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Abstract—Traditionally, Logical Processes (LPs) forming a
simulation model store their execution information into disjoint
simulations states, forcing events exchange to communicate data
between each other. In this work we propose the design and
implementation of an extension to the traditional Time Warp
(optimistic) synchronization protocol for parallel/distributed sim-
ulation, targeted at shared-memory/multicore machines, allowing
LPs to share parts of their simulation states by using global
variables. In order to preserve optimism’s intrinsic properties,
global variables are transparently mapped to multi-version ones,
so to avoid any form of safety predicate verification upon updates.
Execution’s consistency is ensured via the introduction of a new
rollback scheme which is triggered upon the detection of an
incorrect global variable’s read. At the same time, efficiency in
the execution is guaranteed by the exploitation of non-blocking
algorithms in order to manage the multi-version variables’ lists.
Furthermore, our proposal is integrated with the simulation
model’s code through software instrumentation, in order to allow
the application-level programmer to avoid using any specific API
to mark or to inform the simulation kernel of updates to global
variables. Thus we support full transparency. An assessment of
our proposal, comparing it with a traditional message-passing
implementation of variables’ multi-version is provided as well.

I. INTRODUCTION

A traditional way to achieve high performance simulations
is the employment of Parallel Discrete Event Simulation
(PDES) techniques [1]. They are based on the partitioning of
the simulation model into Logical Processes (LPs) that can
execute events in parallel on different CPUs and/or differ-
ent CPU-Cores, and rely on synchronization mechanisms to
achieve causally consistent execution of simulation events.

As it is well recognized, the optimistic synchronization
approach, namely the Time Warp protocol [2], which is
based on rollback for recovering possible timestamp-order
violations due to the absence of block-until-safe policies for
event processing, is likely to favor speedup in general applica-
tion/architectural contexts. In particular, it has been shown to
exhibit performance relatively independent of the lookahead
of the specific simulation model, and has also been shown
not to suffer (in terms of amount of rollback in the parallel
execution) from non-minimal message delivery latency.

On the other hand, supporting the Time Warp protocol,
while still guaranteeing a simple and flexible application pro-
gramming model, is not trivial. In particular, being Time Warp
based on concepts related to state recoverability, the level of
transparency towards the application programmers depends on
the extent and the mode according to which state recoverability
functionalities operate within the Time Warp platform. Recent
achievements along this direction (see, e.g., [3]) have enabled
fully transparent and performance-optimized recoverability via

state logs for LPs making use of dynamic memory for the
representation of their states, and possibly relying on third-
party libraries (thus software external to the application layer)
for performing state updates during event processing. At
the same time, alternative attempts to the semi-automated
generation of reverse code for backward-computation-based
state reconstruction have been also presented (see, e.g., [4]).
Such kind of approaches extremely simplify the job of the
application programmers since no state-management task in
relation to synchronization (e.g., state-log tasks) requires to
be implemented at the application level.

Actually, most of the solutions tackling transparency have
been oriented to the original definition of the Time Warp
protocol [2], where the LPs’ states are assumed to be disjoint.
Hence, according to this definition, each LP is only allowed to
modify its private state variables upon processing new events,
and the interactions (namely inter-dependencies) across LPs
are only allowed to be instantiated via cross-LP scheduling
of simulation events. On the other hand, having different LPs
sharing (at least a portion of) the state of the simulation model
may result in a more flexible paradigm, whose relevance has
been fully recognized as a crucial issue in the development of
parallel simulation applications [5], [6].

In this article we tackle the issue of transparently and
efficiently supporting shared-state in optimistic simulation
systems run on top of shared-memory/multi-core machines,
by enabling the application programmer to access within the
event processing routine both the private state of the LP and a
global portion of the state, whose instance is represented by the
value of global variables admitted within the application-level
code. Overall, with our solution the programmer is allowed to
rely on the heap for allocating/deallocating memory chunks
belonging to the private state of each LP, as already supported
via the approach in, e.g., [3], while also being able to rely on
global variables for the shared portion of the state thanks to
the innovative solution we provide in this paper.

We implemented a fully-featured shared-state management
system targeted at IA-32/x86-64 architectures and ELF ex-
ecutables. Also, we have integrated such system within the
open-source ROOT-Sim (ROme OpTimistic Simulator) pack-
age [7] which implements an optimistic run-time environment
supporting ANSI-C compliant application-level software im-
plementing the LPs’ logic in the form of event-handlers.

In order to provide efficient support for the management of
shared-state variables, in terms of both forward and backward
computation, our proposal relies on an application-transparent
multi-version scheme based on non-blocking access/update
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operations. This allows improving the level of parallelism
when the shared-state is accessed by multiple LPs concurrently
scheduled on different CPU-cores.

The results of an experimental assessment of the shared-
state management architecture are also reported for the case of
a wireless system simulation application run on top of ROOT-
Sim on an HP ProLiant server equipped with 32 CPU-cores
and 32 GB of RAM memory.

The remainder of this paper is structured as follows. In Sec-
tion II we discuss related work. The shared-state management
architecture is presented in Section III. Section IV presents
experimental data aimed at assessing the pragmatical viability
of our proposal.

II. RELATED WORK

The work in [8] discusses how state sharing might be
emulated by using a separate LP hosting the shared data
and acting as a centralized server. To tackle performance
issues, the work proposes to modify the rollback behavior of
this special LP by introducing the notion of version records.
This is an approach similar to the one proposed in [6],
where a theoretical presentation of algorithms to implement a
Distributed Shared Memory mechanism is presented in terms
of protocols to keep replicated instances of a variable coherent.
In particular, one of the provided algorithms proposes to
realize variables as multi-version lists where write operations
install new version nodes and read operations find the most
suitable version. Although this approach shows similarities to
ours, read and write operations are mapped to message passing
primitives, which is instead not the case for our proposal.
This places a hard burden on the centralized node(s), which in
the case of a simulation model performing frequent read/write
operations on shared variables can produce a non-sustainable
overhead. Additionally, these approaches are strongly oriented
to distributed simulation environments, while we target the
trend of shared-memory/multi-core machines.

A further enhancement has been presented in [9], where the
notion of state query is introduced. An LP needing a portion
of the state which belongs to a different LP can issue a query
message to it, and wait for a reply containing the suitable
value. In case this value is later detected to be no longer valid,
an anti-message (1) is sent so to invalidate the query. Again,
this approach relies on message passing, and is not transparent
to the application programmer.

The work in [10] proposes to integrate supports for shared-
state in terms of global variables, by basing the architecture
on [11]. Although this proposal supports in-place read/write
operations as we do (i.e., LPs directly access the only copy of
the data, avoiding a commit phase at the end of the execution
of an event), they provide no transparency, as the application-
level code must explicitly register an LP as a reader/writer
on the shared variables, and furthermore the synchronization
between LPs accessing shared variables is based on locks,
while we provide a non-blocking implementation.

1In Time Warp, an anti-message is a negative copy used to annihilate a
previously sent message, namely an already scheduled event. Anti-messages
are used to propagate the effects of causality errors across the LPs by retracting
events scheduled during the causal inconsistent portion of the simulation.

In the context of the High-Level-Architecture (HLA), pro-
posals for supporting shared-state can be found in [12], [13].
These proposals are again targeted at a distributed environ-
ment, since they are based on a middleware component which
relies on a timestamp-ordering approach for implementing
a request/reply protocol. Additionally, these approaches are
targeted at the conservative synchronization protocol, where
there is no need to detect and handle causality violations, while
we target optimistic synchronization.

The Software Transactional Memory (STM) paradigm [14]
allows multiple threads to access global information while
ensuring consistency wrt concurrent accesses. The main dif-
ferences between multi-version-based STMs [15] and our
proposal lie in that (i) STM does not enforce transparency
wrt the application-level programmer, since transactions must
be explicitly marked; (ii) write operations do not work in-
place, i.e., data updating is performed on separate buffers (i.e.,
write-sets) which are then copied (i.e., externalized) into the
global buffer after some safety predicate is computed during
the commit phase; (iii) when an update is externalized, it
cannot be undone, i.e., there is no need for supporting rollback
operations on externalized values, as instead it may occur in
the optimistic synchronization protocol for parallel simulators.

The work in [16] proposes a framework targeted at multi-
core machines and based on Time Warp, where Extended
Logical Processes (Ex-LP), defined as a collection of LPs,
can access state variables of each other directly. Every Ex-
LP should therefore manage an event-list to perform rollback
operations due to shared data accesses. In addition, public
attributes are referred to variables which can be accessed by
LPs in other Ex-LPs. The work proposes to handle shared
attributes accesses by relying on a specifically-targeted STM
implementation, where events are mapped to transactions and
the actual implementation of the STM is based on [10]. This
proposal inherits most of the features of the general STM
paradigm, so that our proposal is set aside this one.

As for non-blocking algorithms, avoiding mutual exclusion
has been considered a benefit since the early 1970’s [17].
Lamport [18] gave the first non-blocking algorithm for the
problem of a single-writer/multiple-reader shared variable.
Herlihy [19] proved that for non-blocking implementations
of most interesting data types (linked lists among them), a
synchronization primitive that is universal, in conjunction with
reads and writes, is both necessary and sufficient. A universal
primitive is one that can solve the consensus problem [20] for
any number of processes. In our implementation we rely on
Compare&Swap (CAS), which is a universal primitive. The
work in [21] presents the implementation of a non-blocking
linked list, which we have readapted for our own purposes.

A subtle problem associated with most lock-free algorithms
is the ABA problem. It was first reported in association with
the introduction of the CAS instruction on the IBM System
370 [22]. It occurs when a thread T1 reads a value A from
a shared object and then an interrupting thread T2 modifies
the value of the shared object from A to B and then back to
A. When T1 resumes, it erroneously assumes that the object
has not been modified. Given such behavior, there is a serious
risk that T2’s execution is going to violate the correctness of
the object’s semantic. Practical solutions to the ABA problem



include the use of hazard pointers [23] or the association of
a version counter to each element in platforms supporting a
double-word compare-and-swap primitive (CAS2) such as IA-
32 [24]. We explicitly rely on the latter solution to avoid the
ABA problem in our non-blocking implementation.

III. SHARED-STATE MANAGEMENT ARCHITECTURE

Being our approach targeted at multi-core machines, in our
Shared-State Management Subsystem (SSMS) we have explic-
itly decided to rely on shared memory for keeping the current
state of global variables. This allows a fast access to the data
structures, although requiring some sort of synchronization
between instances in order to ensure correctness. To leverage
the synchronization burden, we have decided to implement
data structures’ accesses as non-blocking algorithms [25],
which are expected to ensure better performance than locking
ones when accesses are statistically spread across the various
portions of the data. To ease the application-level programmer,
we have addressed transparency via software instrumentation,
so that no additional API or code construct should be used to
notify SSMS of accesses to global variables.

In this section, we provide a detailed description of the
architectural choices and the motivations behind each key
component of SSMS. Additionally, we will discuss the re-
duced set of APIs provided by SSMS, which allow a fast
integration into any optimistic simulation platform adhering
to the optimistic synchronization protocol.

A. Read/Write Detection
In order to provide complete transparency to the application-

level programmer, accesses in read/write mode to global
variables must be explicitly intercepted. To this end, we
rely on instrumentation techniques aimed at modifying the
actual instructions executed by software executables, without
altering their actual semantics. In particular, in the work
in [26] we presented a versatile Instrumentation Tool (IT)
targeted at IA-32/x86-64 instruction sets [24], [27] and ELF
executables [28], on GNU/Linux Operating Systems. By
relying on IT, at compile time the application-level instruction
code (i.e., the assembly bytestream) is modified in order to
replace operations loading data to and from memory with
actual function calls which are the entry points of our SSMS.
These entry points are associated with the following APIs
provided by SSMS: write_global_variable(void

*orig_addr, time_type lvt, ...) and void

*read_global_variable(void *orig_addr,
time_type my_lvt). They allow accessing the versions
within the version lists for a given variable at a certain
Logical-Virtual-Time (LVT).

We have identified two main groups of instructions/code
blocks which have to be handled within the application-
level assembly code. First, in IA-32 simple load and store
operations are identified by mov instructions. Whenever IT’s
parser identifies a mov instruction, it is analyzed in order to
determine whether it is targeting memory as a source or des-
tination operand, and a call to write_global_variable
or read_global_variable is replaced accordingly.
When the mov instruction involves a load operation from
memory, an additional postamble to the function call is

placed, in order to have the actual value returned by
read_global_variable placed into the correct CPU
register where the application-level software is expecting the
value to be found.

Second, the IA-32 instruction set provides more complex
instructions which allow an executable to efficiently modify
memory areas in-place. As a relevant example, we propose
instructions like ADD m32, r32 or INC m32. In this case,
IT replaces the instructions with a block of instructions,
entailing a couple of calls to the SSMS’s read and write
APIs, and re-implementing the same logic with several CPU
instructions. This implementation of course adds some over-
head, nevertheless it allows to integrate our SSMS completely
transparently wrt the application-level programmer.

High-level programming languages allow to access memory
objects in a non-direct way, namely through the use of
pointers. Since IT works at compile time, it is not possible
to statically determine whether a pointer will target a global
variable or not. To cope with this issue, we use IT to
instrument any mov instruction which can handle pointers
through a call to a monitor function which fastly determines
if a pointer targets a global variable. In particular, at compile
time, via the usage of a custom ld-based linker script we insert
symbols called _bss_start, _bss_end, _data_start,
_data_end, within the application-level ELF executable,
which mark off the area containing global variables. Upon a
call to the monitor routine, a fast check on these boundaries
is performed. If a pointer falls within this area, the operation
is redirected to SSMS, on the other hand the original mov
instruction is executed.

As a last note, Intel’s instruction set provides string instruc-
tions which allow to perform operations on memory buffers
instead of single memory locations. In particular, movs and
stos instructions allow the program to copy or modify large
buffers at once. In order to cope with the presence of these
complex instructions, SSMS provides two additional APIs,
namely copy_buffer() and set_buffer() which sim-
ulate the execution of these operations on version lists if
they are found to target global variables (e.g., global arrays).
Otherwise, they just execute the original movs or stos
operations. Therefore, at compile time, IT replaces every string
operation involving memory update with a function call to
these APIs, accordingly.

The last operation we perform at compile time is the
inspection of the application-level ELF object file in order to
extract information concerning global variables. In particular,
by exploring the application object we extract from the symbol
table .symtab all the STT_OBJECT / STT_COMMON sym-
bols and store their name, address and size in a text file which
will be later used at startup time for setting up the version
lists. In this way, by exploiting the 〈name, address, size〉
tuple, we are able to transparently identify any access to
global variables which will be likely used by the application-
level code during the execution of the simulation model,
allowing the programmer to rely on the complete set of
constructs provided by ANSI-C. We note that, although there
will be more instances of the simulation kernel running the
application-level code, a global variables’ address is a common
information shared among the instances, as long as its virtual



address will be the same and is cabled into the executable.

B. Accounting for Third-Party Libraries
The possibility to rely on third-party libraries depends on

whether they will be invoked on global variables or not. We
have explicitly addressed the case of read/write operations
performed by third-party software, just focusing on stdlib.
Specifically, SSMS provides a set of function wrappers for
all those functions which produce in-memory accesses by
the application-level software through pointers passing. The
wrappers simply check whether global variables are involved
in the operation. In this case, operations are redirected to
SSMS APIs for accessing version lists. Otherwise, the original
stdlib functions are called.

C. Memory Map and Version Lists
As hinted before, SSMS explicitly targets shared-

memory/multi-core machines. In order to significantly enhance
performance, we have decided to avoid requesting to the
underlying operating system shared memory segments on-
demand, whenever SSMS needs to install some data structure.
On the other hand, at simulation startup the master kernel
installs a large shared memory segment, and broadcasts to
other kernel instances its id. The shared segment is partitioned
according to the definition of the following structure:
typedef struct _globval_shmem {

int num_vars;
globvar_info variables[MAX_GLOBVARS];
volatile int first_node_free;
globvar_node versions[MAX_VERSIONS];
time_type read_list[];

} globvar_shmem;

In particular, the shared memory segment is divided
into several fixed-sized portions. One portion, namely
variables, is an array which is used to manage global
variables. Upon initialization of SSMS, the configuration text
file described in Section III-A is loaded and parsed. The field
num_vars is used to keep track of how many variables
are actually handled, and for each of them an entry in the
variables array is populated. To allow a fast retrieval of
the global variables, we use a fast hash function to determine
which entry in the variables array will store the infor-
mation associated with a specific variable. In particular, the
position in the array is determined with a fast bitwise operation
— namely, address & (∼(-MAX_GLOBVARS)) — since
MAX_GLOBVARS is set to be a power of two. In case collisions
are found, separate chaining is used as a means for finding a
free place. Each entry in the variables array is structured
as:
typedef struct _globvar_info {

void *orig_addr;
unsigned short int size;
long long head;
long long tail;

} globvar_info;

orig_address stores the global variable’s original address,
which is used as hash table’s key; size describes which is
the size (in bytes) of the global variable.

Since we are preallocating shared memory, version lists
must be implemented using nodes scattered around the pre-
allocated segment. In particular, versions is an array of

metadata

{

...

variables nodes

{...

read list

{...

Fig. 1: Preallocated Shared Memory Map

fixed-sized nodes which can be used for any list, and head
and tail are indices within this array, which is composed of
entries structured as follows:
typedef struct _globvar_node {
volatile int alloc;
time_type lvt;
unsigned char value[MAX_BUFF];
spinlock_t read_list_spinlock;
long long next;

} globvar_node;

where lvt is the logical time associated with the version,
value is the global variable’s value, and next is used to
identify which is the following node in the list. A node can
therefore be seen as a snapshot of the state of a single global
variable at a certain LVT. In Figure 1 we provide a complete
picture of the preallocated memory map.

Node versions’ entries can belong to any list, and given that
lists are accessed without the use of locks, a special allocation
function must be used, ensuring that no two simulation kernel
instances running concurrently are given the same entry for
handling two different versions.

Algorithm 1 Shared Memory Allocation
1: procedure ALLOCATE
2: m← generate_mark()
3: slot← first_node_free
4: while true do
5: alloc← vers[slot].alloc;
6: if alloc ∨ ¬ CAS(vers[slot].alloc, alloc, m) then
7: slot← next slot in circular policy
8: else
9: break

10: end if
11: end while
12: atomically update first_node_free
13: return slot;

14: end procedure

The ALLOCATE pseudocode is given in Algorithm 1. In
order to allow concurrent accesses, it relies on CAS (2), which
allows to update involved data only if no other process has up-
dated the same data in the meanwhile. The globvar_shmem
data structure holds in first_node_free the value of the
first element of the versions array to start trying to allocate
from. Its manipulation is based on the classical algorithm
used by the LINUX kernel for managing the bitmap of file
descriptors associated with a process. Specifically, it is always
atomically increased upon allocation, and gets atomically
decreased in case an entry is released having index less than
the first chunk currently available within that block. Starting

2In particular, we rely on the IA-32’s cmpxchg. Throughout this paper we
mention atomic operations which are implemented directly in assembly using
native atomic instructions.
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from that slot, a kernel instance tries to allocate a node by
storing via a CAS operation a non-zero value within the
alloc field of globvar_node, which tells whether a node
is currently in use. In case the CAS fails, the next node in
the array is selected and the procedure is repeated, until it
eventually succeeds (3). The companion function RELEASE
is much simpler, as it only entails resetting the alloc and
updating first_node_free, via an atomic_set call.

In order to cope with the ABA problem [22], we have
explicitly decided to consider a node allocated if the alloc
field is non-zero. In particular, we store into it a unique value
every time a node is allocated, so that two allocations can be
identified as different. The macro generate_mark produces
an integer value which is in turn composed of two short
integers, one holding the unique id of a kernel instance and
the other holding the value of a per-kernel counter which is
incremented every time the macro is invoked (4).

Once a node is allocated, it gets organized into a non-
blocking linked list, which is implemented according to a
modified version of the one proposed in [21]. Concurrent
insertions are handled via the use of a single CAS operation,
which is used to introduce the newly allocated node into the
list by acting on the next field of the predecessor node. As
for deletion, two CAS are used, one to mark the next field of
the deleted node as logically deleted, and another to physically
delete the node. We have slightly modified the algorithm in
order to take into account our specific needs. In particular, the
FIND-NODE procedure has been augmented in order to return
the alloc field, to explicitly cope with the ABA problem,
and the INSERT procedure does not fail if a node with the
same key (i.e. LVT) already exists. Specifically, the new node
is simply linked after the originally existing one. In addition,
we note that LPs are more likely to access versions associated
with higher LVTs, since well partitioned/balanced optimistic
simulations usually proceed relatively evenly. Therefore, we
sort the versions in the lists in descending order, to avoid a
complete scan of the list every time we want to find a node
in it.

To avoid the ABA problem in linked lists, pointers (i.e.
indices) to nodes are composed (every time they are updated)
by a unique mark generated via the aforementioned macro
generate_mark and the real index, allowing to capture

3To check if the space is up, a counter of available free nodes is kept
as well in shared memory, which is managed via an atomic_decrement
operation.

4generate_mark can of course return two equal values when the counter
overflows, but this situation can happen after a significant simulation time, so
we consider it to be statistically non-significant for the ABA problem.

the situation where two nodes are still adjacent but one was
deallocated and then reallocated during the execution of the
non-blocking algorithm by different kernel instances.

The operations performed on the versions lists are depicted
in Figure 2.

D. Accessing Version Lists
The APIs offered by SSMS provide two main functions to

access global variables, namely read_global_variable
and write_global_variable, which we will refer to as
READ and WRITE from now on.

Algorithm 2 Global Variable Read
1: procedure READ(addr, lvt)
2: slot← hash table’s entry associated with addr
3: hasRead← false
4: if slot ∈ AccessSet then
5: version← AccessSet[slot]
6: else
7: while ¬hasRead do
8: 〈version, alloc〉 ← FIND-NODE(slot, lvt)
9: AccessSet[slot]← version

10: spin_lock(read list lock)
11: if alloc has been changed then
12: spin_unlock(read list lock)
13: continue
14: end if
15: add 〈lp, lvt〉 into ReadList
16: spin_unlock(read list lock)
17: hasRead← true
18: end while
19: end if
20: return vers[version].value;

21: end procedure

READ operation’s pseudocode is provided in Algorithm
2. For efficiency reasons, before letting an LP execute a
simulation event, SSMS sets up an AccessSet, i.e., a mapping
between version nodes and variables. Whenever a variable is
accessed for the first time, FIND-NODE (5) determines which
is the most suitable version for the given LVT, and a couple
〈slot, version〉 is placed into AccessSet in order to speedup
the retrieval of the version, avoiding the scan of the list upon
subsequent accesses.

Algorithm 3 Global Variable Write

1: procedure WRITE(addr, lvt, val)
2: slot← hash table’s entry associated with addr
3: if slot ∈ AccessSet then
4: version← AccessSet[slot]
5: vers[version].value← val
6: else
7: version← INSERT-VERSION(slot, lvt, val)
8: AccessSet[slot]← version
9: end if

10: for all 〈lp, lvt′〉 ∈ ReadList s.t. lvt′ ≥ lvt do
11: send antimessage to lp
12: end for

13: end procedure

As for the WRITE operation, the pseudocode of which is
presented in Algorithm 3, its behavior is twofold depending
on whether it is invoked for the first time since the beginning

5We remind that FIND-NODE is a modified version of the one presented in
[21]. For a detailed description of the procedure, we throw back to that work.
In addition, we note that a version node is always available, even before any
WRITE operation, since at startup the initial value of the global variable is
placed into the version list.
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Fig. 3: Occurrence of the Rollback Operation

of the current event’s execution. In particular, upon the first
access on a variable, the AccessSet for that particular event is
populated. Otherwise, a call to INSERT-VERSION is performed
which, as stated in Section III-C, creates a new version.
The second part of the WRITE operation entails checking
the ReadList for ensuring consistency, as it will be clearly
depicted in Section III-E.

E. Synchronization and Rollback Operations

In order to strengthen the optimism of our implementation,
we allow interleaved reads and writes on a version list, and we
explicitly avoid a version k installed at LVT tk to invalidate
every version j such that tk < tj . In fact, we note that
consistency is violated only if, at LVT tx an LP reads the
version associated with LVT ty such that ty ≤ tx, and
at a certain point during the execution a new version node
associated with LVT tz such that ty ≤ tz < tx is installed.

This means that every process which reads a certain version
node must leave a mark of that operation, i.e., visible reads
[29] are enforced. In fact, as shown in Figure 3, we are
interested in undoing only the events which read a version
older than the new one which has just been inserted.

To this end, we augment the classical notion of rollback
as presented by the Time Warp synchronization protocol, by
sending a special anti-message to all the LPs which have
read a so-defined causally inconsistent version after any write
operation. This is reflected into Algorithms 2 and 3. In fact,
in the READ operation, before returning the variable’s value,
the tuple 〈lp, lvt〉 is inserted into the ReadList for that
particular version. This operation is included within a specially
designed critical section to ensure consistency. In fact, a
spinlock for that particular ReadList is taken, ensuring that
no other process will start the rollback operation while the
ReadList is being updated. Otherwise, this scenario would
produce a non-trackable read operation. In addition, after the
spinlock has been taken, a check on the variation of the
alloc field for that particular version is performed, so to
avoid the ABA problem due to a critical race between the
deallocation/allocation procedure and the ReadList update.
At the same time, at the end of the WRITE operation, the
ReadList of the left node is checked in order to find all the
LPs which read the previous node’s value, while they were
requesting a version at an LVT such that they should have read
the one in the version which was just installed. Although the
list is linked in only one direction, given the implementation
of FIND-NODE, locating the previous node is immediate.

We note that another step must be undertaken in order to
ensure correctness. In particular, whenever a special antimes-

sage is received because of an inconsistent read, any version
node installed due to that particular event must be removed.
To this end, we augmented the concept of message queue
and modified the WRITE function so that whenever a node is
installed during the execution of an event, the message queue
keeps track of this operation via a pointer to the node created
during the event’s execution. In case a rollback operation
entails the undoing of that event, the node is removed from
the version list, and the ReadList is scanned for sending
antimessages to every LP which read that particular node.

F. Memory Recovery
In Time Warp, the notion of fossil collection is defined,

i.e., the process of recovering memory by deleting simulation
state snapshots which are no longer needed. In particular, at
a periodic rate, the Global Virtual Time (GVT) is computed
as the minimum timestamp of not yet processed events or in-
transit messages/antimessages in the whole simulation system.
Since during the execution of an event an LP can schedule a
new event at an LVT which is equal to, or greater than, the
one associated with the event being executed, there cannot
be a rollback operation involving a simulation state snapshot
associated with a timestamp less than the GVT. Therefore, any
snapshot belonging to a logical time window before the GVT
can be discarded.

In our proposal, we extend the notion of fossil collection
by defining the version list pruning. In particular, upon GVT
computation, the version lists associated with global variables
are scanned in order to find which is the first node i stamped
with ti ≤ GV T and that node is selected as the barrier node.
Any node marked with a timestamp tk < ti is marked as
free and removed from the list. For implementations where
there is no actual event processing during GVT computation,
the version list pruning is thread safe, and can therefore be
executed efficiently, with no need to synchronize the access.
In particular, the various lists can be divided evenly across the
various kernel instances, and each kernel performs the memory
recover executing in isolation. This choice provides a more
efficient execution and still ensures correctness.

IV. EXPERIMENTAL DATA

A. Test-Bed Application
The hardware architecture used for testing our proposal

is a 64-bit NUMA machine, namely an HP ProLiant server,
equipped with four 2GHz AMD Opteron 6128 processors and
64GB of RAM. Each processor has 8 cores (for a total of
32 cores) that share a 12MB L3 cache (6 MB per each 4-
cores set), and each core has a 512KB private L2 cache. The
operating system is 64-bit Debian 6, with Linux Kernel version
2.6.32.5. The compiling and linking tools used are gcc 4.3.4
and binutils (as and ld) 2.20.0.

We have run our model on top of the ROme OpTimistic
Simulator (ROOT-Sim) [7], which is an open-source, general-
purpose simulation platform developed using C/POSIX tech-
nology, based on a simulation kernel layer that ultimately relies
on MPI for data exchange across different kernel instances,
and which adheres to the optimistic synchronization paradigm.
Interaction with the application-level software is handled via
a simple and reduced API, while LPs’ state management and



recoverability is offered by DyMeLoR [26], [30], a memory
manager which allows rollbackable dynamic memory alloca-
tion and release by the application, performed via hooked
standard malloc library calls, offering full transparency.

As a test-bed, we have used Personal Communications
Service (PCS), a suite of differently parameterized simulation
models of wireless communication systems adhering to GSM
technology. The different parameterization entails variations of
the transmission capabilities offered by each cell, as well as
variations of the call arrival rate. In the employed simulation
models, wireless communication channels are modeled in a
high fidelity fashion via explicit simulation of power regula-
tion/usage and interference/fading phenomena (implemented
according to the results in [31]) on the basis of the current
state of the corresponding cell (also expressed as a function
of current meteorological conditions).

Upon the start of a call destined to a mobile device
currently hosted by a given wireless cell, a call-setup record
is instantiated via dynamically-allocated data structures, which
gets linked to a list of already active records within that same
cell. Each record gets released when the corresponding call
ends or is handed-off towards an adjacent cell. In the latter
case, a similar call-setup procedure is executed at the desti-
nation cell. Upon call-setup, power regulation is performed,
which involves scanning the aforementioned list of records
for computing the minimum transmission power allowing the
current call-setup to achieve the threshold-level SIR value.
Data structures keeping track of fading coefficients are also
updated while scanning the list, according to a meteorological
model defining climatic conditions (and related variations).
The employed simulation models have been developed for
execution on top of ROOT-Sim in a way that each LP models a
single wireless cell. Hence, the event-handler callback involves
the update of individual cells’ states, and cross-LP events are
essentially related to hand-offs between different cells.

Calls inter-arrival time is exponentially distributed, and
average duration is set to 2 minutes. The expected rate for
call inter-arrival has been set to achieve channel utilization
factor on the order of 15%, while the residence time of an
active device within a cell has a mean value of 5 min and
follows the exponential distribution.

To evaluate the efficiency of our proposal, we have extended
the simulation model having a set of global variables handling
global statistics. In particular, upon each events execution the
total number of calls, the total number of handoffs, and the
global cumulated power is updated in the shared state. In
addition, we have re-implemented the model in order to have
a centralized LP keeping in its disjoint simulation state the
global attributes. Every LP willing to update a shared attribute
issues a message request to the centralized LP, which in turn
sends back the current value. Any update on the current value
is then sent as another message to the centralized LP.

For the above scenario, we have run experiments with
64 wireless cells, modeled as hexagons covering a square
region, each one managing 1000 wireless channels. We have
measured the cumulated event rate (expressed as the amount
of cumulated committed events per Wall-Clock-Time unit),
which is a classical indicator of the speed of the optimistic
simulation run.
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B. Results

In Figure 4 we present the throughput associated with our
proposed test-bed model run on top of 32 simulation kernel
instances, each one running on a private CPU-core of our test
machine. By the results, we can see that the execution of the
simulation model relying on our SSMS provides a speedup
in the order of 70%. In addition, we note that there is a
tangible difference between the two curves’ trends. In fact,
the throughput associated with the SSMS execution has a
constant growth, which suggests a constant event commitment
rate. On the other hand, the centralized-LP implementation’s
slope shows fluctuations, which are related to the large amount
of events associated with variables’ reads/updates which must
be processed. Therefore, the number of committed events per
GVT interval is not constant, due to the fact that the amount
of workload processed by differentiated LPs is totally different
and that the LVT of the LP keeping the shared state diverges
from the other LPs’ one (this can entail a higher rollback
probability), a scenario which is not present at all when relying
on the multiversion lists in the shared memory version case.

At the same time, Figure 5 shows the total execution time
of the simulation wrt the number of parallel simulation kernel
instances on which the model is run. In addition to the set of
experiments described before, we present also the curve asso-
ciated with another implementation of the benchmark, where
the shared attributes are kept in the disjoint LPs’ simulation



states and are reduced at the end of the simulation. By the
results, we can see that both the SSMS and the centralized-
LP implementation suffer from some form of thrashing. In
fact, the centralized-LP version provides a speed-down in
the order of 100% when the model is parallelized on top
of 4 parallel kernel instances, while SSMS shows the same
behaviour starting from 8 parallel kernel instances. The version
with no shared state shows a trend which is the one expected
by a parallel simulator.

We note that in this configuration, the SSMS’s speedup wrt
the centralized-LP is very large. Of course, the overhead in the
centralized-LP case could be leveraged by having different LPs
handle different variables, but this solution would not scale
well wrt the size of the shared state in the simulation model.

Finally, we note that the simulation model used to assess the
validity of our proposal is a worst case for our architecture,
since at every event’s execution some updates on the global
variables are performed, producing a large contention on the
linked lists. A simulation model which relies on shared-state
for synchronization rather than for global statistics would
benefit much more from the proposed architecture.

V. CONCLUSIONS

In this work we have presented the design/implementation
of an efficient support to shared-state for optimistic simulation
platforms, targeted at multi-core/shared-memory architectures.
We have explicitly relaxed the classic simulation models’
state coinstraints, allowing the usage of portion of shared
states among simulation objects, relying on global variables.
We have provided the application-level programmer with full
transparency, and we have exploited intrinsic carachteristics of
our target architecture to enhance synchronization performance
by relying on a non-blocking implementation.
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