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Abstract

This study proposes a highly effective data analytics
approach to prevent cyber fraud on automatic speaker
verification systems by classifying histograms of genuine
and spoofed voice recordings. Our deep learning-based
lightweight architecture advances the application of
fake voice detection on embedded systems. It sets a new
benchmark with a balanced accuracy of 95.64% and
an equal error rate of 4.43%, contributing to adopting
artificial intelligence technologies in organizational
systems and technologies. As fake voice-related fraud
causes monetary damage and serious privacy concerns
for various applications, our approach improves the
security of such services, being of high practical
relevance. Furthermore, the post-hoc analysis of
our results reveals that our model confirms image
texture analysis-related findings of prior studies and
discovers further voice signal features (i.e., textural and
contextual) that can advance future work in this field.

1. Introduction

Between 2013 and 2017, the rate of voice fraud
increased by over 350%, while studies assume that
the rate is even higher today due to the increasing
use of voice-assisted technologies in various application
areas. While it is estimated that voice-related fraud
costs call center organizations in the United States alone
$14 billion each year, the overall monetary damage is
assumed to be significantly higher. As an example,
criminals used artificial intelligence techniques to

impersonate a CEO’s voice on the phone and grifted
more than $243,000 [1, 2]. Although automatic speaker
verification systems enable biometric authentication for
a variety of voice-related services and applications (e.g.,
online banking and shopping, social networking sites,
telecommunication) [3], contributing to the popularity
of cloud-based services such as voice-activated personal
assistants in private households, the possibility of
unauthorized access and control inhibits their use
[4, 5], making fraud resulting from fake voices
a severe security and privacy concern to today’s
society. Accordingly, criminal activities have grown
substantially with the development and easy access to
spoofing methods [6].

Various spoofing methods can be used to generate
spoofed voices. They can be categorized into
physical access (PA), including impersonation and
replay methods, and into logical access (LA), including
speech synthesis and voice conversion methods [7].
As in real-world applications, it is indeterminable
which spoofing method is applied during an attack
[8], the main challenge in the development of
suitable countermeasures is to detect spoofed voices
independently of the underlying method [9].

Furthermore, as automatic speaker verification
systems are mainly used on small devices, characterized
by limited performance capabilities, another challenge
is that approaches for the detection of voice-related
fraud must follow the design requirements of mobile and
embedded applications such as smartphones or smart
speakers [10].

While related studies either proposed individual
models for each spoofing method (i.e., PA or LA)
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[11, 12, 13], are limited to a specific language (e.g.,
English), require additional hardware components due
to the model’s size [14], or are limited to specific
applications (impersonation [15, 16], replay [17, 18,
19], speech synthesis [20], or voice conversion [21]),
further research is required to advance the accuracy,
and universal practicability of such fake voice detection
approaches.

However, prior studies have revealed the potential
of using visually represented voice recordings (e.g.,
histograms, spectrograms) to extract meaningful
features (e.g., textural and contextual) for differentiating
genuine and spoofed voices. Furthermore, convolutional
neural networks (CNNs) have established themselves
as a widely used method in the area of voice command
recognition [22, 23] and image processing tasks in
general due to their superior performance and advantage
of automated feature extraction (i.e., descriptive and
discriminative) [24]. Inspired by the findings in the
field of image texture analysis [25] and following the
current research trend, we contribute to cyber security
and reduce the risk and damage of fake voice-related
fraud [26].

Finally, theories in cyber fraud and deception
concordantly indicate that while the world is
becoming increasingly reliant on computers for
critical infrastructures, poor architectural decisions
result in weak points that allow malicious actors to
gain access to sensitive information. Furthermore,
cyber-attacks can affect human decision-making by
exploiting social and cognitive biases [27, 28, 29]. To
counteract these problems and contribute to preventing
cyber criminology in the cyber-physical space [27], we
present a technical-oriented design science approach in
this work [30] by investigating the following research
question:

Can a CNN-based deep learning approach
accurately differentiate genuine from spoofed voices
by automatically analyzing histograms of audio
recordings, independently of the underlying spoofing
method? The most important contributions of our study
are:

1. We present a highly effective data analytics
approach for detecting and preventing cyber fraud
with spoofed voices [31], setting a benchmark
with a balanced accuracy of 95.64% and an equal
error rate (EER) of 4.43%.

2. By proposing a lightweight CNN architecture
that advanced the application of spoofing
attacks detection approaches on embedded
systems [32], we contribute to the adoption of
artificial intelligence technologies in small and
medium-sized enterprises [33].

3. Our CNN-based detection model is accurate,
cost-efficient, and allows to objectively
distinguish between genuine and spoofed
voices by only using a histogram visualization of
the underlying voice recording.

4. As our approach allows to lower the risk of
unauthorized access to voice-activated personal
assistants [4, 5], improving the security and
reducing the fraud-related monetary damage [1]
for a variety of services applications (e.g.,
banking, telecommunication) [3], our approach is
of high practical relevance.

5. Using GRAD-CAM heatmaps for the post-hoc
analysis of our CNN-based classification results
[34], our findings confirm the outcome of
prior studies. Following the findings of image
texture analysis, we identified both textural
and contextual [25] histogram-based features
(i.e., long-term temporal dependencies [35]).
Therefore, our study contributes to future research
in the field of histogram-based detection of fake
voices.

Our work is organized as follows: First, the
research background is presented, followed by the
study’s methodology, including the evaluation data
and preprocessing labeling procedure of the genuine
and spoofed voice recordings and the applied machine
learning (ML) method. Subsequently, the model’s
results, performance evaluation, and post-hoc analysis
using GRAD-CAM heatmaps are presented. Next,
the results and implications are discussed. Finally,
we conclude our work, followed by limitations and
suggestions for future research.

2. Research Background

According to Wu et al. [7] spoofing methods can be
categorized into four groups (i.e., impersonation, replay,
speech synthesis, and voice conversion). Additionally,
impersonation and replay are assigned to the subordinate
category of PA, whereas speech synthesis and voice
conversion are assigned to the subordinate category of
LA [12]. While in PA-based scenarios, a microphone
captures the speech data in a physical, reverberate space,
LA scenarios refer to attacks that are injected directly
into the automatic speaker verification system [36].

2.1. Related Work on Method-Independent
Detection of Spoofed Voices

Due to the prevalence of cyber fraud in fake
voices and automatic speaker verification systems,
previous research already investigated and proposed
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countermeasures for the detection and prevention of fake
voices. Table 1 gives an overview of related work,
where the corresponding performance of each approach
is presented as either accuracy or EER, based on the
underlying spoofing method (i.e., PA or LA).

Rahmeni et al. [37] used histograms as images
for the classification based on support vector machine
(SVM). By applying a local binary pattern as a
feature extraction technique on a spectrogram, these
images show only the texture of genuine and spoofed
voices, respectively. They achieved a spoofed voice
detection accuracy of 71.67% with the applied feature
extraction method following their approach. Hanilci
[38] used the gaussian mixture model (GMM) with
maximum likelihood criterion for classification on linear
prediction-based feature extraction. More precisely,
he used the linear prediction residual phase cepstral
coefficients and the linear prediction residual Hilbert
envelope cepstral coefficients on a previously applied
pre-emphasis filter for higher-frequencies. Similar to
Sahidullah et al. [39], he experiences that higher
frequencies are more significant for the classification
of spoofed voices. His approach achieved an EER of
6.52% on the evaluation data.

Jelil et al. [40] focused on the question of how
silence in audio files influences the results of spoofed
voice detection. Therefore, they built three individual
CNN-based systems, which handle silence in three
different ways. First, they kept all silent features for
the input. Second, they removed all silent features.
Third, they used the voice activity detector for the
extraction of features. Further, they cut each audio file
into several pieces to train and test their model with the
corresponding spectrogram images. In order to classify
the whole audio file, the most important image from
the cut-off pieces was identified and consulted for the
final decision. Regarding the inspection of the silent
features, the best results were obtained with the first
method (i.e., keeping all silent features for the input)
with an EER of 18.15%. Additionally, they proposed
a baseline-designed binary classifier using GMM and
constant Q cepstral coefficients as a feature extraction
method. Their model achieved an EER of 8.09% on
unknown LA attacks without considering their silence
approach.

Monteiro and Alam [9] built five different systems
to classify genuine from spoofed voices and compared
their results to find the best approach. First, they built
a fully connected neural network that uses low-level
descriptors like linear-frequency cepstral coefficients,
product spectrum-based cepstral coefficients, and
constant Q transform-based cepstral coefficients as input
[41]. Second, they used a linear discriminant analysis

for the classification, which was based on constant Q
transform-based cepstral coefficients and the universal
background model [42]. Third, they used the fisher
vector [43] which is also based on the low-level
descriptors (cepstral coefficients). Fourth, they designed
a CNN based on Light CNN-29 [39] and ResNet-18
architecture. Fifth, they used a stand-alone system
based on GMM. The first method achieved the best
performance on unknown attacks with an EER of 4.50%
(LA) and 0.96% (PA). Finally, Monteiro et al. [44]
introduced an end-to-end ensemble-based approach to
detect various spoofing methods, achieving an EER of
1.75% for PA attacks and 9.87% for LA attacks.

Table 1. Related work performance (i.e., accuracy
(ACC), EER) using spoofing (SM) and ML

methods (MLM) for voice detection.

Source SM MLM Performance
[37] LA SVM 71.67% (ACC)
[38] LA GMM 6.52% (EER)
[40] LA CNN 9.57% (EER)
[9] LA, PA CNN 4.50%, 0.96% (EER)
[44] LA, PA CNN 9.87%, 1.75% (ERR)

Analyzing related work shows that the considered
studies consistently show better results in detecting
PA-based than in detecting LA-based attacks. Although
previous studies show promising results in detecting
spoofed voices, they are either limited to a specific
language or application, designed for a specific
spoofing method (i.e., PA or LA) or require additional
hardware. Further research is required, focusing
on developing a fake voice detection approach that
allows differentiating between genuine and spoofed
voice recordings, independently of the underlying
spoofing method, with high accuracy and lightweight
architecture, making the approach applicable for
organizations with limited hardware capabilities. With
our work, we propose a deep CNN-based data
analytics model which uses an image (i.e., histogram)
classification to identify spoofed voices generated
from various spoofing methods, fully automated
and in real-time. The presented approach is
accurate, practically relevant for organizational systems,
and outperforms the current benchmark in this
domain. As the implementation of artificial intelligence
technologies in enterprises of international economies
is rather sluggish [33], access to such technologies
has to be designed as efficiently as possible (e.g.,
cost-efficiency). Addressing this requirement, our
lightweight model approach allows us to reduce the
total voice-related fraud costs and the costs required to
implement and execute corresponding countermeasures.
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3. Methodology

3.1. Model Architecture

To follow our study’s aim, we used a CNN-based
approach [24] for the automated detection of fake
voices. CNN’s have established themselves as a widely
used method in the area of spoofing and voice command
recognition [22, 23] The lightweight architecture of
our network is illustrated in figure ??. It consists of
three convolutional layers, where the input images (here:
histograms based on voice recordings) are represented
by four-dimensional arrays, characterized by the number
of images (n), size (x, y. here: 224, 224), and channels
(here: 3 (RGB)). For every convolutional layer, we
applied filters of size 64 for the first and second layer
and 128 for the third layer so that the spatial information
remains unchanged. The kernel size was set to 2x2 for
the first and 3x3 for the following two convolutional
layers to define the intensity of vector components [45].
We used the rectified linear unit activation function
to pass the results of every convolutional layer to the
inherent pooling layer [46]. This step allowed us to
reduce the image size and makes the CNN model more
location-independent.

A max-pooling layer follows every convolutional
block. Through this combination of convolutional
and pooling layers, the images (i.e., histograms)
can be transformed into a more abstract feature
presentation [24]. As soon as convolutional blocks
have transformed the input into a proper downsize
image, the flattening layer can be used to convert the
input of three dimensions into a one-dimensional array
[32]. In our example, the input of the flatten layer
is 26x26x128, resulting in a corresponding output of
86,528 parameters. The flattening layer passes its output
to the first dense layer. We used a dropout layer with
a rate of 30% to control overfitting and achieve better
performance. The output of the dropout layer with 64
was committed directly to the second and last dense
layer [47]. For the last classification, we used a filter
size of one and the Sigmoid activation function, which
takes the range into a value between 0 and 1 [48]. For
stochastic gradient descent, we used Adam optimizer
with a default learning rate of 1e-3 [49].

3.2. Histogram-Based Visualization of Voice
Signals

In the area of spoofing and voice command
recognition, spectrograms are commonly used to
represent speech signals and are usually the basis for
the detection of spoofed voices [1]. Spectrograms
reflect the time, frequency, and magnitude of the

signal from audio or video recordings. However, by
using spectrogram images with CNN architectures, it is
challenging to capture long-term temporal dependencies
using a smaller filter size [13]. Another limitation of
spectrograms is the need for feature extraction methods
such as Fourier transformation in order to determine
and extract the most relevant sub-bands [35]. On the
other side, histograms allow identifying the probability
distribution of different such as frequencies in the case
of voice signals [50]. Furthermore, histograms address
the limitations of spectrograms as no feature extraction
is necessary, and long-term temporal dependencies
can be depicted. Therefore, all information can
be considered for the classification of spoofed voice
recordings. Furthermore, studies have already shown
that histograms based on voice recordings manifest
characteristic differences between genuine and spoofed
voices and have also highlighted that the classification
of histograms represents a promising approach for the
detection of spoofed voices due to their advantages over
spectrograms in the respective domain [20].

3.3. Evaluation Data and Preprocessing

We used the latest (i.e., fourth) version of the
H-Voice dataset for the evaluation of our detection
approach [51]. The dataset consists of 3,268 histograms
based on genuine voice recordings and 3,404 histograms
based on spoofed voice recordings, resulting in a total
of 6,672 histograms which we used for training and
evaluating our fake voice classification approach. The
spoofed voices were generated with different spoofing
methods, following the research need of identifying
fake voices independently from the underlying spoofing
method. First, the imitation method, which belongs to
the category of voice conversion. The imitation method
follows the transformation procedure proposed in the
study by Ballesteros and Moreno [52].

While the efficient wavelet masking scheme assumes
that any speech signal may seem similar to a speech
host signal if its wavelet coefficients are sorted,
they delimitate the conditions under which the above
hypothesis is true. To create the imitation voices, an
algorithm according to [52] has been used, providing
validity for this study’s training and evaluation data.
Second, the deep voice method belongs to the category
of speech synthesis [53]. After the voice recordings
were created, all genuine and spoofed voice recordings
were converted into histograms. Therefore, the voice
recordings were re-quantized to 16 bits. The histograms
were organized with 65,536 bins and stored as files
in the size of 875x656 pixels each. Figure 1 shows
two examples of the voice signal-based histograms.
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Apparent differences between the genuine and spoofed
histograms, resulting from a visual inspection, are
encircled in red. As shown in figure 1, the middle area
of the peak in (B) is falling steeper than in (A). This
difference stands out even stronger in the bottom area of
the right slope of the histograms (A) and (B).

For our approach, we tested the classification for two
different cases:

1. Genuine voices (i.e., positive class): Histograms
based on real voice recordings.

2. Spoofed voices (i.e., negative class): Histograms
based on fake voice recordings.

Figure 1. Examples of histograms based on (A) a

genuine and (B) spoofed voice recordings [51].

For the preprocessing, we used a train-validation-test
split to decrease overfitting and increase both the
robustness and validity of our classification results [54].
While we used 60% (train: 4002 histograms) of the
dataset for the training of our approach, 20% (validation:
1335 histograms) were used for providing an unbiased
evaluation of our model’s fit on the training dataset,
and the remaining unseen 20% (test: 1335 histograms)
were used to perform the final evaluation. Accordingly,
all reported performance indicators and corresponding
values are based on the evaluation of the test split. We
highlight that we ensured the validity of our study’s
evaluation by using unseen testing data (i.e., test-set).
While the validation-set has been used to assess the
algorithm’s training performance, the test-set (i.e., 1335
unseen histograms) contains randomly selected voice
recordings shown to the model only for evaluation.
Subsequently, we resized the images (i.e., histograms)
to fixed input size of 224x224 pixels to improve the
computational efficiency and rescaled the input RGB
channels (i.e., normalization) to [0,1].

4. Results

To build and train our CNN-based detection model,
we used Python 3.6.9 with the Keras 2.2.4 package
[55], and TensorFlow 1.15.2 as backend [56]. We
trained our model for 100 epochs with 128 samples per
batch, running on an NVIDIA Tesla K80 12GB graphics
processing unit (GPU).

Following prior research, particularly studies related
to ASVspoof (i.e., series of challenges, promoting the
development of countermeasures to protect automatic
speaker verification from spoofing threats), the EER
has been established as a widely used evaluation metric
in the detection of spoofed voices [19, 57] The EER
denotes the threshold at which the false positive rate
and the false-negative rate are approximately equal [44].
The false-positive rate (i.e., miss rate) represents the
ratio between misclassified spoofed test samples and the
total number of spoofed test samples. Meanwhile, the
false-negative rate (i.e., false alarm rate) refers to the
ratio between misclassified genuine test samples and
the total number of genuine test samples. Therefore,
the lower the EER value, the better the developed
countermeasure performs [58].

Thus, to make our results comparable with
previous studies, we assessed the model’s final
classification results in terms of accuracy, balanced
accuracy, Cohen’s Kappa score, precision, recall, area
underneath the receiver operating characteristic curve
(AUC-ROC), and EER. The model results show that
our proposed spoofing attack detection approach sets
a new benchmark in distinguishing between genuine
and spoofed voice recordings, characterized by a very
good balanced accuracy of 95.64%, EER of 4.43%, and
AUC-ROC of 0.98. Table 2 provides all the values of
the considered performance indicators.

Table 2. Performance indicators.

Performance Indicator Value
Accuracy 95.66%
Balanced Accuracy 95.64%
Kappa 91.31%
Precision 96.13%
Recall 94.95%
AUC-ROC 0.9837
EER 4.43%

Table 3 (i.e., confusion matrix) reports the number
of false positives, false negatives, true positives, and
true negatives, whereas we defined genuine recordings
as positive and spoofed recordings as negative class.
Out of the 654 samples labeled as genuine voice
recordings (i.e., positive), our model correctly classified
621 histograms, resulting in a true positive rate of
94.95%. Of the 681 spoofed voice recordings, 656 got
classified correctly, leading to a true negative rate of
96.33%.
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Table 3. Confusion matrix (ntest=1,335).

Predicted
Spoofed Genuine

Actual Spoofed 49.14% 1.87%
Genuine 2.47% 46.52%

To foster our model’s architecture, we compared the
performance of classifying histogram representations of
genuine and spoofed voice recordings of the H-Voice
dataset [51], with other pre-trained networks. Following
the purpose of differentiating between genuine and
spoofed recordings, we excluded the model’s top layer
of each considered pre-trained network and added our
classifier [59]. Depending on the pre-trained network,
we adjusted the number of trained layers and the input
shapes of the images. We then first froze the layers of
each base model for training, followed by unfreezing
and reduction of the learning rate for fine-tuning of each
model [60].

We highlight that we define the overall efficiency by
the ratio between the performance (i.e., classification
accuracy) and resources required (i.e., network
parameters). The results in Table 4 show that in
terms of balanced classification accuracy and EER,
our lightweight model architecture outperforms all
of the investigated architectures. With an amount
of 5.6M trainable layers, slightly larger than the
mobile architecture MobileNetV2 [61], our architecture
manifests a significantly smaller amount of parameters
than the remaining architectures ResNet50 [62],
Xception [63], VGG16, and VGG19 [64], contributing
to the overall efficiency of our model, and the
application of spoofing attack detection approaches on
embedded systems [32]

Table 4. Performance of other pre-trained networks.

Architecture EER Parameters Bal. Acc.
Our Model 4.43% 5.6M 95.64%
MobileNetV2 5.34% 4.5M 94.24%
ResNet50 5.35% 25.8M 92.36%
Xception 6.11% 23.2M 95.14%
VGG16 7.65% 14.7M 95.14%
VGG19 8.26% 20.1M 95.14%

4.1. Post-Hoc Analysis of Predictive Areas for
Detecting Fake Voices

The gradient-weighted class activation mapping
Grad-CAM heatmap algorithm for visualization was
used to analyze our model in detail [34]. The algorithm
visualizes the predictive areas of our classification
model, allowing us to reveals characteristic features for
the differentiation between genuine and spoofed voices.

To distinguish predictive from non-predictive areas, we
applied a pseudo/false-color to the heatmap, where the
areas highlighted in red (encircled in red for both figures
3 and 4) refer to important areas, whereas less relevant
regions are marked in blue. We highlight that due to the
up-and downscaling of the images for the training of the
model and the Grad-CAM algorithm, the heatmaps are
not pixel-accurate.

Figure 2. Post-hoc analysis of correctly classified (C)

genuine and (D) spoofed recordings using heatmaps.

On the one hand, figure 2 shows two heatmaps of
correctly classified histograms of (C) a genuine and
(D) a spoofed voice recording. They correspond to the
example histograms which were illustrated in figure 1.
Both heatmaps indicate that the model primarily looks
at the bottom area of the right slope of the histograms.
Furthermore, the model considers some parts of the peak
in the middle as relevant for its decision for the spoofed
voice recording (D), which is highlighted in yellow
and green (i.e., moderately relevant) by the Grad-CAM
algorithm.

Figure 3. Post-hoc analysis of misclassified (E)

genuine and (F) spoofed recordings using heatmaps.

On the other hand, figure 3 shows two heatmaps
of misclassified histograms of (E) a genuine and (F) a
spoofed voice recording. Similar to the correct predicted
histograms, the bottom area of the right slope is mainly
important for the decision. In contrast, the model looks
at parts of the left slope of the histograms (E) and (F).

5. Discussion

Several studies have already demonstrated the
effectiveness of ML techniques in the detection of
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spoofed voices in general. In contrast, our work
concentrates on detecting spoofing attacks generated
by various spoofing methods. While the ASVspoof
dataset was used for the evaluation by most of the
previously developed countermeasures, we addressed
the lack of external validation with our approach.
Our proposed model achieves excellent performance in
detecting spoofed voices under consideration of two
different LA spoofing attacks. With an EER of 4.43%
based on only unseen testing data, we outperformed
the model by Monteiro and Alam [9] and set a new
benchmark.

As shown in table 3, our model did only misclassify
2.47% genuine and 1.87% spoofed voice recordings
from a total of 1,335 tested histograms. Therefore,
we revealed differences in the histogram representations
between the different spoofing methods, advancing
future research in fake voice detection for organizational
systems and technology. The four heatmaps (i.e., (A),
(B), (C), (D)) in figures 2 and 3 disclose that our model
mainly focuses on the bottom area of the right slope of
the histograms for the classification. On the one hand,
the two correctly classified histograms reveal that some
parts of the peak in the middle were also decisive for
classifying the spoofed voice (D) but not for the genuine
voice (C).

On the other hand, the two wrongly classified
histograms (E) and (F) reveal that the model focuses
on little parts of the left bottom area of the left
slope of the histograms. Furthermore, the peak is
not considered here. These two findings might be
the reason for the wrong classification. The heatmaps
indicate that our model predominantly predicts genuine
and spoofed voices based on the correct parts of the
histograms. Automatic speaker verification systems
are often built in small devices with a relatively
low available computational power and memory (e.g.,
smartphones, smart speakers). Therefore, it is essential
to consider this aspect in the development and following
the design requirements by providing a lightweight
CNN architecture [4, 14]. A prominent example in such
applications is the pre-trained architecture MobileNetV2
[61]. As shown in Table 4, while the parameters
are similar in size, our model (i.e., 5.6M parameters)
manifests a better classification accuracy by achieving
a lower EER and higher accuracy. Therefore, our
model follows the design requirements of embedded
systems, being applicable on smaller devices, which is
of high practical relevance for organizational systems
with limited hardware capabilities [32].

Further, the preprocessing of the images is
comparatively small to other approaches since the
voice recordings must only be transformed into

histograms without additional feature extraction (i.e.,
no information loss) [50], allowing the approach to
be highly objective and reproducible. While the
predominantly used spectrograms in the voice signal
domain do not offer these advantages [13, 35], studies
already indicated that it is possible to detect spoofed
voices using histograms [37]. Therefore, we confirm
previous scientific findings with our results and show
that this approach (i.e., using image classification
on histogram representations of voice recordings) can
outperform previously proposed methods.

6. Conclusion

Automatic speaker verification systems grant access
to sensitive organizational systems and technologies
such as online banking or telecommunication services,
making them a popular target for spoofing attacks
(i.e., cyber fraud). While most of the previous
studies which deal with the detection of spoofing
attacks proposed countermeasures for only one specific
spoofing method (i.e., LA or PA), real-world scenarios
show that automatic speaker verification systems must
be protected against all spoofing methods, as the
type of the spoofing attack is unknown. Following
our initial research question, we show with our
CNN-based fake voice detection approach that it is
possible to classify voice recording-based histograms
to differentiate between genuine and spoofed voice
signals. With a balanced accuracy of 95.64% and
an EER of 4.43%, our results outperform the current
benchmark in this domain and reveal additional findings
that can advance future research to develop additional
countermeasures for the fight against cyber fraud.
We have shown that histograms can be used for the
detection of spoofed voices, which confirms prior
research [37] and opens new research directions for
future investigations. Our approach is well suited for
real-time classification of spoofed and genuine voice
recordings and is promising to adapt to other spoofing
methods from LA or PA attacks. This opportunity is
crucial because of the varying spoofing methods which
are used for criminal activities.

Characterized by minor preprocessing measures
and lightweight network architecture (see: embedded
systems [32]), our approach manifests strong practical
applicability. It allows organizations and various
application scenarios with limited hardware capabilities
to adapt artificial intelligence technologies (here: deep
learning-based fraud detection approach) into their
operational routines [33]. Furthermore, we contribute
to the reduction of unauthorized access and monetary
damage caused by cyber fraud resulting from fake
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voices, which is also of high practical relevance [4, 1].
By proposing a model that is fast, cost-efficient,

objective, and reproducible, our CNN-based data
analytics model manifests high practical relevance as
it allows firms and organizations to effectively control
their environments by analyzing voice-related data in
real-time, serving both economic and security goals
[65]. While Sahidullah et al. [39] highlight three main
categories (i.e., Short-Term Power Spectrum Features,
Short-Term Phase Features, and Spectral Features with
Long-term Processing) of features commonly used for
synthetic speech detection (i.e., spoofed voices), the
current state of research only reveals very few findings
of histogram-based features. Inspired by image texture
analysis-related features (here: textural and contextual)
[25], we contribute to the field and allow future research
to investigate the usage of histogram representation
further to identify fake voices.

As fake voice-related fraud causes monetary damage
and serious privacy concerns for various applications,
it is of great importance to improve corresponding
prevention measures, significantly reducing the
resources for subsequent limitation of possible loss and
damage [1, 2].

Furthermore, as cyber fraud- and deception-related
theories reveal concordantly, technical artifacts are
required to prevent malicious actors from gaining access
to sensitive information as the world is becoming
increasingly reliant on computers for infrastructures
in the cyberspace [27, 28, 29]. With our design
science approach [30], we follow theories in cyber fraud
and deception by presenting a CNN-based prevention
model. As proposed by Ganesan and MSK [66],
a two-tier model can be used, which distinguished
between genuine and spoofed voice recordings in a
first step, followed by data structure (e.g., bloom
filter) which prevents the attack before reaching the
victim (e.g., customer). Therefore, our CNN-based
classification approach can be used as a first instance
of a holistic prevention approach, allowing to improve
the perceived quality of service and tackle cyber
criminology and deception issues.

6.1. Limitations

The main limitation of our work is based on the
H-Voice dataset [51], which was used to train and
evaluate our spoofed voice detection algorithm. The
dataset only provides two spoofing methods from the
LA category, including speech synthesis and voice
conversion, used to generate spoofed voices. There are
further spoofing methods that can be used for attacks
on automatic speaker verification systems. Furthermore,

our model only contains knowledge derived from the
H-Voice dataset, so our approach lacks external validity.
Although the H-Voice dataset includes a relatively large
number of samples (i.e., histograms), it still manifests
a CNN-related limitation as deep learning algorithms
require large quantities of data for training.

Another limitation of this study is the hardware
as calculations (i.e., training and evaluation) were
performed on a hosted GPU. Primarily as we aim
to contribute to the development of fraud detection
approaches suitable for embedded systems [32], tests
need to be performed that adapt the implementation of
our fake voice classification approach to computers used
in the organizational environment.

Due to the implemented method of the H-Voice
dataset and the general idea of imitating target
voices, the two classes (i.e., genuine and spoofed)
already manifest systematic differences in their visual
appearance and, therefore, features. Although the
implemented scheme (i.e., efficient wavelet masking)
represents a common procedure in the field of voice
imitation, the identified features using our post-hoc
analysis lack external validity and need to be compared
with features deriving from other datasets (i.e., different
imitation methods).

6.2. Future Work

Based on our work, some further steps need to follow
to tackle the limitations and improve our approach.
The main goal of our future work is to re-evaluate
the algorithm using larger datasets that contain a
greater variety of spoofing methods. As the evaluation
data we used in this study uses the same type of
imitated voices for all spoofed recordings, datasets
for future research need to feature different imitation
methods. This investigation will allow us to assess
and improve the robustness and external validity of our
approach. Furthermore, as our model only misclassified
spoofed voices generated with the imitation method,
a multi-class classification could be another way of
investigating our result in more detail.

While both the private and industrial usage of
voice-activated personal assistants is continuously
growing, our approach is of high practical relevance as
it contributes to lower the risk of unauthorized access
and control [4, 5]. As studies have shown that the
implementation of artificial intelligence technologies
(here: deep learning-based spoofing attack detection
approach) in enterprises of international economies
(e.g., Germany) is rather sluggish, we will also
investigate the adoption of our approach in German
small and medium-sized enterprises [33].
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