component analysis and fisher discriminant analysis. Deep
learning has recently shown to be effective in a variety of
safety-critical fields spanning from signal analysis, to com-
puter vision applications including medical imaging and text
recognition ( [7]–[13]). In [14], a Convolutional NN (CNN)
and Naı̈ve-Bayes data fusion scheme was proposed to detect
fractures in plant components by way of individual video
frame analysis. In [15], a dynamic Galerkin Finite Element
Method-based simulator was applied to calculate the frequency
domain neutron noise distribution of the VVER-1000 core
reactor. Subsequently, an ANFIS was employed to localise
the induced neutron noise source. Conversely, in a recent
work by [1], the induced neutron noise was simulated by
using CORE-SIM, at different perturbations strengths and
frequencies. A CNN was employed to localise the origin
of frequency domain neutron noise perturbations in nuclear
reactor signals. This was achieved by spatially splitting the
complex signal volumes into 12 or 48 individual blocks, each
pertaining to a different class. A classification task was then
formulated, followed by a combination of k-means and k-NN
based analysis of extracted latent variables, enabling a finer
unfolding resolution. Although the results were promising, an
unfounded conversion of complex signal volumes for use in
conventional CNNs led to unnecessary loss of spatial informa-
tion. To address this limitation, in this work we propose a new
bespoke 3D CNN model for multi-task perturbation unfolding
regression and type classification. Additionally, we extend our
analysis to time-domain simulated signals regarding vibrating
fuel assemblies and/or fluctuations in thermal-hydraulic pa-
rameters (e.g. inlet coolant flow/temperature).

III. THE EXAMINED SCENARIOS

A. Frequency Domain

In this study, CORE-SIM [16] was employed to model the
induced neutron noise, in a Pressurised Water Reactor (PWR),
under two scenario settings: Absorber of Variable Strength and
Propagating Perturbation in the frequency domain. During
the forward problem, the reactor transfer function, which is
considered to be the Green’s function of the system, captures
the response of the induced fluctuations in neutron flux. The
effect of a perturbation can be assessed from any spatial
point within the reactor core, provided that there exists a one-
to-one relationship between every possible location where a
perturbation is located and the position where the neutron
noise is measured. The latter is described as

δφ(r, ω) =

∫
V

G(r, rp, ω)δS(rp)drp, (2)

where the core transfer function is integrated across the whole
core reactor volume V , whereas rp and ω refer to the source
and the angular frequency of the perturbation respectively.
For more details, please refer to the official CORE-SIM user
manual [16], [17]. Diffusion theory was applied to perform a
low-order approximation of the angular moment of the neutron
flux. The energy of the system was discretised with a two-
energy group formulation: one with a high and one low energy
spectrum, henceforth referred to as the Fast and the Thermal
groups respectively.

Absorber of Variable Strength: In this scenario (Localised,
see Fig. 2), the thermal macroscopic absorption cross-section
was perturbed at three different frequencies 0.1, 1 and 10 Hz,
altering the absorption of thermal neutrons. This perturbation
type can be considered as localised at a specific source
location. A PWR with a radial core of size 15 × 15 fuel
assemblies (FA) was modelled, using a volumetric mesh with
32× 32× 26 voxels.

Propagating Perturbation: In these scenarios (Propagating
type 1 and 2, see Fig. 2), fuel assemblies were also perturbed
at 0.1, 1 and 10 Hz, at which the fluctuations in neutron noise
were modelled. Propagating perturbations were located either
at the core inlet and transported upwards with the coolant
starting from the lowest level of the core (type 1); or within



TABLE I
SYNCHRONISED VIBRATION OF A 5× 5 FUEL ASSEMBLIES CENTRAL

CLUSTER.

Scenario Perturbation Frequency Amplitude ID

1 5× 5 cluster FAs WN 1 mm 1 0 0 0
5× 5 cluster FAs WN 0.5 mm 1 0 0 0

2 5× 5 cluster FAs 1 Hz 1 mm 0 1 0 0
5× 5 cluster FAs 1 Hz 0.5 mm 0 1 0 0

TABLE II
SYNCHRONISED PERTURBATION OF COOLANT THERMAL-HYDRAULIC

PARAMETERS.

Scenario Perturbation Frequency Amplitude ID
3 temperature random ±1◦C 0 0 1 0
4 flow random ±1% 0 0 0 1

the core and propagated along the fuel assembly’s cross-
section, by means of the coolant flow (type 2). See Fig. 8
for intuition. Identical mesh specifications to the Absorber of
Variable Strength scenario were adopted.

Combined Perturbations: In this scenario, combinations of
the aforementioned perturbation types can occur simultane-
ously at different locations in the reactor. However, no more
than one instance per perturbation type can occur at any given
time.

Data Pre-processing: The complex signals are a 3D repre-
sentation of the distribution of the induced neutron noise, in-
cluding Fast and Thermal neutron groups. They are distributed
in the form of voxels of size 32 × 32 × 26, each containing
a perturbation located at a specific coordinate location i, j, k
(considered as the label of our regression task). The dataset
is comprised of 19552 (Absorber of Variable Strength) and
752 (Propagating type 1 and 2) instances per frequency (0.1,
1 and 10 Hz). Furthermore, the signal was corrupted by
obscuring parts (set values to zero) at random in order to
emulate fewer available sensor measurements. Two versions
of obscured data were generated with channel-wise repeated
masks of size 32×32×26. Each 32×32 mask was generated by
randomly selecting 5% and 20% of measurements respectively,
and setting remaining values to zero. As previously alluded
to, a given reactor signal is composed of 2 types of responses,
Fast and Thermal, each comprised of amplitude and phase.
Resulting in a total of 4 components of size 32 × 32 × 26,
which we concatenated into a 64 × 64 × 26 volume, zero-
padded to 64× 64× 32 for convenience.

B. Time Domain

Simulate-3K (S3K) was utilised to model fuel assemblies
cluster vibrations, including fluctuations in thermal-hydraulic
parameters between the coolant loops, on a model of the four-
loop Westinghouse PWR mixed core, utilised in [18]. The
system operating conditions were close to those used in the
frequency domain experiments. For more details with regard
to S3K, the reader is invited to refer to the manual [19].

TABLE III
COMBINATION OF SYNCHRONISED VIBRATION OF A 5× 5 FUEL

ASSEMBLIES CENTRAL CLUSTER AND SYNCHRONISED PERTURBATION OF
COOLANT THERMAL-HYDRAULIC PARAMETERS.

Scenario Combined Perturbations ID
5 Temperature (5) & flow (6) 0 0 1 1
6 5× 5 FA (2) & temperature (5) 1 0 1 0
7 5× 5 FA (1) & temperature (5) 1 0 1 0
8 5× 5 FA (4) & temperature (5) 0 1 1 0
9 5× 5 FA (3) & temperature (5) 0 1 1 0
10 5× 5 FA (2) & flow (6) 1 0 0 1
11 5× 5 FA (1) & flow (6) 1 0 0 1
12 5× 5 FA (4) & flow (6) 0 1 0 1
13 5× 5 FA (3) & flow (6) 0 1 0 1

time-steps
100

100
100

5
5

Fig. 3. Signal sampling. Signal windows of 100 time-steps were sampled
using sliding windows of stride 5 time-steps

Fig. 1 depicts a cross-sectional view of the utilised core.
The cluster of fuel assemblies is highlighted in red, whereas
the coordinates (e.g. B11) identify the location of neutron
detectors. Detector-wise, the reactor is comprised of six axial
levels and a total of fifty-six detectors: eight located ex-core,
identically distributed at two axial levels (level 1 (L1) and level
6 (L6)); forty-eight in-core, equally distributed across the six
levels. Every scenario had a duration of 100 s, sampled with
time steps of 0.01 s, and is briefly explained below.

1) Vibrating central cluster of fuel assemblies: This per-
turbation refers to four perturbation instances (see Table I),
in which a cluster of 5 × 5 fuel assemblies is vibrating
synchronously in the x direction, following either a white
noise signal or a sine wave function f = 0.1 Hz, with varying
amplitudes in the range of 0.5 mm, and 1 mm. “ID” is a
label later utilised to classify different perturbation types. It
is worth noting that the first and second rows represent the
same scenario, since the applied perturbations are the same
but with different amplitude; identical consideration applies to
the third and fourth rows. Therefore, two individual scenarios
were identified out of the four possible perturbations.

2) Perturbation of thermal-hydraulic parameters: This per-
turbation refers to two scenarios, in which synchronised fluc-
tuations of inlet coolant temperature between the four coolant
loops were induced. As reported in Table II, the inlet coolant
temperature was forced to fluctuate with amplitude of ±1◦C
over the mean value of 283.8◦C (third scenario). In the fourth
scenario, inlet coolant flow random fluctuations with amplitude
of 1% over the relative flow (100%) were simulated.

3) Combined Perturbations: Scenarios five to thirteen refer
to combinations of previous perturbations associated to the
vibration of a 5 × 5 fuel assembly and fluctuations of inlet
coolant thermal-hydraulic parameters between the four coolant
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Fig. 4. Example of a signal obtained by means of S3K with noise added at
SNR= 5.

loops. A detailed description of these scenarios is provided
in Table III. In the column “Combined Perturbations”, the
number between brackets links to the Scenario ID reported
in Table I and II.

Data Pre-processing: Signals produced by S3K are a repre-
sentation of the neutron flux measured by the in- and ex-core
detectors. Taking into account the duration of each applied
perturbation and sampling rate, data from each sensor were
available in the form of a vector of 10001 elements. Given the
limited amount of data available, it was appropriate to perform
data augmentation. To this end, each signal was re-sampled
by means of sliding windows as shown in Fig. 3. Specifically,
with sensor measurements over 100 s at a sampling rate of
0.01 s, we get x ∈ R10001 signal vectors. These vectors are
augmented by means of 100 time step sliding windows with a
stride of 5 to produce x ∈ R1980×100. Furthermore, the signal
was corrupted by the addition of White Gaussian Noise at
signal-to-noise ratios (SNR) 10 and 5 to study the effect of
noisy signals on the performance of our model (Fig. 4).

IV. THE PROPOSED APPROACH

A. Frequency Domain

Given complex reactor signals in the form of volumetric
meshes, it is advantageous to capture spatial information not
only in 2D coordinate space (i, j) but also channel-wise
through k. This means that knowledge learnt in a particular
area of the volume can generalise well to others. The gen-
eralisation property of CNNs is crucial, as it allows for a
great reduction in the number of parameters when compared
to fully-connected (FC) networks, without sacrificing perfor-
mance. However, it is important to state that the signal volumes
are not a measure of induced neutron noise over time, but
rather a measured response in every (i, j, k) location within the
core reactor, in an instant soon after a perturbation is induced.
Therefore, the input signal volumes are more closely related
to MRI or CT scans rather than videos in terms of data format.
Relatedly, 3D CNNs have been used extensively in the medical
field for tumour and lesion segmentation, as well as in action
recognition tasks to a very good level of success [20]–[24]. In
pursuance of optimal feature extraction in all dimensions of
the reactor signal, a bespoke 3D CNN is proposed.

TABLE IV
3D-CNN ARCHITECTURE FOR FREQUENCY DOMAIN PERTURBATION

TYPE CLASSIFICATION AND SOURCE REGRESSION.

Input Size: 64×64×32×1
Conv-BN-ReLU 3×3×3@64 64×64×32×64

MaxPool 2×2×2 32×32×16×64
Conv-BN-ReLU 1×1×1@32 32×32×16×32
Conv-BN-ReLU 3×3×3@128 32×32×16×128

MaxPool 2×2×2 16×16×8×128
Conv-BN-ReLU 1×1×1@64 16×16×8×64
Conv-BN-ReLU 3×3×3@256 16×16×8×256

MaxPool 2×2×2 8×8×4×256
Conv-BN-ReLU 1×1×1@128 8×8×4×128
Conv-BN-ReLU 3×3×3@512 8×8×4×512

MaxPool 2×2×2 4×4×2×512
4×4×2 Global Average Pooling

3×1 Fully-Connected, Multi-sigmoid
3×1 Fully-Connected, Linear

1) Convolutional Neural Networks: Convolutional Neural
Networks (CNNs) [25] perform automatic feature extraction
through a series of volume-wise convolutions and feature
routing. For each convolutional layer, a resulting set of filters
are learnt to capture spatial patterns in given inputs. Deeper
CNNs are capable of capturing complex hierarchical concepts,
whereby more general and abstract concepts initiate from the
stem of the network and become increasingly task specific
in the final layers. The convolution operation in CNNs is
significantly more efficient than dense matrix multiplication
through sparse interactions and parameter sharing. Formally,
in 3D CNNs one would compute a pre-activated value of a
given unit n[`]i,j,k at (i, j, k) position in a 3D feature map of
layer `, by summing the weighted kernel contributions from
the previous layer units in A[`−1] as

n
[`]
i,j,k =

X−1∑
x=0

Y−1∑
y=0

Z−1∑
z=0

W[`]
x,y,zA

[`−1]
i+x,j+y,k+z, (3)

where W
[`]
x,y,z is a single learnt weight pertaining to a kernel

W[`] of dimensions X×Y ×Z in layer `, which is convolved
with cells from the previous layer (W[`]∗A[`−1]). Each feature
map f in a given layer ` has a learnt bias term b[`,f ], which
is added pre non-linearity as

a
[`,f ]
i,j,k = φ(n

[`,f ]
i,j,k + b[`,f ]), (4)

where φ(·) is a non-linear activation function such as ReLU:→
f(·) = max(0, ·) or the logistic sigmoid.

Table IV depicts the 3D CNN architecture, devised through
experimentation, for the classification of perturbation types in
the frequency domain and their respective coordinate locations
in 3D space. Convolutional layers use 3× 3× 3 kernels with
stride 1 and are followed by Batch Normalization (BN) [26]
and ReLU activations. In order to reduce the number of param-
eters incurred by 3D convolutions and increase the complexity
of the network with more ReLU non-linearities, Bottleneck
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Fig. 5. Unified framework for time and frequency domain perturbation type classification and coordinate regression. An LSTM network at the top for time
domain signals, and a 3D CNN below for frequency domain signals. Both networks output 512 dimensional latent variable representations of their respective
inputs, and their flow is controlled by XOR gate logic and a switch is activated for perturbation coordinate regression in the frequency domain.

Layers (1×1×1 convolution) are introduced between 3×3×3
convolutions. Max Pooling with 2 × 2 × 2 kernels down
sample inputs and a final Global Average Pooling (GAP) [27]
layer produces 512 dimensional vector representations. The
representations are then fed to 2 separate FC Layers, one for
multi-label classification with 3 sigmoid non-linear units and
the other for perturbation coordinate regression (i, j, k) with 3
linear units. In the combined perturbation case, the 3 sigmoid
units represent 7 different classes denoted as

C = {001, 010, 100, 101, 011, 110, 111}, (5)

where C contains all combinations of Localised (ID 100),
Travelling type 1 (ID 010) and type 2 (ID 001) perturbations as
described in Section III. In practice, the 3 linear units become
9 units to allow for regression of more than one perturbation
location at a time.

When training a CNN on multiple objectives, it is common
practice to compute a linear weighted sum of losses per
task i of T tasks, where weight coefficients λi control the
dominance of each loss over the gradient. Formally, the multi-
task optimisation objective is minimised with respect to W
parameters given D input data as

L =

T∑
i

λi`i(D;W), (6)

where `i represents either the negative log-likelihood loss for
perturbation type classification: `1(y1, ŷ1), or the L2 loss for
perturbation coordinate regression: `2(y2, ŷ2). Concretely, the
3D CNN is trained by minimising the following criterion
L (D;W, λ1, λ2) =

− 1

N

N∑
i=1

[
λ1
P

P∑
j=1

[
yj1 log(ŷ

j
1) + (1− yj1) log(1− ŷ

j
1)
]
+

−λ2
C

C∑
c=1

‖yc2 − ŷc2‖
2

]
i

(7)

where P and C denote the number of perturbation types
and location coordinates respectively, with λ1, λ2 as tuned
weight coefficients for each loss. The resulting network model
F(D;W) predicts a continuous vector of outputs (i, j, k co-
ordinates) and discrete outputs for perturbation type classes.
Lastly, parameters W were initialised as proposed in [28].

B. Time Domain

Given the sequential nature of the signals in the perturbation
induced in the time domain, it was intuitive to utilise Recurrent
Neural Networks (RNN). RNNs are particularly suitable for
this type of data as their cells can formulate a non linear output
A[t] based on both the input data x[t] at the current time step t,
and the previous time-step activation A[t−1]. This is described
in (8), where φ(·) is a non-linear activation function of choice
such as the hyperbolic tangent.

A[t] = φ(x[t],A[t−1]) (8)

In particular, Long Short-Term Memory (LSTM) was adopted
because of its capability of learning long term dependencies
on data. This is attained by formulating memory cells. The
equations relative to LSTM follow, and the reader is invited
to refer to the original paper [29] for further details.

C̃[t] = tanh(Wc̃ · [A[t−1],x[t]] + bc̃)

Γu = σ(Wu · [A[t−1],x[t]] + bu)

Γf = σ(Wf · [A[t−1],x[t]] + bf )

Γo = σ(Wo · [A[t−1],x[t]] + bo)

C[t] = Γu � C̃[t] + Γf �C[t−1]

A[t] = Γo � tanh(C[t])

(9)

In (9), C is the memory cell, Γu, Γf and Γo are the update,
forget and output gates respectively; W denotes the model’s
weights, and b are the bias vectors. These parameters are all
jointly learnt through backpropagation. Essentially, at each
time-step, a candidate update of the memory cell C̃[t] is
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Fig. 6. Weight coefficient grid search for the 3D-CNN classification and
regression losses. Coefficient 0.3 for classification and 0.7 for regression
yielded the best performance.

proposed, and according to the learnt gates, C̃[t] can be utilised
to update the memory cell C[t], and subsequently provide
a non linear activation of the LSTM cell A[t]. In order to
improve the representational capacity of our network and
therefore learn a meaningful representation of the signal, two
LSTM layers were stacked, with each LSTM cell containing
512 neurons.

The problem of recognising which scenario a signal is rep-
resentative of was tackled as a multi-label classification task.
Since four individual perturbation (and their combinations)
were identified (see Table I, II and III), in order to classify
which of these perturbation was present, 512 dimensional
LSTM representations were fully connected to four neurons
with sigmoid activation functions. During training the follow-
ing negative log-likelihood criterion was minimised

L (y, ŷ) = − 1

PN

P∑
j=1

N∑
i=1

[
yj log(ŷj)+

(1− yj) log(1− ŷj)
]
i

(10)

where P is the number of sigmoid units used for the multi-
label classification task, and N is the number of samples in a
batch. The parameters of the resulting model were initiliased
as per the scheme proposed in [30].

C. Deep Time-Frequency Framework

As illustrated in Fig. 5, a Deep Neural Network (DNN)
framework was formulated for processing both Time and Fre-
quency Domains signals coming from nuclear reactor sensor
measurements. It is important to clarify that the simulations
were performed using different rector cores in each domain,
as per CORE-SIM and S3K specifications. Both the 3D
CNN and LSTM network produced 512 dimensional vector
representations of their respective inputs. The representations
were then fed to a fused classification layer comprised of 7
sigmoid units (3 for Frequency & 4 for Time) to accommodate
all scenario combinations as a multi-label classification task.
Lastly, whenever a frequency domain perturbation is detected,
the red switch in Fig. 5 is triggered and the current 512
dimensional representation is fed to a separate FC layer to
regress perturbation coordinates (i, j, k) in 3D space.

TABLE V
RESULTS OF THE FREQUENCY DOMAIN 3D CNN EXPERIMENTS FOR

PERTURBATION TYPE CLASSIFICATION AND LOCALISATION REGRESSION.
(*) MARKS COMBINED PERTURBATIONS SCENARIOS.

3D CNN Perturbation Classification & Localisation

Sensors Train/Valid/ Classification (i, j, k) Regression
(%) Test (%) Accuracy (%) MAE MSE
20 60/15/25 99.75±0.09 0.2528±0.03 0.1347±0.02
20 25/15/60 99.12±0.17 0.4221±0.05 0.4152±0.07
20 15/25/60 98.62±0.22 0.5886±0.05 0.8174±0.12
5 60/15/25 99.32±0.18 0.326±0.05 0.2086±0.04
5 25/15/60 98.34±0.22 0.4818±0.05 0.6044±0.08
5 15/25/60 97.27±0.54 0.689±0.1 1.0749±0.25

20* 60/15/25 99.82±0.05 0.5602±0.04 1.6036±0.15
20* 25/15/60 99.56±0.07 0.8942±0.04 3.5739±0.16
20* 15/25/60 99.44±0.08 0.9635±0.06 4.2814±0.19
5* 60/15/25 99.47±0.03 0.8809±0.04 3.4424±0.16
5* 25/15/60 98.33±0.24 0.5001±0.04 0.6381±0.08
5* 15/25/60 97.15±0.15 1.9528±0.11 11.902±0.66

V. EXPERIMENTAL STUDY

A. Frequency Domain

For completeness and more detailed analysis of the results,
the performance of the proposed framework in the Time and
Frequency domains are kept separate. The implementation was
based on MATLAB [31], Keras deep learning framework [32]
and Tensorflow numerical computation library [33]. The exper-
iments were conducted using a server with an Intel Xeon(R)
E5-2620 v4 CPU, eight GPUs and 96GB of RAM. The results
of the experiments conducted on the volumetric signal data
are reported in Table V. As explained in greater detail in
Subsection III-A, the volumetric signals were corrupted by
obscuring parts at random, in order to emulate fewer available
sensor measurements and thus increase the complexity of the
problem. As shown in Table V, in the first experiment a
dataset with 20% of the sensor measurements was generated.
Similarly, in the second experiment a different dataset was
generated in which only 5% of the sensor measurements were
kept. Both of these experiments were conducted to study the
effect of sensor measurement sparsity on the performance of
our algorithm. Furthermore, different training, validation and
test splits were also utilised to study the effect of learning
from a smaller pool of possible perturbations in the training
set.

In the case of the Combined Perturbation experiments
(marked with (*) in Table V), a similar approach was under-
taken with regards to the percentage of sensors kept and the
dataset splits. Two datasets were generated for training (20%
and 5%) in which multiple perturbations are classified and
their respective source coordinates regressed simultaneously.
Moreover, a hyper-parameter grid search was performed over
the loss weight coefficients for each task, and the best results
were achieved with λ1 = 0.3 and λ2 = 0.7 (see Fig. 6). For all
experiments, the 3D CNN was trained to minimise the criterion
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Fig. 7. Description of detector locations for the signals utilised in training,
validation and testing of the deep LSTM network model, in the classification
of different types and combinations of Time domain perturbations.

in Eq. (7) using backpropagation, and the Adaptive Moment
Estimation (Adam) optimiser [34] with the default parameters
and a batch size of size 32. Each model was trained 10 times
and the mean performance was taken as the final result, along
with the standard deviation.

As observable in Table V, high classification performance
was achieved in all experiments with 99.75%±0.09 and
97.15%±0.15 accuracy in the best case and worst case re-
spectively. The mean squared and absolute errors (MSE, MAE)
were used as evaluation metrics for the perturbation coordinate
regression results, with best case of 0.2528 ± 0.03 (MAE),
0.1347± 0.02 (MSE) and worst case of 1.95± 0.11 (MAE),
11.90± 0.66 (MSE).

Overall, the results show that the classification task achieves
better performance across all datasets compared to the re-
gression task. The regression performance deteriorates with
the introduction of combined perturbations and limited sensor
measurement/training set size, whereas the classification of
perturbations types is more resilient to fluctuations in the
number of sensors used in the training phase.

B. Time Domain

In this experiment, individual sensor measurements were
utilised to detect each of the thirteen scenarios (Table I, II
and III). Starting with the data from the thirteen scenarios
provided by S3K, each comprised of 56 one-dimensional
signals of length 10001 (one signal per detector), after re-
sampling, 17164 samples of size 56 × 100 were obtained.
Subsequently, each 56 × 100 sample was subdivided into 56
one-dimensional signals of size 100 × 1. During training,
each 100 × 1 signal from a single sensor was utilised to
detect the presence of a scenario. In other words, any given
scenario (perturbation) must be detected within one second
of monitoring. Fig. 7 shows which sensors were utilised to
train, validate and test the LSTM network, at each radial
level of the reactor. For better intuition, Fig. 8 provides a
depiction of the main components of a core, including fuel

Fig. 8. Illustration of a nuclear reactor core, highlighting its internal
components. The core shown on the left hand side contains the fuel and
control rod assembly shown on the right hand side. Photo credit to [35], [36].

assemblies in a typical nuclear reactor. Overall, 480592 (from
28 sensors), 240296 (from 14 sensors) and 240296 (from 14
sensors) signals were used for training, validating and testing.

Hyper-parameters were experimentally tuned, and those
utilised provided the best performance. The negative log-
likelihood criterion in (10) was minimised with mini-batch
(32) stochastic gradient descent (SGD). The Adam optimi-
sation algorithm was used, to include adaptive learning rate,
momentum, RMSprop and bias correction in weight updates,
offering faster convergence rate than normal SGD with mo-
mentum [34]. The classification accuracy (%) achieved by the
LSTM network was 97% on the clean signals, 81% with added
noise at SNR= 10 and 77% with added noise at SNR= 5.

VI. CONCLUSION & FUTURE WORK

In this paper, the first step towards a unified deep framework
was proposed for the classification and regression of pertur-
bations in nuclear reactors. Both Time and Frequency domain
data were obtained through inducing perturbations such as an
Absorber of Variable Strength and Propagating Perturbation in
the Frequency domain; vibration of fuel assemblies and fluc-
tuations of thermal-hydraulic parameters at the inlet coolant
between the 4-loops of a Westinghouse PWR reactor in the
Time domain.

The proposed framework is comprised of a 3D CNN and
an LSTM architecture that each output 512 dimensional repre-
sentations of their respective input signals, and combinations
of nuclear reactor perturbations are classified with a fused
multi-sigmoid layer. A switch was introduced to control the
flow of the frequency domain 512 dimensional representation,
which is fed to a regression layer whenever a perturbation is
detected in the 3D complex signal volume. Furthermore, the
effects of sensor measurement sparsity and noisy signals were



evaluated in a series of experimental studies, demonstrating
the capability of our framework to achieve good results in
both unfolding and perturbation type classification.

In future work, we plan to extend our studies to other types
of data, simulated in the Time and Frequency domains utilising
the same/multiple reactor cores, to test the sensitivity of our
framework to different reactor characteristics. Furthermore we
intend to investigate real data coming from nuclear power
plants, in pursuit of a framework suitable for simultaneously
handling Time and Frequency domain signals for the locali-
sation and classification of nuclear reactor anomalies.
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