10,020 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Adaptive Traffic Fingerprinting for Darknet Threat Intelligence

    Full text link
    Darknet technology such as Tor has been used by various threat actors for organising illegal activities and data exfiltration. As such, there is a case for organisations to block such traffic, or to try and identify when it is used and for what purposes. However, anonymity in cyberspace has always been a domain of conflicting interests. While it gives enough power to nefarious actors to masquerade their illegal activities, it is also the cornerstone to facilitate freedom of speech and privacy. We present a proof of concept for a novel algorithm that could form the fundamental pillar of a darknet-capable Cyber Threat Intelligence platform. The solution can reduce anonymity of users of Tor, and considers the existing visibility of network traffic before optionally initiating targeted or widespread BGP interception. In combination with server HTTP response manipulation, the algorithm attempts to reduce the candidate data set to eliminate client-side traffic that is most unlikely to be responsible for server-side connections of interest. Our test results show that MITM manipulated server responses lead to expected changes received by the Tor client. Using simulation data generated by shadow, we show that the detection scheme is effective with false positive rate of 0.001, while sensitivity detecting non-targets was 0.016+-0.127. Our algorithm could assist collaborating organisations willing to share their threat intelligence or cooperate during investigations.Comment: 26 page

    Cyber Sentinel: Exploring Conversational Agents in Streamlining Security Tasks with GPT-4

    Full text link
    In an era where cyberspace is both a battleground and a backbone of modern society, the urgency of safeguarding digital assets against ever-evolving threats is paramount. This paper introduces Cyber Sentinel, an innovative task-oriented cybersecurity dialogue system that is effectively capable of managing two core functions: explaining potential cyber threats within an organization to the user, and taking proactive/reactive security actions when instructed by the user. Cyber Sentinel embodies the fusion of artificial intelligence, cybersecurity domain expertise, and real-time data analysis to combat the multifaceted challenges posed by cyber adversaries. This article delves into the process of creating such a system and how it can interact with other components typically found in cybersecurity organizations. Our work is a novel approach to task-oriented dialogue systems, leveraging the power of chaining GPT-4 models combined with prompt engineering across all sub-tasks. We also highlight its pivotal role in enhancing cybersecurity communication and interaction, concluding that not only does this framework enhance the system's transparency (Explainable AI) but also streamlines the decision-making process and responding to threats (Actionable AI), therefore marking a significant advancement in the realm of cybersecurity communication

    Agriculture 4.0 and beyond: Evaluating cyber threat intelligence sources and techniques in smart farming ecosystems

    Get PDF
    The digitisation of agriculture, integral to Agriculture 4.0, has brought significant benefits while simultaneously escalating cybersecurity risks. With the rapid adoption of smart farming technologies and infrastructure, the agricultural sector has become an attractive target for cyberattacks. This paper presents a systematic literature review that assesses the applicability of existing cyber threat intelligence (CTI) techniques within smart farming infrastructures (SFIs). We develop a comprehensive taxonomy of CTI techniques and sources, specifically tailored to the SFI context, addressing the unique cyber threat challenges in this domain. A crucial finding of our review is the identified need for a virtual Chief Information Security Officer (vCISO) in smart agriculture. While the concept of a vCISO is not yet established in the agricultural sector, our study highlights its potential significance. The implementation of a vCISO could play a pivotal role in enhancing cybersecurity measures by offering strategic guidance, developing robust security protocols, and facilitating real-time threat analysis and response strategies. This approach is critical for safeguarding the food supply chain against the evolving landscape of cyber threats. Our research underscores the importance of integrating a vCISO framework into smart farming practices as a vital step towards strengthening cybersecurity. This is essential for protecting the agriculture sector in the era of digital transformation, ensuring the resilience and sustainability of the food supply chain against emerging cyber risks

    Cognitive Machine Individualism in a Symbiotic Cybersecurity Policy Framework for the Preservation of Internet of Things Integrity: A Quantitative Study

    Get PDF
    This quantitative study examined the complex nature of modern cyber threats to propose the establishment of cyber as an interdisciplinary field of public policy initiated through the creation of a symbiotic cybersecurity policy framework. For the public good (and maintaining ideological balance), there must be recognition that public policies are at a transition point where the digital public square is a tangible reality that is more than a collection of technological widgets. The academic contribution of this research project is the fusion of humanistic principles with Internet of Things (IoT) technologies that alters our perception of the machine from an instrument of human engineering into a thinking peer to elevate cyber from technical esoterism into an interdisciplinary field of public policy. The contribution to the US national cybersecurity policy body of knowledge is a unified policy framework (manifested in the symbiotic cybersecurity policy triad) that could transform cybersecurity policies from network-based to entity-based. A correlation archival data design was used with the frequency of malicious software attacks as the dependent variable and diversity of intrusion techniques as the independent variable for RQ1. For RQ2, the frequency of detection events was the dependent variable and diversity of intrusion techniques was the independent variable. Self-determination Theory is the theoretical framework as the cognitive machine can recognize, self-endorse, and maintain its own identity based on a sense of self-motivation that is progressively shaped by the machine’s ability to learn. The transformation of cyber policies from technical esoterism into an interdisciplinary field of public policy starts with the recognition that the cognitive machine is an independent consumer of, advisor into, and influenced by public policy theories, philosophical constructs, and societal initiatives

    Next-Gen Security: Leveraging Advanced Technologies for Social Medical Public Healthcare Resilience

    Get PDF
    The healthcare industry is undergoing a significant change as it incorporates advanced technologies to strengthen its security infrastructure and improve its ability to withstand current challenges and  explores the important overlap between security, technology, and public health. The introductory section presents a thorough overview, highlighting the current status of public healthcare and emphasizing the crucial importance of security in protecting confidential medical data. This statement highlights the current difficulties encountered by social medical public healthcare systems and emphasizes the urgent need to utilize advanced technologies to strengthen their ability to adapt and recover. The systematic literature review explores a wide range of studies, providing insight into the various aspects of healthcare security. This text examines conventional security methods, exposes their constraints, and advances the discussion by examining cutting-edge technologies such as Artificial Intelligence (AI), Machine Learning, Blockchain, Internet of Things (IoT), and Biometric Security Solutions. Every technology is carefully examined to determine its ability to strengthen healthcare systems against cyber threats and breaches, guaranteeing the confidentiality and accuracy of patient data. The methodology section provides a clear explanation of the research design, the process of selecting participants, and the strategies used for analyzing the data. The research seeks to evaluate the present security situation and determine the best methods for incorporating advanced technologies into healthcare systems, using either qualitative or quantitative methods. The following sections elucidate the security challenges inherent in social medical public healthcare, encompassing cyber threats and privacy concerns. Drawing on case studies, the paper illustrates successful implementations of advanced technologies in healthcare security, distilling valuable lessons and best practices. The recommendations section goes beyond the technical domain, exploring the policy implications and strategies for technological implementation. The exploration of regulatory frameworks, legal considerations, and ethical dimensions is conducted to provide guidance for the smooth integration of advanced technologies into healthcare systems. Healthcare professionals are encouraged to participate in training and awareness programs to ensure a comprehensive and efficient implementation. To summarize, the paper combines the results, highlighting the importance of utilizing advanced technologies to strengthen the security framework of social medical public healthcare. The significance of healthcare resilience is emphasized, and potential areas for future research are delineated. This research is an important resource that offers valuable insights and guidance for stakeholders, policymakers, and technologists who are dealing with the intricate field of healthcare security in the age of advanced technologies. DOI: https://doi.org/10.52710/seejph.48

    NLP-Based Techniques for Cyber Threat Intelligence

    Full text link
    In the digital era, threat actors employ sophisticated techniques for which, often, digital traces in the form of textual data are available. Cyber Threat Intelligence~(CTI) is related to all the solutions inherent to data collection, processing, and analysis useful to understand a threat actor's targets and attack behavior. Currently, CTI is assuming an always more crucial role in identifying and mitigating threats and enabling proactive defense strategies. In this context, NLP, an artificial intelligence branch, has emerged as a powerful tool for enhancing threat intelligence capabilities. This survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence. It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets. It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI. Finally, the challenges and limitations of NLP in threat intelligence are exhaustively examined, including data quality issues and ethical considerations. This survey draws a complete framework and serves as a valuable resource for security professionals and researchers seeking to understand the state-of-the-art NLP-based threat intelligence techniques and their potential impact on cybersecurity

    An artificial intelligence-based collaboration approach in industrial IoT manufacturing : key concepts, architectural extensions and potential applications

    Get PDF
    The digitization of manufacturing industry has led to leaner and more efficient production, under the Industry 4.0 concept. Nowadays, datasets collected from shop floor assets and information technology (IT) systems are used in data-driven analytics efforts to support more informed business intelligence decisions. However, these results are currently only used in isolated and dispersed parts of the production process. At the same time, full integration of artificial intelligence (AI) in all parts of manufacturing systems is currently lacking. In this context, the goal of this manuscript is to present a more holistic integration of AI by promoting collaboration. To this end, collaboration is understood as a multi-dimensional conceptual term that covers all important enablers for AI adoption in manufacturing contexts and is promoted in terms of business intelligence optimization, human-in-the-loop and secure federation across manufacturing sites. To address these challenges, the proposed architectural approach builds on three technical pillars: (1) components that extend the functionality of the existing layers in the Reference Architectural Model for Industry 4.0; (2) definition of new layers for collaboration by means of human-in-the-loop and federation; (3) security concerns with AI-powered mechanisms. In addition, system implementation aspects are discussed and potential applications in industrial environments, as well as business impacts, are presented
    corecore