56,690 research outputs found

    HP-CERTI: Towards a high performance, high availability open source RTI for composable simulations (04F-SIW-014)

    Get PDF
    Composing simulations of complex systems from already existing simulation components remains a challenging issue. Motivations for composable simulation include generation of a given federation driven by operational requirements provided "on the fly". The High Level Architecture, initially developed for designing fully distributed simulations, can be considered as an interoperability standard for composing simulations from existing components. Requirements for constructing such complex simulations are quite different from those discussed for distributed simulations. Although interoperability and reusability remain essential, both high performance and availability have also to be considered to fulfill the requirements of the end user. ONERA is currently designing a High Performance / High Availability HLA Run-time Infrastructure from its open source implementation of HLA 1.3 specifications. HP-CERTI is a software package including two main components: the first one, SHM-CERTI, provides an optimized version of CERTI based on a shared memory communication scheme; the second one, Kerrighed-CERTI, allows the deployment of CERTI through the control of the Kerrighed Single System Image operating system for clusters, currently designed by IRISA. This paper describes the design of both high performance and availability Runtime Infrastructures, focusing on the architecture of SHM-CERTI. This work is carried out in the context of the COCA (High Performance Distributed Simulation and Models Reuse) Project, sponsored by the DGA/STTC (Délégation Générale pour l'Armement/Service des Stratégies Techniques et des Technologies Communes) of the French Ministry of Defense

    Revisiting Actor Programming in C++

    Full text link
    The actor model of computation has gained significant popularity over the last decade. Its high level of abstraction makes it appealing for concurrent applications in parallel and distributed systems. However, designing a real-world actor framework that subsumes full scalability, strong reliability, and high resource efficiency requires many conceptual and algorithmic additives to the original model. In this paper, we report on designing and building CAF, the "C++ Actor Framework". CAF targets at providing a concurrent and distributed native environment for scaling up to very large, high-performance applications, and equally well down to small constrained systems. We present the key specifications and design concepts---in particular a message-transparent architecture, type-safe message interfaces, and pattern matching facilities---that make native actors a viable approach for many robust, elastic, and highly distributed developments. We demonstrate the feasibility of CAF in three scenarios: first for elastic, upscaling environments, second for including heterogeneous hardware like GPGPUs, and third for distributed runtime systems. Extensive performance evaluations indicate ideal runtime behaviour for up to 64 cores at very low memory footprint, or in the presence of GPUs. In these tests, CAF continuously outperforms the competing actor environments Erlang, Charm++, SalsaLite, Scala, ActorFoundry, and even the OpenMPI.Comment: 33 page

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Transparent support for partial rollback in software transactional memories

    Get PDF
    The Software Transactional Memory (STM) paradigm has gained momentum thanks to its ability to provide synchronization transparency in concurrent applications. With this paradigm, accesses to data structures that are shared among multiple threads are carried out within transactions, which are properly handled by the STM layer with no intervention by the application code. In this article we propose an enhancement of typical STM architectures which allows supporting partial rollback of active transactions, as opposed to the typical case where a rollback of a transaction entails squashing all the already-performed work. Our partial rollback scheme is still transparent to the application programmer and has been implemented for x86-64 architectures and for the ELF format, thus being largely usable on POSIX-compliant systems hosted on top of off-the-shelf architectures. We integrated it within the TinySTM open-source library and we present experimental results for the STAMP STM benchmark run on top of a 32-core HP ProLiant server. © 2013 Springer-Verlag

    Transparent and efficient shared-state management for optimistic simulations on multi-core machines

    Get PDF
    Traditionally, Logical Processes (LPs) forming a simulation model store their execution information into disjoint simulations states, forcing events exchange to communicate data between each other. In this work we propose the design and implementation of an extension to the traditional Time Warp (optimistic) synchronization protocol for parallel/distributed simulation, targeted at shared-memory/multicore machines, allowing LPs to share parts of their simulation states by using global variables. In order to preserve optimism's intrinsic properties, global variables are transparently mapped to multi-version ones, so to avoid any form of safety predicate verification upon updates. Execution's consistency is ensured via the introduction of a new rollback scheme which is triggered upon the detection of an incorrect global variable's read. At the same time, efficiency in the execution is guaranteed by the exploitation of non-blocking algorithms in order to manage the multi-version variables' lists. Furthermore, our proposal is integrated with the simulation model's code through software instrumentation, in order to allow the application-level programmer to avoid using any specific API to mark or to inform the simulation kernel of updates to global variables. Thus we support full transparency. An assessment of our proposal, comparing it with a traditional message-passing implementation of variables' multi-version is provided as well. © 2012 IEEE

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Optimizing simulation on shared-memory platforms: The smart cities case

    Get PDF
    Modern advancements in computing architectures have been accompanied by new emergent paradigms to run Parallel Discrete Event Simulation models efficiently. Indeed, many new paradigms to effectively use the available underlying hardware have been proposed in the literature. Among these, the Share-Everything paradigm tackles massively-parallel shared-memory machines, in order to support speculative simulation by taking into account the limits and benefits related to this family of architectures. Previous results have shown how this paradigm outperforms traditional speculative strategies (such as data-separated Time Warp systems) whenever the granularity of executed events is small. In this paper, we show performance implications of this simulation-engine organization when the simulation models have a variable granularity. To this end, we have selected a traffic model, tailored for smart cities-oriented simulation. Our assessment illustrates the effects of the various tuning parameters related to the approach, opening to a higher understanding of this innovative paradigm
    • …
    corecore