368 research outputs found

    Security in transnational interoperable PPDR communications: threats and requirements

    Get PDF
    The relevance of cross border security operations has been identified as a priority at European level for a long time. A European network where Public Protection and Disaster Relief (PPDR) forces share communications processes and a legal framework would greatly enforce response to disaster recovery and security against crime. Nevertheless, uncertainty on costs, timescale and functionalities have slowed down the interconnection of PPDR networks across countries and limited the transnational cooperation of their PPDR forces so far. In this context, the European research project ISITEP is aimed at developing the legal, operational and technical framework to achieve a cost effective solution for PPDR interoperability across European countries. Inter alia, ISITEP project is specifying a new Inter-System-Interface (ISI) interface for the interconnection of current TETRA and TETRAPOL networks that can be deployed over Internet Protocol (IP) connectivity. This approach turns communications security as a central aspect to consider when deploying the new IP ISI protocol between PPDR national networks. Ensuring that threats to the interconnected communications systems and terminals are sufficiently and appropriately reduced by technical, procedural and environmental countermeasures is vital to realise the trusted and secure communication system needed for the pursued PPDR transnational cooperation activities. In this context, this paper describes the framework and methodology defined to carry out the development of the security requirements and provides a discussion on the undertaken security risk and vulnerability analysis.Peer ReviewedPostprint (author's final draft

    Protecting Voice Controlled Systems Using Sound Source Identification Based on Acoustic Cues

    Full text link
    Over the last few years, a rapidly increasing number of Internet-of-Things (IoT) systems that adopt voice as the primary user input have emerged. These systems have been shown to be vulnerable to various types of voice spoofing attacks. Existing defense techniques can usually only protect from a specific type of attack or require an additional authentication step that involves another device. Such defense strategies are either not strong enough or lower the usability of the system. Based on the fact that legitimate voice commands should only come from humans rather than a playback device, we propose a novel defense strategy that is able to detect the sound source of a voice command based on its acoustic features. The proposed defense strategy does not require any information other than the voice command itself and can protect a system from multiple types of spoofing attacks. Our proof-of-concept experiments verify the feasibility and effectiveness of this defense strategy.Comment: Proceedings of the 27th International Conference on Computer Communications and Networks (ICCCN), Hangzhou, China, July-August 2018. arXiv admin note: text overlap with arXiv:1803.0915

    High-Performance Fake Voice Detection on Automatic Speaker Verification Systems for the Prevention of Cyber Fraud with Convolutional Neural Networks

    Get PDF
    This study proposes a highly effective data analytics approach to prevent cyber fraud on automatic speaker verification systems by classifying histograms of genuine and spoofed voice recordings. Our deep learning-based lightweight architecture advances the application of fake voice detection on embedded systems. It sets a new benchmark with a balanced accuracy of 95.64% and an equal error rate of 4.43%, contributing to adopting artificial intelligence technologies in organizational systems and technologies. As fake voice-related fraud causes monetary damage and serious privacy concerns for various applications, our approach improves the security of such services, being of high practical relevance. Furthermore, the post-hoc analysis of our results reveals that our model confirms image texture analysis-related findings of prior studies and discovers further voice signal features (i.e., textural and contextual) that can advance future work in this field

    Smart Home Personal Assistants: A Security and Privacy Review

    Get PDF
    Smart Home Personal Assistants (SPA) are an emerging innovation that is changing the way in which home users interact with the technology. However, there are a number of elements that expose these systems to various risks: i) the open nature of the voice channel they use, ii) the complexity of their architecture, iii) the AI features they rely on, and iv) their use of a wide-range of underlying technologies. This paper presents an in-depth review of the security and privacy issues in SPA, categorizing the most important attack vectors and their countermeasures. Based on this, we discuss open research challenges that can help steer the community to tackle and address current security and privacy issues in SPA. One of our key findings is that even though the attack surface of SPA is conspicuously broad and there has been a significant amount of recent research efforts in this area, research has so far focused on a small part of the attack surface, particularly on issues related to the interaction between the user and the SPA devices. We also point out that further research is needed to tackle issues related to authorization, speech recognition or profiling, to name a few. To the best of our knowledge, this is the first article to conduct such a comprehensive review and characterization of the security and privacy issues and countermeasures of SPA.Comment: Accepted for publication in ACM Computing Survey

    Smart home personal assistants : a security and privacy review

    Get PDF
    Smart Home Personal Assistants (SPA) are an emerging innovation that is changing the means by which home users interact with technology. However, several elements expose these systems to various risks: i) the open nature of the voice channel they use, ii) the complexity of their architecture, iii) the AI features they rely on, and iv) their use of a wide range of underlying technologies. This paper presents an in-depth review of SPA’s security and privacy issues, categorizing the most important attack vectors and their countermeasures. Based on this, we discuss open research challenges that can help steer the community to tackle and address current security and privacy issues in SPA. One of our key findings is that even though the attack surface of SPA is conspicuously broad and there has been a significant amount of recent research efforts in this area, research has so far focused on a small part of the attack surface, particularly on issues related to the interaction between the user and the SPA devices. To the best of our knowledge, this is the first article to conduct such a comprehensive review and characterization of the security and privacy issues and countermeasures of SPA

    Security Frameworks for Machine-to-Machine Devices and Networks

    Get PDF
    Attacks against mobile systems have escalated over the past decade. There have been increases of fraud, platform attacks, and malware. The Internet of Things (IoT) offers a new attack vector for Cybercriminals. M2M contributes to the growing number of devices that use wireless systems for Internet connection. As new applications and platforms are created, old vulnerabilities are transferred to next-generation systems. There is a research gap that exists between the current approaches for security framework development and the understanding of how these new technologies are different and how they are similar. This gap exists because system designers, security architects, and users are not fully aware of security risks and how next-generation devices can jeopardize safety and personal privacy. Current techniques, for developing security requirements, do not adequately consider the use of new technologies, and this weakens countermeasure implementations. These techniques rely on security frameworks for requirements development. These frameworks lack a method for identifying next generation security concerns and processes for comparing, contrasting and evaluating non-human device security protections. This research presents a solution for this problem by offering a novel security framework that is focused on the study of the “functions and capabilities” of M2M devices and improves the systems development life cycle for the overall IoT ecosystem

    When the Differences in Frequency Domain are Compensated: Understanding and Defeating Modulated Replay Attacks on Automatic Speech Recognition

    Full text link
    Automatic speech recognition (ASR) systems have been widely deployed in modern smart devices to provide convenient and diverse voice-controlled services. Since ASR systems are vulnerable to audio replay attacks that can spoof and mislead ASR systems, a number of defense systems have been proposed to identify replayed audio signals based on the speakers' unique acoustic features in the frequency domain. In this paper, we uncover a new type of replay attack called modulated replay attack, which can bypass the existing frequency domain based defense systems. The basic idea is to compensate for the frequency distortion of a given electronic speaker using an inverse filter that is customized to the speaker's transform characteristics. Our experiments on real smart devices confirm the modulated replay attacks can successfully escape the existing detection mechanisms that rely on identifying suspicious features in the frequency domain. To defeat modulated replay attacks, we design and implement a countermeasure named DualGuard. We discover and formally prove that no matter how the replay audio signals could be modulated, the replay attacks will either leave ringing artifacts in the time domain or cause spectrum distortion in the frequency domain. Therefore, by jointly checking suspicious features in both frequency and time domains, DualGuard can successfully detect various replay attacks including the modulated replay attacks. We implement a prototype of DualGuard on a popular voice interactive platform, ReSpeaker Core v2. The experimental results show DualGuard can achieve 98% accuracy on detecting modulated replay attacks.Comment: 17 pages, 24 figures, In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (CCS' 20
    corecore